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Abstract

Cloud-computing shares a common pool of resources across customers at a scale
that is orders of magnitude larger than traditional multiuser systems. Constituent
physical compute servers are allocated multiple ‘virtual machines’ (VMs) to serve
simultaneously. EachVM user should ideally be unaffected by others’demand. Naturally,
this environment produces new challenges for the service providers in meeting customer
expectations while extracting an efficient utilization from server resources. We study a
new cloud service metric that measures prolonged latency or delay suffered by customers.
We model the workload process of a cloud server and analyze the process as the customer
population grows. The capacity required to ensure that the average workload does not
exceed a threshold over long segments is characterized. This can be used by cloud
operators to provide service guarantees on avoiding long durations of latency. As part
of the analysis, we provide a uniform large deviation principle for collections of random
variables that is of independent interest.
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moving average; nonstationary process
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1. Introduction

Cloud computing is a paradigm shift of multiple orders of magnitude in the pursuit of
extracting greater utilization of server resources while serving the computing needs of a large
collection of customers. This has been made possible primarily by the concept of workload
virtualization wherein individual users operate on virtual machines (VMs), each with modest
resource requirements, and multiple VMs are served by a single large computing server. Cloud
service providers achieve greater utilization by over-provisioning VMs on computer nodes,
acting on the assumption that rarely will multiple customers simultaneously require large
quantities of resources.

The resources required over time by a user is a stochastic process, modeled here as a
discrete-time moving average (MA) process. We allow for a heterogeneous population of
customers, where they are partitioned only by their statistical/stochastic behavior, but are
considered equal in terms of priority of service. Service guarantees currently provided by
cloud computing providers (Amazon Web Services’ EC2 , Google’s Web Toolkit, Microsoft’s
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Azure, etc.) are weak: service level agreements (SLAs) are available only for quick initial
provisioning of a new VM from a user onto a compute node, but no guarantees are provided
on the quality of service experienced by the customer over time. Large organizations with
significant computing requirements, who are willing to pay for good service guarantees, are
thus wary of using this architecture for any activity beyond their non-critical desktop usage; see
Li et al. (2009) and Mendler (2010). This in particular impedes large-scale adoption of cloud
computing for time-critical and resource-intensive workloads.

New techniques need to be developed to address the challenge of estimating performance
from the user’s perspective in this computing paradigm. A key performance indicator in
multiuser systems measures the latency suffered by users. Latency occurs when access to
computing resources is throttled because the total quantity of one or more resource required
(CPU cycles, memory space, IO bandwidth, etc.) by all the VMs exceed the server’s capacity.
Then, under the most commonly used form of processor-sharing discipline, all customers on
the server are provisioned proportionately lower resources than they had requested and, thus,
are said to experience latency. Applications that are intolerant to latency are discouraged from
being put on clouds in the absence of SLAs that penalize their incidence (see Li et al. (2009)).
Therefore, for a company that wishes to guarantee its customers availability of the server’s
resources, it is important to understand how large and frequent such long time segments of
continued latency can be. We provide a framework to construct such estimates. In particular,
we use this framework to estimate the time till the first observation of continued latencies of a
given large time length, and its dual, the largest period of latency experienced within a given
time. Cloud service operators can utilize this technique to create SLA contracts. In addition, the
relationship between the expected first observation time and the per-customer average capacity
can help design system improvements to minimize SLA violations. An operator may also
provide differentiated service to customers, where those willing to pay for better guarantees
can be put on an isolated subcloud with capacity provisioning tailored to their growth, usage,
and the agreed-upon SLA contract.

Our framework is built on analyzing long strange segments (see definitions (2) and (3)) of the
underlying workload process of the cloud server; we refer the reader to Arratia et al. (1990) and
Ghosh and Samorodnitsky (2010) for a review. Suppose that the server is allocated a capacity
that maintains a steady per-customer average Cp above its expected value. Even if Cp is a large
number, there will be long time segments during which the average workload of the server
will exceed the total capacity. These are long strange segments. Li (2007) studied a similar
but simpler metric that captures only the instantaneous latency suffered when instantaneous
workload requests exceed capacity, while our goal here is sustained latency suffered over time
intervals. A standard technique for analyzing the rate of growth of long strange segments
for stationary processes involves an associated large deviation principle (see the discussion
at the end of Section 2). While standard probabilistic models (for example, queues) operate
on stationary processes, the cloud workload process is nonstationary (see the definition in
Section 2). This is because the total number of VMs in the cloud environment increases over
time. This is a consequence of the fact that VMs are software artifacts that are inexpensive to
instantiate and operate, and so client organizations tend to encourage large-scale adoption and
persistent usage of the VMs within their organization. In addition, a major new technological
innovation allows fast migration of VMs between individual physical servers within the same
cloud infrastructure. Thus, the cloud service environment is better modeled to consist of larger
logical servers that each continually grow in capacity in order to serve a continually growing
population of users, which yields a nonstationary workload process
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The standard large deviation tools that are vital to the analysis of long strange segments of
stationary processes are thus not useful for our nonstationary workload process. This process
however has a certain structure that can be gainfully exploited. To take advantage of this,
we develop a tool for proving a uniform large deviation principle that in its most general
form applies to collections of random variables that satisfy certain regulatory conditions (see
Theorem 2 in Section 3). This tool, which is of independent interest, plays a crucial role in
proving Theorem 1, the main result of this paper, which provides a strong law characterization
of the rate of growth of the duration of latency periods as a function of the Fenchel–Legendre
transform of the log-moment generation functions of the underlying process. The conditions
imposed by the uniform large deviation principle (Theorem 3) are general enough to allow for
a broad class of stochastic processes.

Li (2005) found that linear time series models provide accurate predictions of web-server
workloads. Khan et al. (2012) presented a cloud workload model that augments a linear time
series model with a hidden Markov model that changes the time series model parameters at a
coarser timescale. Our choice of MA processes helps us provide a clear and simple exposition
of the main points. While this does limit the results presented here to linear time series models
of workloads, we expect to establish a similar analysis for state-space-based models in our
future work.

To summarize, the main contributions of this paper are as follows.

(a) We provide a tool for proving the uniform large deviation principle for a collection of
sequences of probability measures. Recall that the Gartner–Eliis theorem is a very helpful
device for proving the large deviation principle for a single sequence of probability
measures; see Gartner (1977), Ellis (1984), and Dembo and Zeitouni (1998, Theo-
rem 2.3.6, p. 44). We view Theorem 2 as an analogue of the Gartner–Ellis theorem
for proving the uniform large deviation principle for a collection of such sequences. The
conditions imposed on the random variables restrict the set of admissible probability
laws, but are sufficiently flexible to apply to a wide variety of situations.

(b) We provide strong laws characterizing the rate of growth of two performance measures
of service under the cloud computing architecture, namely the minimum time taken to
observe a continued latency period of a given length, and its dual, the maximum latency
period that is observed within a given time.

(c) We show, using a motivating example, how these results can be used by a cloud service
manager to (i) create SLA contracts representing a guarantee to the customer against
chances of observing frequent long latencies, and (ii) design system improvements to
minimize the frequency of long latencies, such as the rates at which new capacity should
be procured/allocated to maintain or improve service.

In the following section we describe our model of the cloud environment and state the main
result of this paper. We conclude the section with a discussion of a representative example. In
Section 3 we state and prove the uniform large deviation principle for collections of random
variables. This is used in Section 4 where the main result is proved.

2. Cloud model and main result

We model the workload of each user with respect to the instantaneous requirements for a
single resource, e.g. CPU cycles required, over time. A total of K customer groups are served,
where groups differ in their workload characterization. The cloud is managed in a manner
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that provisions ni(t) customers from the ith group at time t on each large logical server. The
function ni(t) is assumed to be a power function, i.e. there exist a positive constant α and
positive integers c1, . . . , cK such that

ni(t) = ci�tα� for all i = 1, . . . , K.

For any x ∈ R, �x� denotes the greatest integer less than or equal to x and �x� represents the
smallest integer greater than or equal to x. The ci are chosen to be positive integers rather
than real numbers. This is solely because of convenience in handling the limit identities which
appear below; we are certain that taking ni(t) = �ci t

α� for some positive real number ci would
not have any significant effect on the results. This form for ni(t) has two important implication.
First, the relative mix of customers from each group, defined by the ratios of the parameters ci ,
remains constant over time, and only the total population of users grows with time. Second,
the number of customers remains a deterministic function of time. We believe this setting can
be easily generalized to allow the number of customers to be a stochastic process, e.g. the
case where (n1(t), . . . , nK(t)) are jointly regularly varying with index α and the number of
customers in the ith group is a Poisson process with intensity ni(t), but we do not foresee this
situation adding any extra insights to the studied problem.

The j th customer in the ith group has workload Wi,j (t) at discrete time t , i.e.

Wi,j (t) = µi + Xi,j (t) = µi + β�
i Z(t) + εi,j (t) for all 1 ≤ i ≤ K, 1 ≤ j ≤ ni(t), t ≥ 1,

where µi is a constant denoting the expected workload of customers in the ith group and Xi,j (t)

is the deviation from the mean workload of the j th customer in the ith group at time t . The zero-
mean stochastic process Xi,j (t) is further defined as the weighed sum of a K-dimensional MA
process Z(t) and additional pure-noise independent and identically distributed (i.i.d.) random
variables εi,j (t). The weights βi ∈ R

K are group-specific constants. The noise process
(εi,j (t); 1 ≤ i ≤ K, t ≥ 1, 1 ≤ j ≤ ni(t)) consists of i.i.d. random variables, independent of
(Z(t), t ∈ Z), with mean 0, satisfying

�ε(λ) := log E[exp{λεi,j (t)}] < ∞ in a neighborhood of 0.

The process Z(t) is a K-dimensional MA process with coefficients (φt , t ∈ Z) and innova-
tions (ξt , t ∈ Z) defined as

Z(t) =
∞∑

k=−∞
φkξ(t − k) for all t ∈ Z,

where

(i) the coefficients satisfy
∑

k |φk| < ∞ and φ := ∑
k φk �= 0,

(ii) the innovations (ξ(t), t ∈ Z) are K-dimensional i.i.d. random variables with mean 0,
satisfying

�ξ(η) := log E[exp{η · ξ(t)}] < ∞ for all η ∈ R
K (1)

(for any two vectors x and y, x · y denotes the scalar product).

We will place the following additional restriction on the log-moment generating function
�ξ(·) to satisfy the conditions of the uniform large deviation principle (Theorem 3 below).
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Assumption 1. It holds that |d�ξ (λβ̄)/dλ| → ∞ whenever |λ| → ∞, where β̄ := C−1

(
∑K

i=1 ciβi) with C := ∑K
i=1 ci .

This mild restriction on the parameters of the MA process is satisfied by realistic computing
workloads. For example, it admits a Gaussian form for the innovations ξ (see Example 1
below). We also describe an example where the ξ follow a centered Poisson distribution (see
Example 2 below).

The expected workload of the server at time t is given by
∑K

i=1 ni(t)µi. In our setup the
number of customers in each group grows over time and so does the expected workload of the
server. The capacity of the server must continually increase to handle this growth and prevent
situations where the VMs are perpetually being throttled. Our imperative is to understand the
deviations from the mean workload. Define S(t) as the sum of all the deviations until time t ,
i.e.

S(t) :=
t∑

k=1

K∑
i=1

ni(k)∑
j=1

Xi,j (t) for all t ≥ 1,

and N(t) as the associated normalizing term for time t , i.e.

N(t) =
t∑

k=1

K∑
i=1

ni(k) for all t ≥ 1.

By convention, we understand that
∑j

l=i xl = 0 if j ≤ i. Furthermore, if i and j are not
integers,

∑j
l=i xl will denote

∑�j�
l=�i� xl .

We study the average deviation of the workload of the server from its mean over long
segments of time. For any time segment (k, l), the average deviation is given by

X̄(k, l) := S(l) − S(k)

N(l) − N(k)
.

A simple argument using the law of large numbers tell us that X̄(k, l) should not be too far away
from 0 if l −k is large. If X̄(k, l) is not close to 0 then we refer to (k, l) as a strange segment. It
is also easy to see that if we fix any number L and a threshold ε and wait sufficiently long, we
will almost surely get a segment (k, l) such that l − k ≥ L and X̄(k, l) > ε. Our main result
describes how the length of these strange segments grows over time.

For any measurable set A, we define the long strange segments as

Rt(A) := sup{m : X̄(l − m, l) ∈ A for some l = m, . . . , t}, (2)

and its dual characteristic as

Tr(A) := inf{l : there exists k, 0 ≤ k ≤ l − r, such that X̄(k, l) ∈ A}. (3)

The functional Rn(A) is the maximum length of a segment from the first n observations, whose
average is in set A, and Tn(A) is the minimum number of observations required to have a
segment of length at least n, whose average is in the set A. It is easy to see that Rt(A) grows as
t → ∞ and Tr(A) grows as r → ∞. Theorem 1 below describes the rate of growth of these
functionals. There is a duality relation between the rate of growth of these functionals which
follows from the fact that {Tr(A) ≤ m} = {Rm(A) ≥ r}.
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For any convex function f (·), we will use f ∗(·) to denote its Fenchel–Legendre transform:

f ∗(x) := sup
λ∈R

{λx − f (λ)}.

For any set A ⊂ R, A◦ and Ā will represent the interior and closure of A, respectively.

Theorem 1. For any measurable set A,

I∗ ≤ lim inf
r→∞

log Tr(A)

r
≤ lim sup

r→∞
log Tr(A)

r
≤ I ∗ almost surely (a.s.) (4)

and
1

I ∗ ≤ lim inf
t→∞

Rt(A)

log t
≤ lim sup

t→∞
Rt(A)

log t
≤ 1

I∗
a.s., (5)

where

I∗ = inf
x∈Ā

�∗(x), I ∗ = inf
x∈A◦ �∗(x),

and �∗(x) is the Fenchel–Legendre transform of �(λ) := �ξ(λφβ̄).

Remark 1. Under our assumption that the customer group compositions remain constant, the
customer groups are all jointly represented by their average β̄ = (

∑K
i=1 ciβi)/

∑K
i=1 ci .

Remark 2. For the cloud server case, we are specifically interested in sets of the nature
A = (Cp, ∞). The parameter Cp represents the capacity of a cloud server, which is designed
such that the per-customer capacity of the server is maintained at Cp units above the per-
customer expected instantaneous workload µ̄ := C−1(

∑K
i=1 ciµi) (recall that the deviations

Xi,j have zero mean). Our model assumes that the total number of customers grows over time,
implying that the aggregate capacity of the server is also continually increased such that the
average capacity per customer is always maintained at Cp units above the expected workload
per customer at any time point. Thus, at time t , the server processes workload at a rate equal
to (µ̄ + Cp)C�tα�.

The workload imposed on the server by the VMs exceeds its capacity for precisely those
time segments (k, l) over which the average of the excess workload process X̄(k, l) is in the
set (Cp, ∞). This is true for any work-conserving service policy, i.e. any policy that requires
the server to continually serve any buffered workload. Thus, the parameter Cp of the server
encapsulates all the underlying queueing dynamics.

We assume that the parameter Cp is set a value greater than 0, i.e. the cloud servers are
designed to be able to handle at least the mean workload. Then, the continuity and increasing
nature of the Fenchel–Legendre transform over A ensures that the infimum over the sets Ā and
A◦ are achieved at Cp. Thus, the upper and lower bounds in (4) and (5) collapse to give a limit
result of the form:

lim
r→∞

log Tr(A)

r
= lim

t→∞
log t

Rt (A)
= �∗(Cp) a.s.

Another interesting application is to check if there are long time periods when the server
resources are being severely underutilized. With A = (−∞, −Cb), where Cb > 0, we can
measure how long the server’s per-customer capacity is underutilized by Cp + Cb units.
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Remark 3. We discuss the case when the growth in the number of customers is a power law.
Reid et al. (2011) forecast that cloud service providers will see their growth curve settle down
in to a power-law-like growth phase; indeed, for some types of cloud service they posit that
this will happen by 2012. Theorem 2 can easily be applied in other settings, for example,
when the rate of growth is much slower, say logarithmic. However, if the rate of growth is
exponential then the behavior of Tr is totally different. In this situation the averages X̄(k, l)

converge weakly to a nondeterministic random variable and Tr behaves more like the maximum
of a stationary sequence of random variables. We do not treat this situation in detail here.

Example 1. Suppose that the innovation vectors ξ(t) are i.i.d. replicates of a K-dimensional
joint-normal random vector with mean 0 and covariance matrix 
. In that case �(λ) =
λ2φ2β̄�
β̄/2 and, hence,

�∗(x) = (2φ2β̄�
β̄)−1x2 for all x ∈ R.

Therefore, if A = (Cp, ∞) then

lim
r→∞

log Tr(A)

r
= lim

t→∞
log t

Rt (A)
= (2φ2β̄�
β̄)−1C2

p a.s.

This yields the estimates Tr ∼ exp{rC2
p/M} and Rt ∼ M log t/C2

p, where Cp represents the
server’s capacity and M = 2φ2β̄�
β̄ is a property of the customer classes. As expected, the
duration Tr till one observes a latency period of length r grows with the server capacity Cp.
On the other hand, higher variability of the innovation ξ(t) results in a higher value of M and
culminates in a faster growth of the long latency periods Rt observed in time t .

Example 2. If the innovations ξ(t) = (ξ1(t), . . . , ξK(t)) are such that its components are
independent ‘centered’ Poisson distributed with parameters (µ1, . . . , µK) then, for λ =
(λ1, . . . , λK),

�(λ) =
K∑

i=1

µi(e
λi φβ̄i − λiφβ̄i − 1)

and, for A = (Cp, ∞),

lim
r→∞

log Tr(A)

r
= lim

t→∞
log t

Rt (A)

= �∗(Cp)

=
K∑

i=1

(
Cp

φβ̄i

log

(
Cp

µiφβ̄i

+ 1

)
− µi

(
Cp

µiφβ̄i

− log

(
Cp

µiφβ̄i

+ 1

)))
.

Let Ci
p = Cp/(µiφβ̄i). We obtain estimates Tr ∼ exp{r ∑K

1 µi((1 + Ci
p) log(1 + Ci

p) − Ci
p)}

and, similarly, Rt ∼ log t/
∑K

1 µi((1 + Ci
p) log(1 + Ci

p) − Ci
p). In this case too the duration

Tr till one observes a latency period of length r grows with the server capacity Cp. But, unlike
the joint-normal innovations case above where log Tr grew as a quadratic of Cp, the growth of
log Tr here, while superlinear, is slower.

We postpone the proof of Theorem 1 till Section 4, and develop the proper tools required for
the proof in Section 3. We close this section with a discussion on why standard large deviation
tools are inadequate for the proof of Theorem 1.
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The rate of growth of long strange segments have been studied in Mansfield et al. (2001)
for MA processes with heavy-tailed innovations and then in Rachev and Samorodnitsky (2001)
for long-range-dependent MA processes with heavy-tailed innovations. Recently, Ghosh and
Samorodnitsky (2010) studied the effect of memory on the rate of growth of long strange
segments for a MA process with light-tailed innovations. A strong law of the form (5) is
often referred to as the Erdös–Rényi law of large numbers; Erdös and Rényi (1970) proved
asymptotics for longest head runs in i.i.d. coin tosses.

It is instructive to take a heuristic look at the standard technique of proving the rate of growth
of long strange segments for a stationary process, say (Yt ). A vital tool for analyzing this growth
is a large deviation principle associated with the partial sums of (Yt ). Recall that a sequence of
probability measures (Pt , t ≥ 1) satisfies a large deviation principle (LDP) on R if there exists
a nonnegative lower-semicontinuous function I (·) such that, for any measurable A ⊂ R,

− inf
x∈A◦ I (x) ≤ lim inf

t→∞
1

t
log Pt (A) ≤ lim sup

t→∞
1

t
log Pt (A) ≤ − inf

x∈Ā
I (x). (6)

The function I (·) is called the rate function. A rate function with compact level sets is called a
good rate function.

Denote the average of the segment (k, l) by

Ȳ (k, l) =
∑l

i=k+1 Yi

l − k
.

It is often possible to show that the law of Ȳ (0, t) satisfies an LDP under assumptions of
mixing or other specific structure on (Yt ) and the existence of exponential moments of Yt ;
see, for example, Bryc and Dembo (1996), Varadhan (1984), Dembo and Zeitouni (1998), and
Deuschel and Stroock (1989). Then, for a ‘nice’ set A such that E(Y0) /∈ Ā, there exists I > 0
such that, for large t ,

log P[Ȳ (0, t) ∈ A] ∼ −I t.

Using stationarity, this implies that log P[Ȳ (l, l + t) ∈ A] ∼ −I t for every l ≥ 0. Heuristically,
this means that, for approximately etI segments of length t , we can expect to find one with
an average in A. The segments (0, t), (1, t + 1), (2, t + 2), . . . are not independent, but that
lack of independence is typically handled using mixing-type conditions borrowed from the
process (Yt ) itself. Theorem 2.3 of Ghosh and Samorodnitsky (2010) is an example of this line
of argument where the authors considered MA processes and used the LDP for partial sums
proved in Ghosh and Samorodnitsky (2009) to obtain asymptotic results for the rate of growth
of long strange segments.

In our application’s setting, the distribution of X̄(l, l + t) differs from that of X̄(0, t) when
l > 0. This is because the growing number of customers in the system implies that each
X̄(l, l + t) represents an average over a different number of realizations (N(t + l) − N(l)

versus N(t)). So, in order to understand the rate of growth of the long strange segments,
we need to estimate the probability P[X̄(l, l + t) ∈ A] uniformly over l ≥ 0. We address
this problem by proving the uniform large deviation principle in Theorem 3. A collection of
probability measures (Pk,t , t ≥ 1, k ∈ �) satisfies an LDP on R uniformly over k ∈ � if there
exist nonnegative lower-semicontinuous functions (Ik(·), k ∈ �) such that, for any measurable
A ⊂ R,

lim inf
t→∞ inf

k∈�

{
1

t
log Pk,t (A) + inf

x∈A◦ Ik(x)

}
≥ 0 (7)
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and

lim sup
t→∞

sup
k∈�

{
1

t
log Pk,t (A) + inf

x∈Ā
Ik(x)

}
≤ 0. (8)

Note that bounds (7) and (8) are generalizations of the left- and right-hand sides of the standard
large deviation bounds in (6)

3. Uniform large deviation principle

The Gartner–Ellis theorem is an important tool for proving the LDP; cf. Gartner (1977),
Ellis (1984), and Dembo and Zeitouni (1998, Theorem 2.3.6, p. 44). Theorem 2 is an analog
of the Gartner–Ellis theorem for proving the uniform LDP. We use this theorem to prove the
uniform LDP for the average of segments of the server workload process in Theorem 3, which
is in fact the first step in proving Theorem 1.

Theorem 2. Suppose that (Yk,t , t ≥ 1, k ∈ �) is a collection of random variables such that
there exists (�k(·), k ∈ �) which are differentiable and satisfy the following conditions: for
all 0 < L < ∞ and ε > 0, there exists T > 0 and δ > 0 such that

lim
t→∞ sup

k∈�, |λ|≤L

∣∣∣∣�k(λ) − 1

t
log E[exp{tλYk,t }]

∣∣∣∣ = 0, (9)

sup
k∈�, t≥T , |λ|≤L

∣∣∣∣1

t
log E[exp{tλYk,t ]

∣∣∣∣ < ∞, (10)

inf
k∈�

|(�k)′(λ)| → ∞ whenever |λ| → ∞, (11)

and

|(�k)′(λ1) − (�k)′(λ2)| < ε for all |λ1 − λ2| < δ, λ1, λ2 ∈ [−L, L], k ∈ �. (12)

Then, for any closed set F ⊂ R,

lim sup
t→∞

sup
k∈�

{
1

t
log P[Yk,t ∈ F ] + inf

x∈F
�k∗(x)

}
≤ 0 (13)

and, for any open set G ⊂ R,

lim inf
t→∞ inf

k∈�

{
1

t
log P[Yk,t ∈ G] + inf

x∈G
�k∗(x)

}
≥ 0, (14)

where the rate function �k∗(·) is the Fenchel–Legendre transform of �k(·).
Remark 4. It can be observed from the proof below that conditions (9), (10), and (11) have
been used to prove (13), whereas, all the conditions (9)–(12) are required to prove (14).
Condition (9) requires that the normalized log-moment generating functions of Yk,t converge to
�k(λ) uniformly over k ∈ � and locally uniformly in λ ∈ R. Condition (10) ensures uniform
exponential tightness of the random variables (Yk,t ). Condition (11) is the equivalent of the
steepness assumption imposed by the Gartner–Ellis theorem; cf. Dembo and Zeitouni (1998,
Theorem 2.3.6, p. 44). Condition (12) requires that the functions (�k)′(λ) are continuous in λ,
uniformly over k ∈ � and λ in a compact subset of R. This ensures that the Fenchel–Legendre
transforms �k∗(x) are continuous in x, uniformly over k ∈ � and x in compact subsets of R.
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Proof of Theorem 2. We will first prove (13). As (13) holds trivially when F = ∅, we can
safely assume that F is nonempty. We begin by supposing that F is compact. Fix any x ∈ F

and δ > 0. Since �k(·) is convex, continuously differentiable, and satisfies (11), we can find
λk

x ∈ R such that
(�k)′(λk

x) = x.

This would imply that

�k∗(x) = sup
λ∈R

{λx − �k(λ)} = λk
xx − �k(λk

x).

From (11) we also know that {λk
x : k ∈ �} is a bounded set. Hence, we can find an open

neighborhood Ax of x such that

inf
y∈Ax

λk
x(y − x) ≥ −δ for all k ∈ �.

Then by Chebychev’s inequality we obtain an upper bound for the probability

P[Yk,t ∈ Ax] ≤ E[exp{λk
xt (Yk,t − x)}] exp

{
−t inf

y∈Ax

λk
x(y − x)

}
,

which implies that

1

t
log P[Yk,t ∈ Ax] ≤ 1

t
log E[exp{λk

xtYk,t }] − λk
xx + δ.

From (9) we can obtain T ≥ 1 such that, for all t ≥ T and k ∈ �,

1

t
log E[exp{λk

xtYk,t }] ≤ �k(λk
x) + δ,

and this means that, for t ≥ T ,

1

t
log P[Yk,t ∈ Ax] ≤ �k(λk

x) − λk
xx + 2δ = −�k∗(x) + 2δ.

Now, obviously,
⋃

x∈F Ax is an open cover of F and since F is compact, we can obtain
x1, . . . , xN ∈ F such that F ⊂ ⋃

1≤i≤N Axi
. Then by a simple union-of-events bound we

obtain, for t ≥ T ,

1

t
log P[Yk,t ∈ F ] + min

1≤i≤N
�k∗(xi) ≤ 1

t
log N + 2δ for all k ∈ �.

It is now easy to see that, for t ≥ T ,

sup
k∈�

{
1

t
log P[Yk,t ∈ F ] + inf

x∈F
�k∗(x)

}
≤ 1

t
log N + 2δ,

and since 0 < δ < 1 is arbitrary,

lim sup
t→∞

sup
k∈�

{
1

t
log P[Yk,t ∈ F ] + inf

x∈F
�k∗(x)

}
≤ 0. (15)

This proves (13) when F is compact.
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Next we extend the above result to any nonempty closed set F . First we note a few facts.
Using (9) and (10), we obtain, for any δ > 0,

c := sup
k∈�, |λ|<δ

|�k(λ)| < ∞.

Since {λk
x : k ∈ �} is bounded and �k∗(x) = λk

xx − �k(λk
x), we obtain supk∈� �k∗(x) < ∞.

Furthermore, for all k ∈ �,

�k∗(x) = sup
λ∈R

{λx − �k(λ)} ≥ sup
|λ|<δ

{λx − �k(λ)} ≥ δ|x| − c.

Hence, for any closed set F , there exists M1 > 0 such that

inf
x∈F

�k∗(x) = inf
x∈F∩[−M1,M1]

�k∗(x) for all k ∈ �. (16)

Also, note that, for any k ∈ � and t ≥ 1,

1

t
log P[|Yk,t | > θ ] ≤ −θ + sup

k∈�, t≥1

1

t
log E[etYk,t ] + sup

k∈�, t≥1

1

t
log E[e−tYk,t ]

and, therefore,

lim
θ→∞ lim sup

t→∞
sup
k∈�

1

t
log P[|Yk,t | > θ ] = −∞. (17)

Now set
c′ = sup

k∈�

inf
x∈F

�k∗(x).

Since, for any x, supk∈� �k∗(x) < ∞, we obtain c′ < ∞. Note that if c′ = 0 then the proof is
immediate. So we examine the case when c′ > 0. Using (17), we can obtain M2 > 0 such that

P[|Yk,t | > M2] ≤ e−2c′t for all k ∈ �, t ≥ 1.

Let M = max{M1, M2}. Note that, from (15) and (16),

lim sup
t→∞

sup
k∈�

{
1

t
log P[Yk,t ∈ F ∩ [−M, M]] + inf

x∈F
�k∗(x)

}

= lim sup
t→∞

sup
k∈�

{
1

t
log P[Yk,t ∈ F ∩ [−M, M]] + inf

x∈F∩[−M,M] �
k∗(x)

}

≤ 0.

This means that, for any given δ > 0, we can find T ≥ 1 such that

1

t
log P[Yk,t ∈ F ∩ [−M, M]] + inf

x∈F
�k∗(x) ≤ δ for all k ∈ �, t ≥ T .

Now if P[Yk,t ∈ F ∩ [−M, M]] ≤ P[|Yk,t | > M] then

1

t
log P[Yk,t ∈ F ] ≤ 1

t
log 2 − 2c′.
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Otherwise,

1

t
log P[Yk,t ∈ F ] ≤ 1

t
log 2 + 1

t
log P[Yk,t ∈ F ∩ [−M, M]].

Therefore, in both cases,

1

t
log P[Yk,t ∈ F ] + inf

x∈F
�k∗(x) ≤ 1

t
log 2 + δ for all k ∈ �, t ≥ T ,

and, hence,

lim sup
t→∞

sup
k∈�

{
1

t
log P[Yk,t ∈ F ] + inf

x∈F
�k∗(x)

}
≤ 0.

This completes the proof of (13).
We will now prove (14). Note that we can find M > 0 such that

inf
x∈G

�k∗(x) = inf
x∈G∩[−M,M] �

k∗(x) for all k ∈ �.

Fix any ε > 0, and obtain xk ∈ G ∩ [−M, M] such that

�k∗(xk) < inf
x∈G

�k∗(x) + 1
2ε.

Another observation that we need to make is that we can find δ > 0 such that

|�k∗(x) − �k∗(y)| < 1
2ε for all |x − y| < δ, x, y ∈ [−M, M], k ∈ �.

This follows easily from (12). Now, obviously,
⋃

x∈G∩[−M,M] Bx,δ is an open cover of
G ∩ [−M, M], where Bx,δ = (x − δ, x + δ). Since G ∩ [−M, M] is precompact, we can
find x1, . . . , xn ∈ G ∩ [−M, M] such that, for all xk , there exists 1 ≤ ik ≤ n for which
|xk − xik | < δ. This implies that

inf
1≤i≤n

�k∗(xi) < inf
x∈G

�k∗(x) + ε for all k ∈ �.

For notational simplicity, we define X = {x1, . . . , xn}. Let δ′ > 0 be such that Bx,δ′ ⊂ G for
all x ∈ X. Now fix any x ∈ X. Define the random variables Ỹk,t by an exponential change of
measure such that

P[Ỹk,t ∈ B] = E[exp{tλk
xYk,t } 1[Yk,t∈B]]

E[exp{tλk
xYk,t }] .

Then
P[Yk,t ∈ Bx,δ′ ] = E[exp{tλk

xYk,t }] E[exp{−tλk
xỸk,t } 1[Ỹk,t∈Bx,δ′ ]]

and
1

t
log P[Yk,t ∈ Bx,δ′ ] = 1

t
log E[exp{tλk

xYk,t }] + 1

t
log E[exp{−tλk

xỸk,t } 1[Ỹk,t∈Bx,δ′ ]]

≥ 1

t
log E[exp{tλk

xYk,t }] − λk
xx − |λk

x |δ′ + 1

t
log P[Ỹk,t ∈ Bx,δ′ ].

We claim that

lim
t→∞ inf

k∈�,x∈X

1

t
log P[Ỹk,t ∈ Bx,δ′ ] = 0. (18)
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We complete the proof of (14) assuming (18), which we prove at the end. Let M ′ > 0 be such
that |(�k)′(λ)| > M for all |λ| > M ′ and k ∈ �. From assumption (11) we know that M ′ < ∞.
We can also obtain T ≥ 1 such that, for all t ≥ T and x ∈ X,

inf
k∈�

1

t
log P[Ỹk,t ∈ Bx,δ′ ] ≥ −ε

and

sup
k∈�

∣∣∣∣�k(λk
x) − 1

t
log E[exp{tλk

xYt,k}]
∣∣∣∣ < ε.

This implies that, for all t ≥ T , x ∈ X, and k ∈ �,

1

t
log P[Yk,t ∈ G] ≥ 1

t
log P[Yk,t ∈ Bx,δ′ ]

≥ �k(λk
x) − λk

xx − M ′δ′ − 2ε

= −�k∗(x) − M ′δ′ − 2ε.

Since x ∈ X is arbitrary and M ′, δ′, and ε are independent of the choice of x, we obtain, for
all t ≥ T and k ∈ �,

1

t
log P[Yk,t ∈ G] ≥ − inf

x∈X
�k∗(x) − M ′δ′ − 2ε ≥ − inf

x∈G
�k∗(x) − M ′δ′ − 3ε.

Hence, we obtain

lim inf
t→∞ sup

k∈�

{
1

t
log P[Yk,t ∈ G] + inf

x∈G
�k∗(x)

}
≥ −M ′δ′ − 3ε.

This completes the proof of (14) since δ′ and ε can be chosen arbitrarily close to 0.
It now remains to prove (18). Since X is a finite set, it suffices to show that, for any x ∈ X,

lim
t→∞ inf

k∈�

1

t
log P[Ỹk,t ∈ Bx,δ′ ] = 0.

We will use the upper large deviation bound (13) for this purpose. Note that

1

t
log E[exp{tλỸk,t }] = 1

t
log E[exp{t (λ + λk

x)Yk,t }] − 1

t
log E[exp{tλk

xYk,t }]
→ �̃k(λ)

:= �k(λ + λk
x) − �k(λk

x).

It is easy to check that �̃k(·) inherits properties (9), (10), (11), and (12) from �k(·). Therefore,
since Bc

x,δ′ := {x ∈ R : x /∈ Bx,δ′ } is a closed set, by (13),

lim sup
t→∞

sup
k∈�

{
1

t
log P[Ỹk,t ∈ Bc

x,δ′ ] + inf
y∈Bc

x,δ′
�̃k∗(y)

}
≥ 0. (19)

Note that (�̃k)′(0) = x for all k ∈ �, which implies that �̃k∗(x) = 0 for all k ∈ �. Since
�̃k∗(·) is nonnegative and convex, infy∈Bc

x,δ′ �̃k∗(y) ≥ min{�̃k∗(x − δ′), �̃k∗(x + δ′)}. Now

obtain a compact set K ′ such that |(�̃k)′(λ)| > |x| + δ′ and then find η > 0 such that

|(�̃k)′(λ′) − (�̃k)′(λ′′)| < 1
2δ′ for all |λ′ − λ′′| < η, λ′, λ′′ ∈ K ′, k ∈ �. (20)
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Then obtain λ̃k
x+ and λ̃k

x− such that (�̃k)′(λ̃k
x+) = x + δ′ and (�̃k)′(λ̃k

x−) = x − δ′. From (20)
we know that λ̃k

x+ > η and λ̃k
x− < −η for all k ∈ �. Therefore, for all k ∈ �,

�̃k∗(x + δ′) = λ̃k
x+(x + δ′) − �̃k(λ̃k

x+)

= λ̃k
x+(x + δ′) −

∫ λ̃k
x+

0
(�̃k)′(z) dz

≥ λ̃k
x+(x + δ′) − (

x + 1
2δ′)η − (λ̃k

x+ − η)(x + δ′)
= 1

2ηδ′

and
�̃k∗(x − δ′) = λ̃k

x−(x − δ′) − �̃k(λ̃k
x−)

= λ̃k
x+(x + δ′) +

∫ 0

λ̃k
x−

(�̃k)′(z) dz

≥ λ̃k
x−(x − δ′) + (

x − 1
2δ′)η + (λ̃k

x+ − η)(x − δ′)
= 1

2ηδ′.

This implies that min{�̃k∗(x − δ′), �̃k∗(x + δ′)} ≥ ηδ′/2 for all k ∈ � and, hence, using (19),
we obtain

lim sup
t→∞

sup
k∈�

1

t
log P[Ỹk,t ∈ Bc

x,δ′ ] ≤ −ηδ′

2
.

This also means that
lim

t→∞ inf
k∈�

P[Ỹk,t ∈ Bx,δ′ ] = 1.

This proves (18) and, hence, completes the proof of the theorem.

Theorem 3 below allows us to approximate the probability of deviation from 0 of the average
X̄(k, l) for different segments (k, l) when l − k is large. This is a vital component in the proof
of Theorem 1.

Theorem 3. If Assumption 1 holds then, for any measurable set A ⊂ R,

lim sup
t→∞

sup
k≥0

{
1

t
log P[X̄(kt, (k + 1)t) ∈ A] + inf

x∈Ā
�k∗(x)

}
≤ 0

and

lim inf
t→∞ inf

k≥0

{
1

t
log P[X̄(kt, (k + 1)t) ∈ A] + inf

x∈A◦ �k∗(x)

}
≥ 0,

where the rate function �k∗(·) is the Fenchel–Legendre transform of

�k(λ) :=
∫ k+1

k

�ξ

(
(α + 1)λφyα

(k + 1)α+1 − kα+1 β̄

)
dy

and �ξ(·) is as defined in (1).

Proof. The result will follow once we check that the conditions of Theorem 2 hold by setting

Yk,t := X̄(kt, (k + 1)t) = S((k + 1)t) − S(kt)

N((k + 1)t) − N(kt)
for all t ∈ N, k ∈ R+.

https://doi.org/10.1239/aap/1354716587 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716587


Long latencies in a cloud server 1009

The most complicated part is to check the uniform convergence condition (9), that is, for any
0 < � < ∞,

lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣�k(λ) − 1

t
log E[exp{tλX̄(kt, (k + 1)t)}]

∣∣∣∣ = 0. (21)

We begin by observing that, for any u ∈ R,

log E[exp{u(S((k + 1)t) − S(kt))}]

= log E

[
exp

{
u

(k+1)t∑
l=kt+1

K∑
i=1

ni(l)∑
j=1

Xi,j (l)

}]

= log E

[
exp

{
u

(k+1)t∑
l=kt+1

K∑
i=1

ni(l)β
�
i Z(l) + u

(k+1)t∑
l=kt+1

K∑
i=1

ni(l)∑
j=1

εi,j (l)

}]

= log E

[
exp

{
u

(k+1)t∑
l=kt+1

K∑
i=1

ni(l)β
�
i Z(l)

}]
+ log E

[
exp

{
u

(k+1)t∑
l=kt+1

K∑
i=1

ni(l)∑
j=1

εi,j (l)

}]
, (22)

where the last equality follows from the independence of the εs and the Zs. To understand the
first component of (22), define β = ∑K

i=1 ciβi and note that

log E

[
exp

{
u

(k+1)t∑
l=kt+1

K∑
i=1

ni(l)β
�
i Z(l)

}]

= log E

[
exp

{
u

K∑
i=1

β�
i

( (k+1)t∑
l=kt+1

ni(l)

∞∑
j=−∞

φkξ(l − j)

)}]

= log E

[
exp

{
u

( K∑
i=1

βici

)
·
( (k+1)t∑

l=kt+1

�lα�
∞∑

j=−∞
φj ξ(l − j)

)}]

= log E

[
exp

{
uβ ·

( ∞∑
j=−∞

ξ(j)

(k+1)t∑
l=kt+1

�lα�φl−j

)}]

=
∞∑

j=−∞
�ξ

(
uβ

(k+1)t∑
l=kt+1

�lα�φl−j

)
.

Using the triangle inequality, we obtain the obvious bound

lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣�k(λ) − 1

t
log E[exp{tλX̄(kt, (k + 1)t)}]

∣∣∣∣

≤ lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣�k(λ) − 1

t

(k+1)t∑
j=kt+1

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣

+ lim
L→∞ lim

t→∞ sup
k≥0, |λ|≤�

∣∣∣∣1

t

kt−L∑
j=−∞

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣
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+ lim
L→∞ lim

t→∞ sup
k≥0, |λ|≤�

∣∣∣∣1

t

∞∑
j=(k+1)t+L

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣

+ lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣1

t

∑
kt−L<j≤kt or

(k+1)t<j≤(k+1)t+L

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣

+ lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣1

t
log E

[
exp

{
tλ

N((k + 1)t) − N(kt)

t∑
l=1

K∑
i=1

ni(l)∑
j=1

εi,j (l)

}]∣∣∣∣. (23)

We will prove (21) by showing that each of the terms in the above expression is equal to 0.
For that purpose, we make use of the following facts.

(i) There exists M ′ > 0 such that

t ((k + 1)t)α

(kt + 1)α + · · · + ((k + 1)t)α
≤ M ′ for all t ≥ 1, k ≥ 0.

(ii) Given any 0 < ε < 1
2 , there exists κ1 > 0 such that

|�ξ(u) − �ξ(v)| ≤ κ1‖u − v‖ whenever ‖u‖ ≤ M, ‖v‖ ≤ M, and ‖u − v‖ ≤ ε,

where ‖ · ‖ denotes the supnorm on R
K and

M = M ′�‖β̄‖
∞∑

k=−∞
|φk|.

(iii) There exists L ≥ 1 such that
∑

|k|>L |φk| < ε/(M ′�‖β̄‖).
We obtain (ii) since �ξ(·) is convex and differentiable (cf. Lemma 2.2.5 of Dembo and Zeitouni
(1998)) and (iii) follows from the summability of the coefficients (φk).

Define the function ft,k : (k, k + 1) → R by

ft,k(y) := �ξ

(
tλ

N((k + 1)t) − N(kt)

( (k+1)t∑
l=kt+1

�lα�φl−�ty�
)

β

)
,

and note that

1

t

(k+1)t∑
j=kt+1

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)
=

∫ k+1

k

ft,k(y) dy.

Choose t large enough such that kt + 1 ≤ �ty� − L, �ty� + L ≤ (k + 1)t, and
∣∣∣∣ t�lα�
N((k + 1)t) − N(kt)

− (α + 1)yα

C((k + 1)α+1 − kα+1)

∣∣∣∣ ≤ ε

�‖β‖
( ∞∑

k=−∞
|φk|

)−1

for all k ≥ 0, k + ε < y < k + 1 − ε, and �ty� − L ≤ l ≤ �ty� + L. It is easy to check that,
for y in this range and |λ| ≤ �,

∥∥∥∥ tλβ

N((k + 1)t) − N(kt)

(k+1)t∑
l=kt+1

�lα�φl−�ty� − tλβ

N((k + 1)t) − N(kt)

�ty�+L∑
l=�ty�−L

�lα�φl−�ty�
∥∥∥∥ ≤ ε,
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∥∥∥∥ tλβ

N((k + 1)t) − N(kt)

�ty�+L∑
l=�ty�−L

�lα�φl−�ty� − (α + 1)λyαβ̄

(k + 1)α+1 − kα+1

�ty�+L∑
l=�ty�−L

φl−�ty�
∥∥∥∥ ≤ ε,

and ∥∥∥∥ (α + 1)λyαβ̄

(k + 1)α+1 − kα+1

�ty�+L∑
l=�ty�−L

φl−�ty� − (α + 1)λyαβ̄

(k + 1)α+1 − kα+1

∞∑
l=−∞

φl

∥∥∥∥ ≤ ε.

This implies that, for all k ≥ 0, k + ε < y < k + 1 − ε, and |λ| ≤ �,∣∣∣∣�ξ

(
(α + 1)λφyα

(k + 1)α+1 − kα+1 β̄

)
− ft,k(y)

∣∣∣∣ ≤ 3κ1ε,

and, hence, we obtain

lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣�k(λ) − 1

t

(k+1)t∑
j=kt+1

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣
≤ 3κ1ε + 4M1ε, (24)

where

M1 = max

{
�ξ

(
M ′�‖β‖

∞∑
k=−∞

|φk|
)

, �ξ

(
−M ′�‖β‖

∞∑
k=−∞

|φk|
)}

.

Obviously, since ε is arbitrary, the limit in (24) is 0.
The other parts in (23) are handled much more easily. Note that, for any k ≥ 0,

∣∣∣∣
kt−L∑

j=−∞
�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣ ≤ κ1M
′�‖β̄‖

kt−L∑
j=−∞

(k+1)t∑
l=kt+1

|φl−j |

≤ tκ1ε,

and, hence,

lim
L→∞ lim

t→∞ sup
k≥0, |λ|≤�

∣∣∣∣1

t

kt−L∑
j=−∞

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣ = 0.

Using a similar argument, we also obtain

lim
L→∞ lim

t→∞ sup
k≥0, |λ|≤�

∣∣∣∣1

t

∞∑
j=(k+1)t+L

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣ = 0.

Furthermore, it is also easy to check that, for every L ≥ 1,

lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣1

t

∑
kt−L<j≤kt or

(k+1)t<j≤(k+1)t+L

�ξ

(
tλ

N((k + 1)t) − N(kt)
β

(k+1)t∑
l=kt+1

�lα�φl−j

)∣∣∣∣

≤ lim
t→∞

1

t
2(L + 1)M1

= 0.
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For the final part of the proof of (21), we note the following facts about �ε(·): �ε(0) = 0,
�′

ε(0) = 0 because E[εi,j (t)] = 0, and �ε(·) is nonnegative and twice continuously
differentiable in a neighborhood of 0. The last fact can be easily derived following Lemma 2.2.5
of Dembo and Zeitouni (1998). This implies that there exist positive constants κ and η such
that

|�ε(u)| ≤ κu2 for all |u| ≤ η.

Choose t large enough such that t�/N(t) < η. This also means that |tλ/(N((k + 1)t) −
N(kt))| < η for all k ≥ 0 and |λ| ≤ �. Hence, we have

∣∣∣∣ log E

[
exp

{
tλ

N((k + 1)t) − N(kt)

t∑
l=1

K∑
i=1

ni(l)∑
j=1

εi,j (l)

}]∣∣∣∣

=
(k+1)t∑
l=kt+1

K∑
i=1

ni(l)∑
j=1

�ε

(
tλ

N((k + 1)t) − N(kt)

)

≤ (N((k + 1)t) − N(kt))κ
t2λ2

(N((k + 1)t) − N(kt))2 .

This immediately gives

lim
t→∞ sup

k≥0, |λ|≤�

∣∣∣∣1

t
log E

[
exp

{
λ

N((k + 1)t) − N(kt)

t∑
l=1

K∑
i=1

ni(l)∑
j=1

εi,j (l)

}]∣∣∣∣
≤ lim

t→∞ κ sup
k≥0, |λ|≤�

tλ

(N((k + 1)t) − N(kt))

= 0,

completing the proof of (21).
It is simpler to check the other conditions of Theorem 2. Note that we can find M such that

yα

(k + 1)α+1 − kα+1 ≤ M for all k ≥ 0, k ≤ y ≤ k + 1. (25)

This implies that, for any � > 0,

sup
k≥0, |λ|≤�

|�k(λ)| < ∞,

and this combined with (21) shows that condition (10) holds.
Next we check that �k(·) is differentiable. Since �ξ(·) is finite everywhere, by Lemma 2.2.5

of Dembo and Zeitouni (1998), �ξ(·) is differentiable and

�′
ξ (η) = E[ξ(0)eη·ξ(0)]

E[eη·ξ(0)] .

For any δ satisfying 0 < ‖δ‖ < 1,

ze(η+δ)·z − zeη·z → 0 and ‖ze(η+δ)·z − zeη·z‖ ≤ h(z) := ‖z‖eη·z(e‖z‖ + 1).

https://doi.org/10.1239/aap/1354716587 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716587


Long latencies in a cloud server 1013

Since E[h(ξ(0))] < ∞ using the dominated convergence theorem, E[ξ(0)eλξ(0)] is continuous.
This implies that �′

ξ (·) is continuous. Now we can use the Leibniz integral rule (cf. Theo-

rem 7.40 of Apostol (1974)) to show that �k(·) is differentiable and

(�k)′(λ) :=
∫ k+1

k

(α + 1)φyα

(k + 1)α+1 − kα+1 β̄ · �′
ξ

(
(α + 1)λφyα

(k + 1)α+1 − kα+1 β̄

)
dy.

It is easy to see that ‖�′
ξ (η)‖ → ∞ whenever ‖η‖ → ∞. This combined with (25) shows

that (11) holds. Finally, (12) follows from the fact that �′
ξ (·) is continuous on compact sets

and (25). This completes the proof of the theorem.

4. Proof of Theorem 1 and required lemmas

Proof of Theorem 1. We will first prove the lower inequality in (4). The inequality is obvious
when I∗ = 0. Also, if A is nonempty then I∗ < ∞ fromAssumption 1. So it suffices to consider
0 < I∗ < ∞. We will use the simple inclusion bound: for all m ≥ 1 and r ≥ 1,

{Tr(A) ≤ m} ⊂
∞⋃
l=r

m−1⋃
j=0

{X̄(j, j + l) ∈ A}.

Thus, we obtain

P[Tr(A) ≤ m] ≤
∞∑
l=r

m−1∑
j=0

P[X̄(j, j + l) ∈ A].

Lemma 1 below shows that the �k∗(x) are increasing functions of k for fixed x. Lemma 2
below, which builds on this, gives the existence of a K0 such that

inf
x∈Ā

�k∗(x) ≥ inf
x∈Ā

�∗(x) − 1
3ε = I∗ − 1

3ε for all k ≥ K0.

We can also find, from Lemma 3 below, a constant I > 0 such that I ≤ infx∈Ā �k∗(x) for all
k ≥ 0. Now, for any 0 < ε < I , by Theorem 3 we can obtain T ≥ 1 such that, for all l ≥ T

and all k ≥ 0,

P[X̄(kl, (k + 1)l) ∈ A] ≤ exp
{
−l

(
inf
x∈Ā

�k∗(x) − 1
3ε

)}
.

This gives, for r ≥ T ,

P[Tr(A) ≤ m] ≤
∞∑
l=r

m−1∑
j=0

P[X̄(j, j + l) ∈ A]

≤
∞∑
l=r

K0l∑
j=0

P[X̄(j, j + l) ∈ A] +
∞∑
l=r

m−1∑
j=K0l

P[X̄(j, j + l) ∈ A]

≤
∞∑
l=r

K0le
−l(I−ε/3) + m

∞∑
l=r

e−l(I∗−2ε/3).
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Now set m = �er(I∗−ε)�, and note that

∞∑
r=1

P[Tr(A) ≤ �er(I∗−ε)�] ≤ T +
∞∑

r=T

∞∑
l=r

K0le
−l(I−ε/3) +

∞∑
r=T

er(I∗−ε)
∞∑
l=r

e−l(I∗−2ε/3)

< ∞.

Hence, using the Borel–Cantelli lemma, we obtain

lim inf
r→∞

log Tr(A)

r
≥ I∗ − ε a.s.

The lower inequality in (4) is thus proved by letting ε → 0.
Also, observe that, using the relation {Tr(A) ≤ m} = {Rm(A) ≥ r}, we obtain

lim sup
t→∞

Rt

log t
≤ 1

I∗
a.s.

In order to prove the upper bound in (4), it suffices to consider the case I ∗ < ∞. In this
case the set A has a nonempty interior. Define two new random variables by

Y ′
k,t := β

∑(k+1)t
j=kt+1

∑(k+1)t
l=kt+1�lα�φl−j ξ(j)

N((k + 1)t) − N(kt)
and Y ′′

k,t := X̄(kt, (k + 1)t) − Y ′
k,t ,

where, as before, β = ∑K
i=1 ciβi . For a set A and η > 0, define

A(η) := {x : d(x, Ac) > η},
where d(x, Ac) is the distance from the point x to the complement Ac. Now observe that, for
any positive integers r and q with q > r ,

P[Tr(A) > q] ≤ P

[
X̄(kr, (k + 1)r) /∈ A, k = 0, . . . ,

⌊
q

r

⌋]

≤ P

[
Y ′

k,r /∈ A(η), k = 0, . . . ,

⌊
q

r

⌋]
+

�q/r�∑
l=1

P[|Y ′′
k,r | > η]. (26)

Since the Y ′
k,r , k = 0, 1, . . . , �q/r�, are independent, the right-hand side of (26) equals

�q/r�∏
k=0

(1 − P[Y ′
k,r ∈ A(η)]) +

�q/r�∑
l=1

P[|Y ′′
k,r | > η]

≤ exp

(
−

�q/r�∑
k=0

P[Y ′
k,r ∈ A(η)]

)
+

�q/r�∑
l=1

P[|Y ′′
k,r | > η].

From the arguments following (24), it is easy to check that the law of Y ′
k,t satisfies the LDP

uniformly over k ≥ 0 with rate function �k∗(·). We can therefore obtain T ≥ 1 such that

1

t
log P[Y ′

k,t ∈ A(η)] ≥ − inf
x∈A(η)

�k∗(x) − 1

4
ε for all t ≥ T , k ≥ 0.
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Lemma 1(ii) below then implies that

1

t
log P[Y ′

k,t ∈ A(η)] ≥ − inf
x∈A(η)

�∗(x) − 1

4
ε for all t ≥ T , k ≥ 0.

Hence, for small enough η > 0,

1

t
log P[Y ′

k,t ∈ A(η)] ≥ −I ∗ − 1

2
ε for all t ≥ T , k ≥ 0.

Therefore, by setting qr = �er(I∗+ε)� and using the above inequality, we obtain

∞∑
r=1

exp

{
−

�qr/r�∑
k=0

P[Y ′
k,r ∈ A(η)]

}
≤ T +

∞∑
r=T

exp

{
−er(I∗+ε)

r
e−r(I∗+ε/2)

}

≤ T +
∞∑

r=T

exp

{
−erε/2

r

}

< ∞. (27)

Furthermore, note that, for ε > 0 and η > 0 such that the above holds,

lim sup
t→∞

sup
k≥0

1

t
log P[|Y ′′

k,t | > η] ≤ −λη + lim sup
t→∞

sup
k≥0

1

t
log E[λt | Y ′′

k,t ] = −λη.

The last equality follows from the steps used in the proof of Theorem 3. Now by choosing
λ > (I ∗ + ε)/η we obtain

∞∑
r=1

�qr/r�∑
l=1

P[|Y ′′
k,r | > η] ≤

∞∑
r=1

⌊
qr

r

⌋
sup
k≥0

P[|Y ′′
k,r | > η] < ∞. (28)

Combining (27) and (28) we obtain

∞∑
r=1

P[Tr(A) > q] < ∞.

Finally, by applying the first Borel–Cantelli lemma and then letting ε → 0, we complete the
proof of the upper bound of (4). The lower bound in (5) is again proved using the same identity
{Tr(A) ≤ m} = {Rm(A) ≥ r}. Hence, the proof is complete.

Lemma 1. (i) For any λ ∈ R, �k(λ) is a decreasing function of k.

(ii) For any x ∈ R, �k∗(x) is an increasing function of k.

Proof. Suppose that Fk is the distribution function of the random variables

Uk := (α + 1)(k + U)α

(k + 1)α+1 − kα+1 where U ∼ Uniform(0, 1), k ≥ 0.

Observe that E(Uk) = 1 for all k ≥ 0. Also, for any nonnegative random variable X with
mean 1 and distribution FX, define the Lorenz function

LX(p) :=
∫ p

0
F−1

X (u) du for all 0 ≤ p ≤ 1.
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Note that the Lorenz function of Uk is given by

LUk
(p) = (k + p)α+1 − kα+1

(k + 1)α+1 − kα+1 for all 0 ≤ p ≤ 1

and

∂

∂k
LUk

(p) = (α + 1)[(k + p)α((k + 1)α(1 − p) + kαp) − kα(k + 1)α]
((k + 1)α+1 − kα+1)2 > 0

for all k ≥ 0 and 0 ≤ p ≤ 1. This implies that

LUk′ (p) ≥ LUk′′ (p) for all 0 ≤ p ≤ 1, k′ ≥ k′′,

which means that Uk is decreasing in Lorenz order as k increases. Hence, by Arnold (1980,
Theorem 3.2, p. 37) and using the fact that �ξ(·) is convex and continuous, we find that

�k(λ) = E[�ξ(λφUkβ̄)]
is decreasing in k.

Part (ii) of the lemma follows easily from part (i) using the definition of the Fenchel–Legendre
transform.

Lemma 2. For any measurable set A ⊂ R and ε > 0, there exists K0 such that

inf
x∈A

�k∗(x) ≥ inf
x∈A

�∗(x) − ε for all k ≥ K0,

where �k∗(·) and �∗(·) are as described in Theorem 3 and Theorem 1, respectively.

Proof. Fix any ε > 0. From the arguments leading to (16) we can find M1 > 0 such that

inf
x∈A

�∗(x) = inf
x∈A∩[−M1,M1]

�∗(x).

Lemma 1(ii) then gives

inf
x∈A

�k∗(x) = inf
x∈A∩[−M1,M1]

�k∗(x) for all k ≥ 0.

Using Assumption 1, we obtain M2 > 0 such that |λ| > M2 implies that |(�0)′(λ)| > 2M1.
Since �k(·) converges locally uniformly to �(·), we know that there exists K0 such that

sup
λ∈[−M2,M2]

|�k(λ) − �(λ)| < 1
4ε for all k ≥ K0.

Now, for any x ∈ [−M1, M1], we can obtain λx ∈ [−M2, M2] such that λxx − �(λx) >

�∗(x) − ε/4 and, therefore, for all k ≥ K0,

�k∗(x) ≥ λxx − �k(λx) ≥ λxx − �(λx) − 1
4ε ≥ �∗(x) − 1

2ε.

This implies that, for all k ≥ K0,

inf
x∈A∩[−M1,M1]

�k∗(x) ≥ inf
x∈A∩[−M1,M1]

�∗(x) − ε,

completing the proof.
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Lemma 3. For any measurable set A ⊂ R,

inf
x∈A

�∗(x) > 0 �⇒ inf
k≥0

inf
x∈A

�k∗(x) > 0. (29)

Proof. Using Lemma 1(ii), it suffices to show that (29) implies that infx∈A �0∗(x) > 0.
Fix any x �= 0. Since �0(λ) is strictly convex and finite everywhere and (�0)′(0) = 0, if
(�0)′(λ0

x) = x then λ0
x �= 0. Then �0∗(x) = λ0

xx − �0(λ0
x) �= 0. For any measurable A ⊂ R,

inf
x∈A

�0∗(x) = 0 �⇒ 0 ∈ Ā.

This would imply that infx∈A �∗(x) = 0. This proves the lemma.
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