
REIDEMEISTER PROJECTIVE PLANES 

MICHAEL J. KALLAHER 

1. Introduction. By a Reidemeister plane we mean a projective plane 
having the property that every ternary ring coordinatizing it has associative 
addition. Finite Reidemeister planes have been investigated by Gleason (2), 
Liineburg (6), and Kegel and Luneburg (4). In the first paper, Gleason 
proved that if the order of the plane is a prime power, then it is Desarguesian. 
Luneburg showed that this is still true if the order is not 60. In the third paper, 
this last restriction is removed. For infinite planes, the only result is the follow­
ing theorem due to Pickert (7, p. 301). 

THEOREM. Let SP be a Reidemeister plane. & is Desarguesian if it is co-
ordinatized by a nearfield. 

We shall extend this result to the case of Moufang planes. Specifically, we 
prove that a Reidemeister plane is a Moufang plane if it is coordinatized by a 
Veblen-Wedderburn system satisfying 

(1) (xy)(zx) = (x-yz)x. 

As a corollary, we have the result that a projective plane in which the small 
axial theorem of Pappus holds is a Moufang plane if and only if it is coordina­
tized by a Veblen-Wedderburn system satisfying (1). 

For the definition of a projective plane and the fundamentals of the theory, 
the reader is referred to either Hall (3) or Pickert (7). We shall generally 
follow Pickert. 

2. Preliminaries. In what follows we shall rely heavily on various 
coordinate systems of a projective plane. We shall use the coordinate scheme 
of Pickert (7). In a plane £P, let U, V, 0, I be four points, no three of which 
are collinear. Let the pencil of lines through V, other than UV (the line 
through U and V), and the pencil of lines through U, other than UV, be 
labeled biuniquely by the symbols of a set R under the following restrictions: 
(i) the line y through U and the line ô through V have the same symbol if and 
only if 7 P\ ô lies on the line 01; (ii) the symbols of O F and IV are 0 and 1, 
respectively. If P is a point not on UV, it is labeled with the unique ordered 
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pair (x, y) of elements in R if PV and PU have the symbols x and y, respec­
tively. If P € UV, P 9* V, it is labeled (m) if OP C\ IV = (1, m). Finally, F 
is given the label (» ) ; note, however, that co (£ R. 

On .R we define a ternary operation F as follows: F(m, a, b) = y if and only 
if (a? 3,) = (0, 6) (w) H (a, 0) F. The following theorem is true (7, pp. 35-36). 

THEOREM 1. Let £P be a projective plane, R a set of symbols coordinatizing SP, 
and F the ternary operation defined on R as above. F satisfies the following: 

(i) F(tn, a, c) £ Rfor all m, a, c £ R\ 
(ii) F(0, a, c) = F (a, 0, c) == c/^r all a, c £ R; 

(iii) F( l , a, 0) = 7^(a, 1, 0) = a for all a £ R; 
(iv) if mi, w2, ch c2 £ R with m± ^ m2, then there exists a unique a £ R such 

that F(nii, a, ci) = F(m2, a, c2) ; 
(v) if m, a, d £ i£, /Agw //zere w a unique c £ R such that F{m, a, c) = d; 

(vi) if aly a2, yi, y2 £ R and if a± ^ a2, 3>i 7e 3>2, /Ae/z /Aere exist m, c ^ R 
such that F{m, ah c) = yt, i = 1, 2. 

Conversely, if R is a set and F a ternary function defined on R which satisfies 
(i)-(vi), then there exists a projective plane which can be coordinatized by R. 

The set R with the operation F comprise the ternary ring (i?, F) of the plane 
0* with respect to the quadrangle U, V, O, I. We shall call U, V, O the basis 
points of (R, F). In R we define addition ( + ) and multiplication (•) by 
a + b = F (I, a, b) and a-b = F (a, b, 0). Then the elements of R form a loop 
under addition whose identity is 0 and the elements of R — {0} form a loop 
under multiplication with 1 as the identity. When we wish to emphasize these 
two operations we write (R, F, + , •) for the ternary ring. 

LEMMA 1. Let 0 be a projective plane with distinguished non-collinear points 
A, B, C. Suppose that every ternary ring (R, F, + , •) of SP with these points as 
basis points, U = A, V = B, O = C, has the property 

(2) F(a, b, a) = ab + a 

for all a, b £ R. If (R;, Fr, + , •) is a particular ternary ring of & with basis 
points U, V, O, then 

F' (a, b, c) = ab + c 

for all a, b, c £ R. 

Proof, (x, y) will represent the coordinates of a point of SP with respect to 
{R!, F',+, • ). Pick/, g £ R' with / >é 0 and g ^ 0. We define a new ternary 
ring (R', F", ©, ®) of 0 as follows: Representing the new coordinates by 
[a, b], the points of & are coordinatized under the scheme 

U'*+ U, [a, &]<-> (aL~\b), 

V'*+V, [a]^ (aRr1), 

(y++o, 
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where Lg~
l\ Rr —» P ' and P / _ 1 : Rf —> Rr are given by g-aL~l = a and aRf~

l-f = 
a. Lg"1 and P / - 1 are well-defined and onto since (P' — {0}, •) is a loop. The 
element e = gf is the multiplicative identity of (P', P", ©, ®) and 0 is the 
additive identity. Furthermore, F" (a, b, c) = F'(aRfl, bLg-1, c), a ® b = 
aRf-^bLç-1, and a © 6 = Ff (g, aLg~\ b). By hypothesis, F" (a, b, a) = 
a 0 5 © a. Hence, 

F'(aRf-\ bLQ-\ a) = P'(g, (aRf-^bLg-^)Lg-\ a) 

for all a, & G P ' . Setting a = g yields, for all b £ Rf, 

F'(gRr\ bL~\ g) = gRr'-bLç-i + g> 

If c, d, g £ Rf with c ^ O and g ^ 0, p ick/ = gPc
- 1 . Then 

F'(C, d, g) = J * ^ , - 1 . G ^ L , - 1 . *) = gRr1'^)^-1 + g = 
gRr'-d + g = c-d + g. 

If £ = 0 or g = 0, this last statement is still true. Hence, F' (a, b, c) = ab + c 
for all a,b, c £ R'. 

Definition 1. Let SP be a projective plane. A collineation of ^ is a mapping 
of ^ onto SP which preserves collinearity. £P is (£/, 7)-transitive ([ / G ̂ , 7 is 
a line o f ^ ) if for any two points P , Ç with PU = QU, P , Q 7* Z7,andP,<2£ 7, 
there exists a collineation r of 0* which fixes the point U and the line 7 point-
wise and for which T(P) = Q. & is (7, 7)-transitive for some line 7 if 0 is 
(£/, 7)-transitive for all Z7 G 7. 

The following theorems give the connection between the ternary rings of £P 
and (U, 7)-transitivity. For proofs, see either Hall (3) or Pickert (7). 

THEOREM 2. Let 0 be a projective plane and (P, P, + , • ) a ternary ring of SP 
with basis points U, V, 0. SP is (F, UV)-transitive if and only if 

(i) F (a, b, c) = ab + c for all a, b} c G P ; 
(ii) R forms a group under + . 

THEOREM 3. Let SP bea projective plane and (P, P, + , • ) a ternary ring of 0 
with basis points U, F, 0. SP is (UV, UV)-transitive if and only if (P, P, + , • ) 
is a Veblen-Wedderburn system; that is, (P, P, + , •) satisfies (i) and (ii) of 
Theorem 2 and also 

(iii) a(b + c) = ab + ac/or a// a, 6, c G P . 

THEOREM 4. 4̂ projective plane £P is coordinatized by an alternative division 
ring if and only if 0 is (7, 7)- and (<5, d)-transitive for two distinct lines 7 and 3 

Definition 2. A plane which fulfills the conditions of Theorem 4 is called a 
Moufang plane. 

3. Reidemeister planes. In this section wre prove the following theorem. 
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THEOREM 5. Let & be a Reidemeister plane and (R, F, + , •) a ternary ring 
coordinatizing 8P with basis points U, V, 0. If (R, F, + , • ) is a Veblen-Wedder-
burn system satisfying 

(3) (xy)(zx) = (x-yz)x 

for all x, y, z £ R, then SP is a Moufang plane. 

The proof will be by means of a sequence of lemmas. The first lemma is a 
well-known result in loop theory (1, pp. 115-117). 

LEMMA 2. Let M be a loop satisfying (3). The following identities hold for all 
x, y, z Ç M: 

(i) (xy-z)y = x(yz-y); 
(ii) xiy-xz) = (x-yx)z; 

(iii) xx-y = x-xy, xy-x = x-yx, and x-yy = xy-y. 
For each element x £ M there exists a unique element x~l £ M such that 
00 * 00 —~— 00 * 00 = 1, the identity of M. Moreover, if x,y,z are elements of M 
such that xy-z = x-yz, then x, y, and z generate an associative subloop of M. 

LEMMA 3. In (R, F, + , •) of Theorem 5 the following hold: 
(i) b^c-ab-1) = (be >a)b~l for all a, b, c £ R with b ?£ 0; 

(ii) a( — b) = ( — a)b = —ab for all a, b £ R, where —a is defined by 
a+ (-a) = 0; 

(iii) by a, and (b + a ) - 1 associate under multiplication for all a, b £ R with 
b + a ?* 0. 

Proof, (i) follows from 

b{cdb~l)-b = bc-(ab~1'b) = be-a. 

From 0 = a[b + ( — b)] = ab + a( — 6), we have a( — b) = —ab. In particular, 
( - 1 ) 2 = 1. Thus ( - l ) [ a + ( - l ) a ] = ( - l ) a + a. Hence, either ( - l ) a = 
— a or —1 = 1. In the first case we have, letting b = — 1 in (i): 

( - l ) [ c - o ( - l ) ] = ( - C ) 0 . ( - 1 ) = ( _ i ) . ( _ c ) o ; 

thus c( — a) = ( — c)a = —ca. If — 1 = 1, then —c = c for all c and our proof 
is complete. 

For (iii) we have, if b + a ^ 0, a ^ 0, 6 p̂  0, 

b~l-a-l(b + a) = b^-a^b + b~l-a~la = 

b-la-^b + b~la~l-a = ^ a " 1 - (6 + a), 

by (i). Thus 6_1, a -1, and & + a associate, and by Lemma 2, (iii) is true. 

LEMMA 4. ^ w (0, OU)-transitive. 

Proof. We remark here that by Theorem 3, any ternary ring of &P with 
basis points U, V, O is a Veblen-Wedderburn system. (i£, 7% + , •) satisfying 
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(3) implies that the three Bol configuration theorems hold in the ([/, 0, F)-net 
of lines (7, pp. 50-59). This, in turn, implies that any ternary ring with basis 
points [/, V, 0 also satisfies (3). Thus, Lemmas 2 and 3 hold for any ternary 
ring of £P with basis points [7, F, 0. 

Let (R', F\ ©, ® ) be a ternary ring of ^ with basis points U' = U, V = 
0, 0 ' = F. We denote the coordinates of points of SP with respect to (R!, Fr) 
by [a, b] and [a]. We define a new ternary ring (R', F", + , • ) of <^\ Although 
we will use the same symbols for addition and multiplication in {R!, F") as 
we do for the operations in (R, F), no confusion will arise since (R, F) does not 
directly appear in the proof. 

The new coordinates, denoted by (a, b) and (a), are as follows: 

(1, 1) <-> [1, 1], (a, a) <-• [1, a], a ^ 0, 

(0, 0) <-» 0, (a, 0) <-» [a], a ^ 0, 

(»)<-»F, (a) <-> [a, 0], ^ 0 , 
(0) <-> Î7, (0, a) <-> [0, a], a ^ 0. 

Then the basis points of (i^, i7") are £/, F, 0, and hence F" (a, b, c) = ab + c 
and JR' — {0} is a loop under " • " satisfying (3). 

Comparing (R', i7', ©, ®) and (Rf, i7", + , •) we see that 0 is the identity 
for both © and + , 1 the identity for ® and • ; furthermore, if — c is defined 
by c + ( — c) = 0, F'(a, b, — ba) = 0, a ® b = ba, and 

F'(a, 6, c) = ( — c)arl'd + c = bd, 

d defined by the second equality, for all non-zero a, b, c Ç R with c ^ —6a. 
We also have that 

c © (-c) = 0 , 0 © 6 = 6, 
and 

6 © c = 6^ = ( - c )d + c, 6 ^ 0, c ^ 0, - 6 , 
where d is defined by the second equality. 

We wish to show that F'(a,b,a) = a ® b © a in order to apply Lemma 1. 
If a — 0, b = 0, or b = —1, we have nothing to prove. Thus, we assume that 
a and b are non-zero and J ^ - 1 . Then 

(4) F'(a,b,a) = W = - d ' + a, 

(5) a ® b ® a — ba ® a = ba-d = —ad -\- a, 

where d' (d) is uniquely defined by the second equality of (4) ((5)). I t is 
sufficient to show that ba -d = b-ad since this implies that d' = ad. Note that 
(R', F", + , •) is a Veblen-Wedderburn system satisfying (3), and hence 
Lemmas 2 and 3 apply. 

First, let b and c be any elements in R! with b ^ — c. Then 

6 © c = — ce + c = be, 

{b © c) © ( —c) = 6e © ( — c) = 6eV = ce' — c. 
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Since © is associative, we have that b = be-e' and this implies that e' = e~1 

and 

(6) — ce + c = be = (ce'1 — c)e. 

The last equality holds for all non-zero c and e in Rf ; for given c and e, pick 
b = ( — ce + c)e~1. 

Then 

ba-d = — ad + a = (ad -1 — a)d, 

since a7 ^ 0. Hence ba = ad"1 — a or d = (ba + a) - 1a. Thus 

ia«d = ba- (ba + a)_ 1a = [6a- (6a + a)_1]a = b-[a- (ba + a)"1 a] = 6-ad. 

Therefore, F'(atb, a) = a®b ® a for all a, 6 G i?'. Since (# ' , F , ©, ®) is 
an arbitrary ternary ring of ^ with basis points U, 0, F, we have, by Lemma 
1, that F'(a,b, c) = a ® b ® c for all a,b, c £ R'. Also, (i?', ©) is a group by 
hypothesis. Thus, by Theorem 2, SP is (0, 0£/)-transitive. 

We can now prove Theorem 5. SP is (C/F, UV)- and (0, 0C7)-transitive. 
Hence, it is (7, 7)-transitive for all lines passing through U (7, p. 66). By 
Theorem 4, & is a Moufang plane. 

Theorem 5 has an application to the class of planes in which the small axial 
theorem of Pappus holds. (For the definition of this configuration theorem, 
see Pickert (7, p. 153).) Luneburg (5) investigated these planes and showed 
that in the finite case such planes are Desarguesian. We can prove the following 
corollary. 

COROLLARY. If £P is a projective plane satisfying the small axial theorem of 
Pappus, then 0* is a Moufang plane if and only if it is coordinatized by a Veblen-
Wedderburn system satisfying (3). 

Proof. The necessity is well known. If & satisfies the small axial theorem of 
Pappus, then every ternary ring coordinatizing it has commutative and 
associative addition (7, p. 154). Hence, 0* is a Reidemeister plane and Theorem 
5 applies. 
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