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Abstract

As a consequence of general principles, we add to the array of 'hulls' in the category Arch (of archimedean
^-groups with £-homomorphisms) and in its non-full subcategory W (whose objects have distinguished
weak order unit, whose morphisms preserve the unit). The following discussion refers to either Arch or
W. Let a be an infinite cardinal number or oo, let Horn,, denote the class of a-complete homomorphisms,
and let R be a full epireflective subcategory with reflections denoted rc: G —> rG. Then for each
G, there is rg € Homa(G, R) such that for each <p e Homa(G, If), there is unique 7p with ^ rg = <p.
Moreover if every r0 is an essential embedding, then, for every a and every G, rg = rG, and every
ip € Horn,,. If a = a>\ and If consists of all epicomplete objects, then every ~<j> € Honv,. For a = oo,
and for any R, every 7p €

1991 Mathematics subject classification (Amer. Math. Soc): primary 06F20; secondary 18A20, 18A32,
18A4O, 46A40, 54GO5.

1. General principles

This title alludes to the first phrase of the abstract. We present a categorical theorem,
from which the first result in the Abstract follows. We shall refer to [HS] on occasion,
but now recall some basics.

PRELIMINARIES 1.1. In a category C :
'Subcategories' are always supposed full and isomorphism-closed.
For fl a subcategory, and G € \C\, Hom(G, R) = \J {Hom(G, R)\R € \R\}.
The subcategory R is reflective if for each G e \C\ there is rG € Hom(G, R) such

that, for each <p e Hom(G, R), there is unique Ip with Jp rc = <p. If also, each rG has
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240 Anthony W. Hager and Ann Kizanis [2]

a property P, then R is called P-reflective. For example, epireflective, monoreflective.
(We note that monoreflective implies epireflective [HS].)

For reflective R and G e \C\, the map rG is usually called the reflection map for
G, and codomain(rG) is usually called the reflection of G, and denoted rG; thus,
rG:G — • rG.

The operator r : C —> R given by r(<p) = (rH<p), and r(G) = rG, for cp: G —>
H, is a functor, called the reflector. We shall occasionally use expressions like 'let
(R, r) be a reflection'.

m € C is called extremal monic if m is monic, and m = fe with e epic implies e
an isomorphism; then, domain(m) is called an extremal subobject of codomain(w).

C is said to be an (epi, extremal mono)-category if each / e C has an essentially
unique factorization f = me with e epic, m extremal monic.

The meanings of further categorical terms used in the rest of this section are either
obvious, or can be extracted from the proof of 1.4 or looked up in [HS]. We set out to
generalize the ' i f part of the following major theorem.

THEOREM 1.2 (See [HS; 37.1]). Suppose that the category C is co-{well-powered),
is an {epi, extremal mono)-category, and has products, and let R be a subcategory.
Then R is epireflective in C if and only if (a) R is closed under formation of products
in C, and (b) R is closed under formation of extremal subobjects in C.

DEFINITIONS 1.3. In the category C, let S be a class of morphisms, and let R be a
subcategory. For G, R € |C|, let S(G, R) = {s:G —> R | 5 € S}. Let S(G,R) =
\J{S(G, R)\Re \R\], and S ( - , R) = \J {S(G, R) \ G e \C\).

(a) S(—, R) is closed under evaluations if for each G e \C\ and set / , if {s( | i e
/} c S(G,R), then (*,-> e s(G,R), where <s,): G — • ]"],• codomainfo) is the
evaluation, that is, the unique map for which 7T, o (s,-) = Sj for each j . (This is
requiring that the products f ] , codomain(s,) exist.)

(b) S(—,R) is monodivisible (respectively, epidivisible) if whenever s e S(—, /?) and
5 = me is its (epi, extremal mono)-factorization, then e e S(—, /?) (respectively,
m e S ) .

THEOREM 1.4. Suppose that C is co-(well-powered) and an (epi, extremal mono)-
category. Suppose that S is a class of morphisms, and that R is a subcategory for
which (a) S(—, R) is closed under evaluations, and(b)S(~, R) is monodivisible. Then
for each G e \C\, there is epic rG e S(G, R) such that, for each s e S(G, R) there
is (unique) 5 (not asserted to be in S) with s~rG = s. If p is another map with these
properties ofrG, p = pr£ for an isomorphism ~p.

PROOF. This follows the details of [HS; 37.1]: Let G e \C\. Since C is co-(well-
powered), the collection of all s: G — • Rs with s € S, Rs € \R |, and s epic, has a
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representative set, say T. Now consider the following diagram.

241

(1.5)

R

\[{R, \t€T}

Here, (t) is the evaluation for the set of maps T, and (t) e S(G, R) by (a). Then
we write the (epi,extremal mono)-factorization (/) = mr^. We abbreviate r£ to just r
for the rest of the proof. Note that r e S(G, R) by (b).

Now let 5 e S(G,R), and let 5 = fu' be its (epi,extremal mono)-factorization.
By definition of T, there are u e T, and an isomorphism y with u' = yu, and then
yu = ynu(t) = ynumr. Then 5 = fu' = (fynum)r; so J = fynum is the desired
map. It is unique for Jr = s since r is epic.

If p is another such map, then r = rp and p =~pr, whence (F^)r =Tp = r =
(id)r, and by uniqueness, Tip = id; likewise <pr = id; thus p is an isomorphism.

Theorem 1.4, in the case of S = all C-morphisms, is exactly the 'if part of 1.2.
In 1.4, a particular r£ will be monic if G admits at least one monic S-map 5 to an
/^-object, for then 5 = sr^ shows r% is a first factor of a monic, thus monic.

For emphasis, we now de-couple R and S in the hypotheses of 1.4.

COROLLARY 1.6. Let C be a category as in 1.2, let R be an epireflective subcategory
{that is, closed under products and extremal subobjects), and let S be a class of
morphisms which is closed under evaluations, and monodivisible. Then the conclusion
of \ A holds.

In 1.4 (and 1.6) there would seem to be no reason that the extensions 5 should lie
in S. That this should always be so can be concisely put as rsS c S, referring to the
functor-like operator rs:(\C\,S) —> R implicitly defined by 1.4. This issue, in the
£-group context described in the Abstract, shall occupy much of the rest of the paper,
so we make a formal statement.
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THEOREM 1.7. Assume the hypotheses of 1.4, and consider the following further
hypotheses.

(1) SoS C.S, and S contains all C-identities.
(2) S contains all isomorphisms between R-objects and all projections from R-

products onto factors.
(3) S(—,R) is epidivisible.

7/(1) holds, then (|C|, S) is a category and rs: (\C\, S) -+ R is a functor. If (I),
(2), and (3) hold, then rsS c S and (\R\, S) is an epireflection subcategory of(\C\, S)
whose reflection maps are the /•£ 's of 1.4.

PROOF. The first assertion is clear. Concerning rsS c S, we refer to the equation
s = fynm in diagram (1.5). By (3), f,m € S, and by (2), y, nu e S; so by (1),
s € S. Moreover, (1) makes (|C|, S) into a category with (|C|, S) a subcategory. That
rsS c 5 implies the reflectivity statement is now clear.

1.8. A question about Tychonoff spaces. Let Tych be that category (with continuous
maps), and let K be the subcategory of compact spaces. As everyone knows, K is
epireflective in Tych, via the Cech-Stone compactification fiX. It has occurred to us
to wonder: Is there an S in Tych for which (i) S(—, K) is closed under evaluations,
and monodivisible, and (ii) for each X, S(X, K) contains an embedding, for which
(iii) for some X, the r j asserted by 1.4 is not the embedding of X in fiX ? Such S
would create canonical compactifications which are unfamiliar. Li Feng has shown
that the answer is yes.

2. Archimedean l-groups and a-complete homomorphisms: Generalities

We shall be concerned now, and for the rest of the paper, with the categories
Arch and W, according to the discussion in the Abstract. If a discussion, definition,
proposition, proof, et cetera, fails to specify, it is intended to apply to either. Some
of the simpler statements below are valid in all, or all abelian, ^-groups, but we shall
ignore that. This section simply fits Arch and W, and the a-complete homomorphisms,
into the context of Section 1. General references for ^-groups are [AF] and [BKW].
The most salient reference for W is [BH1].

PROPOSITION 2.1. Arch and W (a) are co-(well-powered), (b) are (epi, extremal
mono)-categories, and(c) have products.

PROOF, (a) follows from [BH1, 8.3.5 and 8.4.6].
(b) follows from [HS, 34.5], and a little thought.
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(c) In Arch, the categorical product is just the £-group product; that is, the cartesian
product with coordinate-wise operations and order; in W, the categorical product
rii(G<>gi)> (e,being the distinguished weak unit of G,) is the Arch-product with
e = (e,) as the weak unit.

In Arch and W, the epics are described in [BH1, 8.3.2 and 8.4.4], which underlies
(a) and much of the sequel. It is easy to see that monic means one-to-one, but it is not
so clear what the extremal monies are.

DEFINITION 2.2. Let a be an infinite cardinal number or the symbol oo. The t-
homomorphism <p: G —> H is called a-complete if, whenever, {g, | i e /} c
G, | / | < a, g = V,-ft in G, then <p(g) = V, <?(#.) in H. Here, | / | < oo just
means / is a set. The oo-complete homomorphisms are usually just called complete,
or sometimes normal.

denotes the class of all a-complete homomorphisms. Note that any £-
homomorphism is &)0-complete: Hom^ = Horn. A monic in Hom^ will be called an
ar-embedding. The following is very easy.

LEMMA 2.3. For the I-homomorphism <p:G —> H, <p e Hom« if and only if
whenever {g,|i e /} c G, with \I\ < or, and/\, g, = 0 in G, then /\(. <p(gi) = 0 in H.

PROPOSITION 2.4. For a>0 < « < oo, Hom,, is (a) closed under evaluations, and
(b) monodivisible; indeed, whenever iup e Horn,, with /A monic, then <p e H onv

PROOF, (a). In a product, any supremum is coordinate-wise.
(b). (See [M, 2.2].) Given pup : G — • H and {g,} such that / \ , <P(gi) # 0, then for
some b > 0, <p(gj) > b for all i. Since fi is one-to-one, ix<p(gi) > fi(b) > 0 for each
i, and thus / \ ( /x^)(g,) ^ 0. Since iiq> e Honia, / \ , g, ^ 0 as desired.

For the same reason as that for (a), Horria is closed under products, meaning, if

each f : G, —>• H, is in Horn,*, then so is \\ ft] '• Y[ Gi — > W " i -

COROLLARY 2.5. Let R be an epireflective subcategory ofC = Arch or W, and
let coo < a < oo. Then, for each G, there is an epic r£ e Horr^ (G, R), such
that, if <p e Hon^CG, R), then there is (unique) Tp with Ipr^ = <p. The operator
ra: (|C|, Horn,,) —> R is a functor.

PROOF. By 1.4 (or 1.6), using 2.4 and 2.1, we have the rg's. One checks 1.7(1),
and r" is a functor.

We note that, in 2.5, the functor r°*> is just the reflector r: C —> R.
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COROLLARY 2.6. With the hypotheses of 2.5, if also r" Horn,, c Honv then
(|/?|, Horn,,) isepirefiectivein (|C|, Horn,,) (withC = Arch or W). And, i /Horn^- , R)
is epidivisible, then ra Horn,, c Hoir^ (for any epireflector r); but not conversely.

PROOF. The first assertion follows from 2.5 and 1.7. The second follows from 1.7
upon checking condition 1.7(2) for S = H o n v The assertion 'not conversely' follows
from Sections 3 and 8 below.

REMARKS 2.7. We need to indicate some specifics about various monoreflective
subcategories of Arch and W.

(a) We shall be most interested in the subcategory of epicomplete objects. In a
category C in which, for simplicity, we suppose monic means one-to-one, an object
E is called epicomplete if E —>• • epic and one-to-one implies y is an isomorphism.
Let EC(Q = {£ | E is epicomplete }. It is easy to see (2.11 below) that i f *
is monoreflective, then EC(C) c R, and so, if EC{C) is monoreflective, it is the
smallest monoreflective subcategory.

(b) In [BH2], the following are shown for C = Wor Arch. E e EC(Q if and only
if E is divisible, and conditionally and laterally a-complete, and in Wthis means that E
is VF-isomorphic to a D(X), X compact and basically disconnected (whose weak unit
is the constant function 1). Moreover, EC(C) is monoreflective (hence epireflective).
Thus there are reflectors fiw: W — • EC(W) and Ârch : Arch — • £C(Arch). The
reflector fiw is described, quite concretely, in [BH3, 5.1], while not much is known
about ^Arch. For the sake of the typography, we shall refer to either of these as /3 unless
the context demands otherwise.

(c) By 2.5, for any w0 < a < oo we have the functors ft" : (|C| Horn,,) —>
EC(C) (C = Arch or W), which have a prominent place in the sequel. Of course,
the ^ ' s are the /Ts of the previous paragraph. For W, the functors ySWl and f}°° are
constructed/described in [BH3, 7.2 and 9.6].

(d) In a general category, a monic fM : G —> H is called essential if 9/J, monic
implies 9 monic. In Arch or W, essentiality of fi is equivalent to each of the following:
If / is a non-zero ideal of H, then \x~xl ^ (0); if 0 < h € H, then there are g e G
and n e N, with 0 < n(g) < nh.

A monoreflection is called essential if each reflection morphism is essential. The
/Ts are not essential [BH3, §9]. However:

(e) [H] characterizes in W those essential monoreflective R for which \R\ e R — •
Q a surjection implies Q e \R\. [BH4] (respectively [BH5]) describes the least
essentially reflective subcategory of W (respectively, Arch), whose objects to some
extent deserve the term 'algebraically closed'. We shall have occasion to recall some
details of these in Section 8 below.

https://doi.org/10.1017/S1446788700000793 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000793


[7] Homomorphisms in lattice-ordered groups 245

PROPOSITION 2.8. In 2.5, ifR is monoreflective, then each rg is monic, that is, each
rg : G —> raG is an a-embedding.

PROOF. According to the comment after 1.4, we see that each G a-embeds into
some /f-object. This is an immediate consequence of the following facts, which also
will be used later.

LEMMA 2.9. (a) For each archimedean G, there is an essential embedding Sc '•
G —> sG, with sG = D(X) for a certain compact extremally disconnected X. If
G e | W\, one may take sG e W.
(b) The eG above is epicomplete.
(c) An essential embedding is oo-complete.
(d) If E is epicomplete and R is monoreflective, then E e \R\.

PROOF, (a). See [C, 3.6].

(b) Referring to 2.7(b), an extremally disconnected space is basically disconnected.
(c) See [AF, 8.1.2].
(d) We have rE : E —> rE which is monic and epic (since monoreflective implies

epireflective [HS, 36.3]), thus an isomorphism. And R is isomorphism-closed.

3. About the sequel

At this point we can give an overview of the rest of the paper in more detail than
the Abstract.

In Section 4, we show that, for a)\ < a < oo, Homtt(—, EC) is not epidivisible.
In spite of this, we cannot produce examples showing fia Horn,* £ Honria, though
we believe they exist, and perhaps the constructions offer possibilities. The obstacle
would seem to be lack of knowledge of what the f}aG look like.

In Section 5, we show that Hom ,̂ (—, EC) is epidivisible, for the very special reason
that EC 3 E —> • in Arch implies <p € HomWi. This entails PWI Hommi c Hom^,
but we have no information about other (R, r)'s.

In Section 7, we show that Hom^ is epidivisible; thus for any (R, r), r°° Hom^ c
Honioo. This involves the surprising theorem: a complete epic embedding is essential.

In Section 8, we show that, for (R, r) essentially-reflective, ra Homo c Horn,, for
any a (in spite of Section 4).

4. Epidivisibility fails

We shall show that, if a>\ < a < oo, then Homa(—, EC) is not epidivisible. We
shall make an example in W (which turns out to be also an example in Arch), as the
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Yosida dual of a topological situation. We describe some preliminaries.

THEOREM 4.1 (The Yosida Representation for W). (a) For G e \W\, there is com-
A A

pact Hausdorff YG so that G is W-isomorphic to G^ D(YG) and G separates the
points ofYG. If G is also W-isomorphic to G c D(X), with X compact Hausdorff
and G separating the points, then there is a homeomorphism x : X —> YG such that

A

~g =g ox for each g € G.
( b ) ForO : G — > H in W, there is unique continuous Y6 :YH — > YG for which

A

0(g)* =g o(Y$) for each g e G. The homomorphism 9 is one-to-one if and only if
Y9 is onto, and if 9 is onto, then Y9 is one-to-one.

(These facts are described in [BH1, 8.2.4] and [BH3, 2.2].)

THEOREM 4.2. The divisible hull of an abelian (-group denoted by dG : G ->• dG
is, equivalently,
(a) the monoreflection ofG into divisible abelian l-groups, or
(b) an embedding dG into a divisible abelian t-group dG such that, for h e dG there
are g € G and integers p, q with qh = pg, or
(c) an essential embedding dG into a divisible abelian i-group dG such that dG (G) <
D < dG, with D divisible implying D = dG (where < stands for 'is an (.-subgroup
of); or

(d) in case G € W, it is Q G= {x g \x € Q, g € G} (where Q denotes the rational
numbers). Then YdG = YG and for 9 € W, Yd9 = Y9.

REMARK. The descriptions (a), (b), and (c) are folk theorems. We do not know a
reference, but they are not hard to prove. Part (d) follows from these and 4.1.

We now have a topological description of 9 Hom« (a descendent of a Boolean
version in [S]). In it, an a-cozero-set is the union of < a cozero sets, and continuous
x : X —> Y is called a-SpFi' if U being dense a-cozero in Y implies r~'£/ dense
in X, where SpFi stands for spaces with filters.

LEMMA 4.3. For 9 : G —> H in W, the following are equivalent:
(a) 9 € Horn,,, (b) Y9 is a-SpFi, (c) d9 € Horn,,.

This is a generalization of [BH3,4.2 and 9.3] (the cases u>\ and oo),and [M, 3.10]
(for vector lattices). We can describe the proof of 4.3 by referring to the arguments in
[BH3]. The proofs in [BH3] use divisibility, but neglect mention of it. The following
serves to correct that and to prove 4.3: In [BH3,4.2], the proof of (b) implies (a) and
the a-generalization is valid, while the proof of (b) implies (a) and the a-generalization
need divisibility. But Y9 = Yd9, so that the proof works to show (b) implies (c) here.
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And (c) implies (a): we have (d6)dG = dH9, with dO e Horn,, by hypothesis and
dG e Horn,, by 2.11. Thus dHd e Hom«. Then 0 e Hom« by 2.4(b).)

Let co\ < a < oo. The topological version of our example is

PROPOSITION 4.4. In compact Hausdorffspaces, there is a commuting triangle

in which p is a-SpFi; X and Z are basically disconnected; s is a surjection and h is
an injection; s is a)\-SpFi but not a-SpFi.

We construct such a triangle shortly. It implies the algebraic example:

PROPOSITION 4.5. The triangle in A A produces, in W and in Arch, the commuting
triangle

C(Y)

D(Z)

via the definitions: p(f) = f o p ( / e C(Y)); «(/) = / o h (f e C(Y))\ m(f) =
f o s (f G D(Z)); in which: p e Honia; D(X) and D{Z) are epicomplete; p = me
is the (epi, extremal mono)-factorization of p; and m £ Honv

PROOF OF 4.5 FROM 4.4. We first concentrate on W. Clearly p, e e W. For m :
D{Z) —• D(X) to be denned, it is needed that ( / o s)'lR = s~l (/"'/?) be dense;
that is so because f~lR is dense wi-cozero (= cozero), and s is o)\-SpFi; so m € W.
Clearly p = me, and this will be the (epi, extremal mono)-factorization if just e is
epic and m extremal monic, since those factorizations are (essentially) unique.

Clearly, the ̂ -groups separate the points of their spaces, so that YC{Y) = Y, YD{X)
= X, YD(Z) = Z, by the uniqueness statement in 4.1(a). It follows that Y<p =

https://doi.org/10.1017/S1446788700000793 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000793


248 Anthony W. Hager and Ann Kizanis [10]

p,Ye — h, Ym = s, by the uniqueness statement in 4.1(b). Thus, by 4.1(b), m is
one-to-one (thus monic) and by 4.3, (p € Hom« while m £ Honv

Since X, Z are basically disconnected, D{X), D(Z) are epicomplete, by 2.7(b).
Thus, m is extremal monic.

To see that e is epic: e factors as C(F) -A- C(Z) <U D(Z), where e'(f) =
f o h, and e" is inclusion. Here e' is epic because it is a surjection (because h is a
homeomorphism onto a closed subset of Y, and the Tietze-Urysohn Theorem applies;
see [GJ, Chapter 10]). And e" is epic since Ye" is the identity on Z; see [BH1, p. 182,
remark (c)]. Thus e = e"e' is epic.

We have proved all assertions in W.
For Arch, it just remains to note that D(X) and D{Z) are also epicomplete in Arch

(2.7(b)), so m is extremal monic in Arch. That e is epic in Arch follows from [BH1,
8.5.2] (which says W -epic implies Arch-epic for a map whose codomain is an algebra
(like D(Z)).

Construction of the triangle in 4.4. Let y be an infinite cardinal. A space (always
completely regular Hausdorff) is said to be a P{y)-space if the intersection of < y
open sets is again open, and an almost P(y)-space if there are no proper dense
or-cozero sets. (P(coi) is what is called P in [GJ].)

The following is routine to verify:

PROPOSITION 4.6. Let A(y) be the space consisting of a set D of cardinal y, whose
points are isolated, with another point oo, whose open neighborhoods have the form
{00} U (D — F),for F C D, \F\ < y. Suppose that the cardinal y is regular.
(a) ForEQD, 00 € ~E if and only if\E\ = y.
(b) For C C A(y), C is cozero if and only if either C c D and \C\ < y or 00 € C
and \D — C\ < y if and only ifC is y-cozero.
(c) A(y) is a P(y)-space, thus an almost P(y)-space.

PROPOSITION 4.7. For any space Z and regular y, there is an almost P{y)-space
W and an embedding g : Z —> W onto a closed subset of W.

PROOF. (This is similar to [DHH, 5.7], and [BH4, 9.4]). W is the set-theoretic
product Z x A(y), with the product topology refined by decreeing that, for v # 00
in A(y), any {(x, y)} is open. If B is a dense y-cozero set, then certainly v ^ 00
implies (x, y) € B, while for any x e Z, B C\ ({x} x A(y)) is dense y-cozero
in {x} x A(y), which is a copy of A(y), and thus (x, 00) € B; so B — W. The
embedding g : Z ->• W is just g(x) = (x, 00).
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LEMMA 4.8. Let x : X -»• W be continuous, with W almost P(y). Then x is
y-SpFi, and so is fix : fiX —> fl W (the extension over the Cech-Stone compactific-
ations).

PROOF. W has no dense y-cozero sets, so x is y-SpFi vacuously, and if B is dense
y-cozero in 0W then B D W . Thus (fix)~lB ^x~lW - X, which is dense in fiX.

We now construct the triangle 4.4: Leta>i < a < oo. LetZ = ft A(cox); since A(cox)
is (Pa),), it is basically disconnected, and so is Z. Choose sequentially inaccessible
y > a (say y = a+), and then apply 4.7 to produce an almost />(y)-space W, and
injection g : Z -> W. Let Y = /3 W, and let h : Z^YbeZ-^-W^- 0W, also an
injection.

Let / : A(a>i) + A(coi) —>• A(coi) be the function which is the identity on the first
copy of A(a>\), and collapses the second copy to oo. Let X = fi(A(coi) + A(<wO),
which is basically disconnected just as Z was, and let s = fif : X —> Z. Then, s
is a surjection, and is co^-SpFi by 4.8, since A(coi) is almost P(co\). But s is not
c&i-SpFi : in Z = f}A(a>i), D has cardinal co\, and thus is &)2-cozero, while s~lD is
contained in the first copy of A(&>i), thus is not dense. Since a > a>2, s is not a-SpFi.

Let p = hs : X —> Y. Notice that p is the Cech-Stone extension of a map
A(co\) + A(a>\) —> W. By 4.8, p is y-SpFi, hence a-SpFi.

This completes 4.4, thus 4.5.

We note that 4.4 is a (rather extensive) modification of [BHM, 2.10] (which shows
that the injective o surjective factorization of an coy-SpFi map need not have the
surjective part in co{-SpFi).

5. Countably complete homomorphisms

We shall prove that Homffl| (—, EC) is epidivisible. This is for the most special of
reasons:

THEOREM 5.1. If p : E —>• F is an l-homomorphism, with E, F € | Arch |, and if
E is divisible, conditionally and laterally o-complete (that is, E € £'C(Arch)), then
p € Horn^,.

A bit more than 5.1 is proved in [F, 1.13]. The result for W appears earlier in [Tz]
and [V]; this is less general, but (via 6.4 below, say), implies the full 5.1. Related
results appear in [Tu]; this seems not to contain 5.1, but does contain theorems not
implied by 5.1. [BH3, 4.4] is another contribution.

COROLLARY 5.2. In Arch and W, Horn^ ( - , EC) is epidivisible.
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PROOF. In C = Arch or W, let p : G ->• E be ^-complete with E e EC(Q. Let
p = me, e : G —*• H, m : H —> E, be the (epi, extremal mono)-factorization. Since
EC(C) is epireflective (2.7(b)), EC(C) is closed under forming extremal subobjects
(1.2(b)); so H G EC(C). That means / / is divisible and conditionally and laterally
<r-complete (2.7(b)), so by 5.1, m e Hom^,.

COROLLARY 5.3. For C = Arch, or W, flECXOI.Homa,,) w monoreflective in

The following will be needed once later. It is a corollary of 5.1, and the historical
remarks following 5.1 apply here as well. (One may see [F, 1.14] for the proof.)

THEOREM 5.4. If<p : E —>• F is a surjective l-homomorphism, and if E is divisible,
conditionally and laterally-o-complete, then so is F. (That is, EC is closed under
formation of quotients.)

6. Some properties of homomorphisms in Arch, versus W

This section is preliminary to the sections on Hoirioo, and essential reflections. The
idea is that the factoring out of 'principal perps' transfers a situation in Arch into
situations in W, where the Yosida Representation provides a grip; then one tries to
transfer information back. The procedure is employed in [BH1, 2], among other
places.

ForG € Arch, and for5 c G, S1 denotes {g e G | \g\A\s\ =0 fo reachs e 5}. It
is well-known that any SL is a complete ideal in G, G/S1 € | Arch |, and the quotient
G ->• G/S1- is in H o n w See [AF, p . l l ] and [BKW, p.227].

In Arch, let p : M -*• N. For each u € M+, let n\ : M —*• M/u1 and
JT2 '• N —>• NIp{u)L be the quotients, and let pu : M/u1 —• N/p(u)L be denned
by Pu(g + «x) = P(g) + piu)-1. Then pu is an €-homomorphism with n2p = punu

u -\-uL and p(u) + piu)1 are weak units, pu(u + MX) = p(u) + p(uL), and pu e W.
We record several connections between p and the various pu.

PROPOSITION 6.1. p is one-to-one if and only if each pu is one-to-one.

PROOF. If p is not one-to-one, we have u > 0 with p(u) — 0. Thus u + u1 ^ 0,
while NIpiu)-1 = (0) whence pu{u + u-1) = 0. Now suppose p is one-to-one,
u e M+, and pu(g + MX) = pig) + P(M)-1 = 0. Then pig) e P(M)-1, that is,

P(«) = 0, giving p(g A u) = 0. Thus j A « = 0; that is, ^ e w1, and so
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PROPOSITION 6.2. p e Horrv if and only if each pu e Honv

PROOF. We begin with the necessity. A lemma is needed.

LEMMA 6.3. Let \j/ G W, with e the weak unit in domain(VO- Then \)r e Horn^ if
and only if whenever {gi\i G /} has \I\ < a, g, < e for all i, and / \ . g, — 0, then

PROOF. The necessity is clear. Conversely, if \js £ H o n v then by 2.3 there is
[gi\i G /} with | / < a and /\g,• = 0, but /\is(gi) ^ 0. So there is h with
0 < h < ir{gi) for all i, and h A x//(e) > 0 since ij/(e) is a weak unit in codomain(i/0-
Now 0 = (/\gi) A e = /\(gi A e), and each g, A e < e, but f\f(gi A e) —

A \j/(e)) > h A rj/(e) > 0, so the condition fails.

Now let p : M —> N be a-complete, and let u e M+. We use 6.3 to show
that pu e Horn,,, so suppose given {g, + u1}, gt + uL < u + u1- for each i with
Ate+M"1) = 0, and(g,:Au)+u± = g,-+1/-1 for each i, while /\(g,AM) = 0. Recalling
niP = P«^i. and ^2 £ Homoo, so that n2p e Honia, we have 0 = n2p(/\(gi A «)) =
A ^PC?; A U) = A P«TTI (5/ A M) = A P«fe A M + uL) = A P«fe + « x ) ' as desired.
Thus pu e H o n v

We turn to the sufficiency in 6.2. Two lemmas are needed.

LEMMA 6.4. Suppose that N = p(M)XL. If each pu e Honv then p e Honv

PROOF. Let npu : \~[ M/u1- ->• f ] N/piu)1- be the product map (over u e M+).

By the remark after 2.4, npu € Home,. Let et : M —> Y\ M/ux be the evaluation
for the family [M ->• M/uL\u e M+], and e2 : Â  —>• n ^ / P C " ) " 1 m e evaluation
for {Â  —• N/p(u)±\ u e M+}. These families are in Homoo, hence in H o n v so
ei, e2 e Homo by 2.4(a). Thus, {npu)ex G Hom«. Evidently, we have (npu)ei = e2p>
so e2p e Horn,,. Now, the condition N = p(M)L± is the same as p(M)1- = (0), or

x |« e M+] = (0); that makes e2 monic. By 2.4(b), p e Horn,,.

LEMMA 6.5. /f / is an l-ideal in the (.-group G, then the embedding I °-> G is

OQ-complete.

PROOF. Suppose each f e I+ with / \ G ft ^ 0. Then there is g e G with

ft > g > 0 for each i. Since / is convex, g e I, so A ' /i 7̂  0-

We conclude the proof of 6.2. Suppose, p : M -> A' has each pH G Horn,,.

Factor p as p = jp 0 , where p° : A/ -̂ ->- pCM)"*-1 is the range-restriction, and
j : p(M)LL ^-y N is the inclusion. Then, for each u e M+, we also have the
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factorization pu = O'u)p° (with obvious notation), and ju is monic by 6.1. By 2.3(b),
p° e Honv By 6.6, p° € Homo. By 6.5, j e Horrv Thus p = jp° e Horn,,, as
desired.

An embedding p : M —*• N in Arch is called coessential in Arch if ap = 0 (a e
Arch) implies a = 0. Evidently, an epic embedding is coessential, and it is not hard
to see that p coessential implies piM)1 = (0) [BH1, 8.4.3].

Explicit mention of 6.6 below is barely needed here, but it underlies the crucial
2.7(b) and is in the spirit of this section. We shall need 6.7 later.

PROPOSITION 6.6 (BH1, 8.4.4). p is epic in Arch if and only if p is coessential and
each pu is epic in W.

PROPOSITION 6.7. p is an essential embedding in Arch if and only ifp{M)x = (0)
and each pu is an essential embedding in W.

PROOF. Let p be an essential embedding. If h > 0, and g, n are chosen with
0 < Pig) < nh, then h <£ pig)1 2 piM)1. By 6.1, puis an embedding. Suppose
h + piu)1 > 0 with h > 0. Then h A p(u) < h and 0 < h A p(u) + p{u)x (since
p(u) + piu)1- is a weak unit). Now choose g, n so that 0 < p(g) < n(h A p(u)).
Then p(g) < np(u), and p(g) i piu)1. Thus 0 < p(g) + p(u)x < nh + p{u)L, as
desired.

Conversely, suppose that p(M)-1 = (0), and that each pu is an essential embedding.
Then p is an embedding, by 6.1. Let h > 0. Then h £ p{M)L, so h £ p(u)L for
some u > 0. Then, 0 < h + P(M)X, and since p(u) + piu)-1 is a weak unit,
0 < h A piu) + piu)-1. Since pu is essential, there are g, n with 0 < pig) + piu)1 <
nQi A piu)) + piu)1, and then 0 < pig) A piu) + piu)1 < nQi A piu)) + piu)1.
Wenowhaveipig)Apiu))AinihApiu)))-pig)Apiu) e piu)1 Dpiu)11 = (0),
whence 0 < pig A u) < n(h A piu)) < nh, as desired.

7. Complete homomorphisms

We shall prove in 7.4 below that Hoirioo is epidivisible. Using 2.6 and 2.8, we then
have:

THEOREM 7.1. In C=W or Arch, and if iR,r) is any monoreflection, then
c Honioo, and i\R\, Hom^) is monoreflective in (|C|,

The proof of 7.4 has two main constituents: another factorization theorem for
Horrioo (7.2), and the rather striking fact that complete epic embeddings are essential
(7.3).
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THEOREM 7.2. In W, or in Arch, suppose that p e Hom^, and that p = /xe with fx
monic. (We recall that e e Honioo, by 2.4(b)).
(a) If e is surjective, then JX e Horrioo. That is, each p e Horn,*, has its infective o
surjective factorization in Horn,*,.
(b) Ifrange(e) is essentially embedded in codomain(e), then fx e

PROOF, (a) for W: By 4.3, this has a dual topological statement, which is exactly
2.9 of [BHM].
(b) for W: We first prove this assuming e is one-to-one. We shall need to know that,
in W, an injection G -4- L is essential if and only if the surjection YG <^- YL
is irrreducible. That is, U non-void open in YL implies a V non-void open in YG
with (Ye)~lV c U. This is proved in [HR, 4.1]. Now, since p = /xe, we have
Yp = (Ye)(Yn), as:

e Ye
G - L YG YL

Yp

H YH

Employing 4.3, let U be dense open in YL. Since Ye is irreducible, it follows that there
is V dense open in YG such that (Ye)'1 V is dense in U. Since p e Hom^, (Yp)~x V
is dense in YH (by 4.3). But (Yfx)'1 V 2 (Yfi)'1 (Ye)~l V = (Yp)~x V, so (Y/x)'1 V
is dense. Thus \x e Hom^, by 4.3.

Now, just assuming range(e) essential in codomain(e), let e = e'e° be the injective
o surjective factorization of e, so p = (ixe')e°. By (a), /xe' e Hom^. By the previous
paragraph, \x e Hom^ (since s' is 1-1).

(b) for Arch. We use Section 6 and its notation. Given p = fxe with /x monic and
ranged) essentially embedded, and given u e (domain(p))+, we have pu = /xueu,
with pu 6 Honioo (by 6.4), ixu monic (by 6.3), and range(£H) essentially embedded
(by 6.9 and 6.3). Then, (b) for W says //„ e Hom^. By 6.4, /x e Honioo.

(a) for Arch: (b) implies (a).

THEOREM 7.3. In W, and in Arch:
(a) For each G, /3°°G is the only epicompletion of G in which G is completely
embedded, and the only essential epicompletion of G (up to isomorphism over G).
(b) Ife : G ->• H is epic, and e e Horrioo, then e(G) is essential in H.
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PROOF, (a) for W: This is the key to the whole theorem, and is exactly 9.10 of
[BH3]. It is not so easy, and depends on an explicit construction of fi°°G.

(b) For either W or Arch, consider the factorization G -̂ ->- s(G) °->- H. As the
second factor of an epic, s' is epic. By 7.2(a), s' e Hom^. We are seeking exactly to
prove e' is essential. So for the proof, we might as well, and do, assume e one-to-one
at the outset.

(b) for W: Given our £ : G °->- # , we have fi^e : G °->- f}°°H an epicompletion
of G in which G is completely embedded, so fi^e = /8£? (by (a) for W), and thus
P^e is essential. It follows that s is essential.

(b) for Arch: We use Section 6. Given our e : G —> H, for each u € G+, su e
Homoo (by 6.4), and is W-epic (by 6.8). By (b) for W,eu is essential. But e is
coessential (6.8); thus e(G) x = (0) (noted before 6.8), so e is essential (by 6.9).

(a) for Arch: Given G, £G : G <-+ f3°°G is essential, by (b). Now, if <p : G =->• H
is another epicompletion, with <p e Homoo, then there is 4> : /3°°G -*• H with
vi/y3G = (p. Since f}c is essential, ^ is one-to-one. Now, since <p is epic, the
embedding *(£°°G) <^>- H is epic also. But, by 5.4, * ( f G ) is epicomplete. Thus
ty is onto H, and hence an isomorphism.

Next, if cp : G °-> H is an essential epicompletion, then <p e Honioo (2.11), and the
previous paragraph applies.

The proof of 7.3 is concluded.

COROLLARY 7.4. In W and in Arch, Homoo is epidivisible. Indeed, any monk o
epic factorization of a map in Homoo lies in

PROOF. Let cp e Homoo, and let (p = /AS with s epic and /x monic. By 2.4,
s e Homoo. By 7.3(b), range(s) is essentially embedded. Then, by7.2(b),/x e

8. Essential reflections

A monoreflective (R, r) is called essentially reflective if each reflection map rc :
G —> rG is an essential embedding. Such reflections yield the simplest situations of
those we are considering here. The result depends on the descriptions of the maximum
essential reflections from [BH4, 9.2] (for W) and [BH5, 11.2] (for Arch).

THEOREM 8.1. Let a>0 < a < oo, and let (R, r) be essentially reflective in C = W
or Arch.

(a) For each G, r£ is rG in the sense that there is an isomorphism 6 : rG —> raG with

ra
c = 0rG.

(b) r Homa c H o n v
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(c) (\R\, Horria) is monoreflective in (|C|, Horn,,), with reflection maps rc.

PROOF, (a) Each p e Hom(G, R) lifts uniquely over rG, a fortiori for p e
Hottia(G,R). Moreover, by 2.11, each rG e Honv Now (a) follows from the
uniqueness statement in 1.4 (using Section 2).

(c) follows from (a), (b), 2.6 and 2.8.
(b) This takes a while. We begin by noting that it is true for the special case of the

divisible hull dG (4.2).

LEMMA 8.2. (a) For each Ge\ Arch | and ueGx, diG/u1) = dG/ux.
(b) For 6 6 Arch, 9 6 Horn^ if and only ifdO € Honv

PROOF, (a) We are viewing G < dG. By 6.1, G/uL embeds in dG/ux. As a
quotient of a divisible <?-group, dG/ux is divisible. Given h + ux in dG/u±, we
choose g, m and n, so that mh = ng in dG, and then m(/i + ux) = n(g •+- «x). So
rfG/w1 is diG/u-1) by 4.2(b).

(b) Lemma 4.3 asserts this forfl e W. For6> : G ->• # in Arch, and dO \ dG -+ dH
with (dO)dG = rf«6», we use 6.3. Note that dc,dH € HomM c Horr^ by 2.9. If
£f# € Horn ,̂ then {d6)dG e Horria, and then 0 € Horna since dH is monic (2.4). Now
suppose 8 € Honia, and let u e (dG)+. If v e G has m« = nv, then MX = i>-L(±
in dG). We have (dO)v(dG)v = (dH)v9v, clearly. By 6.2, 0v e Horn,,, but by 8.2(a),
(dO)v = d{9v), &ndd(8v), and d(9v) e Hoirv by 4.3. That is, (</#)„ = (^) K e Honv
By 6.4, d0 e Horn,,. (One can, of course, prove 8.2(b) just in abelian ^-groups.)

DEFINITION 8.3. Let u>0 < fi <oc, and let H < K.We say that H is fi-jamd in #
(/oin an</ meef rfen^e) if whenever 0 < k e K, there is {h, \i € /} c H with | / | < ^,
and* = A,-*/-

LEMMA 8.4 (cf. [M, 2.9]). Letco0 < ft < a < oo. Suppose that p = fs, with s an
embedding with range(e) p+-jamdin codomain(s). Then ps Horn,, implies x/re Honv

PROOF. We write e : G ^ G' and v̂  : G' ->• / / .
Suppose {/-|i e /} c G', | / | < a, and A / = 0 . For each i, there is {̂ / |

jeJ,} c G with |/-| < yj, with / , = A^te/>- Thus 0 = A, A, £C?/)' and so
0 = A, A; Sj since e is one-to-one. Now the index set for this is U,-/(i), whose
cardinal is £ . |7(i)| < 0 • | / | = 0 v | / | < a. Thus, 0 = A, Aj Pigj)* s i n c e

pf Horric. Since yO = ^e , we have (*) 0 = A, Aj irS(s'j)- If. now> A, ^ifi) ¥" 0.
then we have h with 0 < h < ir(f) for each i, whence 0 < h < \fr(fj) < irs{g)) for
each /, y, which contradicts (*).
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REMARK 8.5. Let H < K. Then H is fi-jd in K (join dense) if for each k e K+,
there is {ht\isl} c H+ with | / | < fi and k = \Jjhi. Then H is /3-jamd in K if and
only if H is /J-jd and majorizes K, in the sense that for each k e K+, there is h e H
with ft > fc.

Here is an example showing that 8.4 fails if /J+-jamd is weakened to /?+-jd. Let
G' = C[0, 1], G = Mo = {gsG'\g(0) = 0},which is w^-jd in G'. Let e : G - • G'
be the inclusion, \fr : G' —> /? the evaluation i/r(f) = / (0), and p : G —> /? the
zero-homomorphism. Then ps Honioo, while ^ ^ HomW|.

In a category, an essentially reflective (M, m) is the maximum essential reflection if
(/?, r) essentially reflective implies, for each G, a map # \rG^> mG with 0rG = mG;
equivalently, M e / ? . Such an (M, m) exists in most decent categories, though m = i J
is not uncommon; see [HM].

THEOREM 8.6 ([BH4, 9.2] and [BH5, 11.2 and 12.2]). The maximum essential re-
flection (M, m) exists in W, and in Arch, and we have G < dG < mG for each
G.
(a) In Arch, dG < H < mG implies dG is u>^-jamd in H, and in particular, G
majorizes mG.
(b) In W, dG < H < mG just implies dG is co^-jd in H (and for various G, G fails
to majorize mG).

We now prove 8.1(b). For a = co0, this is part of the hypothesis. We suppose
a > COQ, and for either Arch or W, let p e HorriaCG, R), and consider the diagram:

(8.7)

y = d(drGrc)

drG

d(rp)
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Here y is monic because ydc = drGrc is monic and dc is essential. By 8.2, dp e
Honv We now must treat Arch and W separately because of the differences noted in
8.6.

Construing (8.7) in Arch, dG is a^-jamd in drG via y (by 8.6(a)) and 8.4 says
d(rp) e Horria (since a > coo). By 8.2(b), rpeHonv and we are finished.

Construing (8.7) in W, we further resolve the equation d(rp)y = dp as

(8.8)

drG

d(rp)

where [dG] is the ideal in drG generated by dG, and k is the restriction d(rp)\[dG].
By 8.6(b) and 8.5, dG is (w -̂jamd in [dG] via S, and 8.4 says that k e Horr^ since
dp € Honv The next lemma (peculiar to WO then says d(rp) e Homo, so again by
8.2(b), rp 6 Honv and we are finished.

LEMMA 8.9. Suppose H<K^>LinW.If\lf\[H]e Honv then yfr e Horn,,.

PROOF. This is just because Y[H] — YK and Y(\/r\[H]) — Yxjr, by the uniqueness
statements in 4.1 (a) and (b), and Lemma 4.3.

REMARK. The example in 8.5 shows 8.9 fails in Arch.

References

[AF] M. Anderson and T. Feil, Lattice-ordered groups (Reidel, Dordrecht, 1988).
[BH1] R. N. Ball and A. W. Hager, 'Characterization of epimorphisms in archimedean £-groups

and vector lattices', in: Lattice-ordered groups, advances and techniques (eds. A. Glass and
W. C. Holland), (Kluwer, Dordrecht, 1989), Chapter 8.

[BH2] , 'Epicomplete archimedean ^-groups', Trans. Amer. Math. Soc. 32 (1990), 459-478.
[BH3] , 'Epicompletion of archimedean ^-groups and vector lattices with weak unit', J. Austral.

Math. Soc. Series (A) 48 (1990), 25-56.
[BH4] , 'Algebraic extensions of an archimedean lattice-ordered group, I', J. Pure and Appl.

Algebra 85 (1993), 1-20.
[BH5] , 'Algebraic extensions of an archimedean lattice-ordered group, II', to appear.

https://doi.org/10.1017/S1446788700000793 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000793


258 Anthony W. Hager and Ann Kizanis [20]

[BHM] R. N Ball, A. W. Hager and A. J. Macula, 'An a-disconnected space has no proper monic
preimage', Topology Appl. 37(1990), 141-151.

[BKW] A. Bigard, K. Keimel and S. Wolfenstein, Groups et anneaux reticules, Lecture Notes in Math.
608 (Springer, Berlin, 1977).

[C] P. F. Conrad, "The esssential closure of an archimedean lattice-ordered group', Proc. London
Math. Soc. 38 (1971), 151-160.

[DHH] F. Dashiell, A. W. Hager and M. Henriksen, 'Order-Cauchy completions of rings and vector
lattices of continuous functions', Canad. J. Math. 32 (1980), 657-685.

[F] D. H. Fremlin, 'Inextensible Riesz spaces', Math. Proc. Cambridge Philos. Soc. 77 (1975),
71-89.

[GJ] L. Gillman and M. Jerison, Rings of continuous functions (Van Nostrand Co., Princeton, 1960);
reprinted Graduate Texts in Math. 43, (Springer.Berlin, 1976).

[H] A. W. Hager, 'Algebraic closures of ^-groups of continuous functions' in: Rings of continuous
functions (ed. C. Aull), Lecture Notes in Pure and Appl. Math. 95 (Dekker, New York, 1985)
pp. 165-194.

[HM] A. W. Hager and J. Martinez, 'Maximum monoreflections', Appl. Categ. Structures 2 (1994),
315-329.

[HR] A. W. Hager and L. C. Robertson, 'On the embedding into a ring of an archimedean £-group\
Canad. J. Math. 31 (1979), 1-8.

[HS] H. Herrlich and G. Strecker, Category theory (Allyn and Bacon, Boston, 1973).
[M] A. J. Macula, 'a-Dedekind complete archimedean vector lattices versus a-quasi-F spaces',

Topology Appl. 44 (1992), 217-234.
[S] R. Sikorski, Boolean algebras, 3rd edition, (Springer, Berlin, 1969).
[T] C. T. Tucker, 'Concerning cr-homomorphisms of Riesz Spaces', Pacific J. Math. 57 (1975),

585-590.
[TZ] Z. Tzeng, Extended-real-valued functions and the projective resolution of a compact Hausdorff

space (PhD Thesis, Wesleyan University, 1970).
[V] A. I. Veksler, 'P-sets in topological spaces', Soviet Math. Dokl. 11 (1970) 953-956.

Mathematics Department Mathematics Department
Wesleyan University Western New England College
Middletown, CT 06459 Springfield, MA 01119
USA USA

https://doi.org/10.1017/S1446788700000793 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000793

