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Multiplication of Polynomials on
Hermitian Symmetric spaces and
Littlewood–Richardson Coefficients

William Graham and Markus Hunziker

Abstract. Let K be a complex reductive algebraic group and V a representation of K . Let S denote the

ring of polynomials on V . Assume that the action of K on S is multiplicity-free. If λ denotes the iso-

morphism class of an irreducible representation of K , let ρλ : K → GL(Vλ) denote the corresponding

irreducible representation and Sλ the λ-isotypic component of S. Write Sλ · Sµ for the subspace of S

spanned by products of Sλ and Sµ. If Vν occurs as an irreducible constituent of Vλ ⊗ Vµ, is it true

that Sν ⊆ Sλ · Sµ? In this paper, the authors investigate this question for representations arising in

the context of Hermitian symmetric pairs. It is shown that the answer is yes in some cases and, using

an earlier result of Ruitenburg, that in the remaining classical cases, the answer is yes provided that

a conjecture of Stanley on the multiplication of Jack polynomials is true. It is also shown how the

conjecture connects multiplication in the ring S to the usual Littlewood–Richardson rule.

1 Introduction

1.1 A Question for Multiplicity Free Actions

Let K be a connected complex reductive group and let X be a complex affine algebraic

variety with a K-action. We will assume that X is a multiplicity-free space, i.e., every
finite dimensional irreducible representation of K appears with multiplicity at most

one in the algebra S = C[X] of regular functions on X. Thus S ≃
⊕

λ∈Λ
Vλ, where

Λ is a subset of K̂ , the set of isomorphism classes of finite dimensional irreducible

K-representations, and Vλ is a representative of the class λ ∈ K̂. If λ ∈ Λ, let Sλ ⊆ S

denote the λ-isotypic component of S, i.e., Sλ is a K-stable subspace of S such that
Sλ ≃ Vλ. If λ, µ ∈ Λ, let Sλ · Sµ be the subspace of S spanned by the products of

elements in Sλ and Sµ. The subspace Sλ · Sµ is K-stable and hence is a sum of certain

Sν ’s. We are interested in describing the set of all ν ∈ Λ such that Sν ⊆ Sλ · Sµ.
Clearly, a necessary condition for Sν ⊆ Sλ · Sµ is that Vν →֒ Vλ ⊗Vµ.

Question Is it true that Sν ⊆ Sλ · Sµ if and only if Vν →֒ Vλ ⊗Vµ for ν, λ, µ ∈ Λ?

It is easy to find examples for which the answer is negative. Consider the natural
action of K = SL2(C) on X = C

2, which is a multiplicity-free action. More precisely,
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if d is a non-negative integer, then the space Sd of homogenous polynomials on X

of degree d is an irreducible representation of K . In particular, Λ can be identified

with the set of non-negative integers. Clearly, S1 · S1 = S2 and V1 ⊗ V1 ≃ V0 ⊕ V2.
This counterexample can be fixed by replacing K = SL2(C) with SL2(C)×C

×, where

the multiplicative group C
× acts by multiplication on X = C

2. Then again S1 ·
S1 = S2, but now V1 ⊗ V1 ≃ Ṽ0 ⊕ V2 with Ṽ0 6≃ V0, since C

× acts on Ṽ0 with
non-trivial weight. This example suggests that a natural class of multiplicity-free

actions for which to study the question above is given by the class of irreducible linear

multiplicity-free actions with the property that the image of K in GL(X) contains the
center C

× of GL(X). (A complete list of all such multiplicity-free actions can be found

in [15].) In this article we consider the nice subclass of multiplicity-free actions that
arise in the context of Hermitian symmetric spaces.

1.2 Two Conjectures

Let GR/KR be an irreducible Hermitian symmetric space of non-compact type, and

let g = k⊕p+⊕p− be the usual decomposition of g = Lie(GR)⊗R C (see Section 3 for
more details). The complexification of the compact group KR is a complex reductive

group K with one-dimensional center C
×, and the action of K on X = p+ is mul-

tiplicity free. Table 1 shows a complete list of the multiplicity-free actions that arise
in this way. The last column of the table shows the rank of the Hermitian symmetric

space GR/KR which is (by definition) the real rank of GR.

GR K X = p+ r

SU (p, q) S(GLp(C) × GLq(C)) C
p ⊗ (C

q)∗ min{p, q}

Sp(n, R) GLn(C) S2(C
n) n

SO∗(2n) GLn(C) ∧2(C
n) ⌊n/2⌋

SO0(n, 2) SOn(C) × C
×

C
n 2

E III Spin10(C) · C
×

C
16 (spin) 2

E VII E6(C) · C
×

C
27 (min) 3

Table 1: Multiplicity-free actions associated with Hermitian symmetric spaces.

We will study two conjectures.

Conjecture A For the multiplicity-free action associated with the Hermitian sym-

metric space GR/KR, i.e., for the K-action on X = p+, Sν ⊆ Sλ · Sµ if and only if

Vν →֒ Vλ ⊗Vµ, where λ, µ, ν ∈ Λ.

The second conjecture is closely related to the first and connects the problem of

describing the set {ν ∈ Λ | Sν ⊆ Sλ · Sµ} to the classical Littlewood–Richardson

rule. To state the conjecture, we need some more notation. Schmid proved in [31]
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that if GR/KR has rank r, then the non-zero K-isotypic components of S = C[p+] are
naturally parametrized by partitions of length at most r, i.e., the set

Λ = {(λ1, . . . , λr) ∈ Z
r | λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0}.

This set Λ also parametrizes the irreducible (polynomial) representations of GLr(C)

in the usual way. For λ ∈ Λ, let Fλ be the irreducible GLr(C)-representation of lowest
weight −λ. For λ, µ, ν ∈ Λ, we denote by cν

λµ the multiplicity of Fν in Fλ ⊗ Fµ. The

numbers cν
λµ are known as the Littlewood–Richardson coefficients for GLr(C).

Conjecture B Let r be the rank of the Hermitian symmetric space GR/KR and identify

Λ with the set of partitions of length at most r. Then for the K-action on X = p+,

Sν ⊆ Sλ · Sµ if and only if cν
λµ 6= 0, where λ, µ, ν ∈ Λ and cν

λµ are Littlewood–

Richardson coefficients for GLr(C).

For the multiplicity-free actions that correspond to Hermitian symmetric spaces

of tube type (see Section 3.3), this conjecture was made by Ruitenburg [28], who
observed that it holds for X = C

p ⊗ (C
p)∗.

The validity of Conjecture B is connected to the multiplication of Jack polynomials

P(α)
λ , a well-known family of symmetric functions. Here λ is a partition and α is a

real parameter. If α = 1, then P(α)
λ = sλ is the Schur symmetric function. There is an

expansion

P(α)
λ P(α)

µ =

∑

ν

f ν
λµ(α)P(α)

ν ,

where the f ν
λµ(α) are rational functions in the parameter α. Note that since P(1)

λ = sλ,

the value f ν
λµ(1) is the Littlewood–Richardson coefficient cν

λµ. In [32], Stanley con-

jectured that the f ν
λµ(α) have a certain positivity property, which we can formulate as

follows. Let cλ(α) and c ′λ(α) be the non-zero polynomials in α with non-negative in-

teger coefficients as defined in [26, Chapter V, §10]. Then Stanley’s conjecture is that

cλ(α)cµ(α)c ′ν(α) f ν
λµ(α) are polynomials in α with non-negative integer coefficients.

Except for the non-negativity, this conjecture is true. As noted by Macdonald [26, Ex.

VI.10.1 d], this follows from the integrality of Macdonald polynomials, proved inde-
pendently by several authors [7, 8, 16, 18, 20, 23, 29]. The main result of this paper,

which we will prove in Section 5, can then be phrased as follows.

Theorem 1.1 Suppose that Stanley’s conjecture is true. Then Conjecture B is true for

all Hermitian symmetric spaces.

We also prove (without assuming Stanley’s conjecture) that Conjecture B is true

if GR = SU (p, q) or if the rank of the Hermitian symmetric space is at most 2 (see
Sections 2 and 3).

What about the validity of Conjecture A? In Section 6, we show the equivalence of

Conjecture A and Conjecture B for all Hermitian symmetric spaces of classical type.
More precisely, for λ, µ, ν ∈ Λ we express the multiplicity of Vν in Vλ ⊗Vµ in terms

of Littlewood–Richardson coefficients (see Table 4) and show that Vν →֒ Vλ ⊗ Vµ

if and only if cν
λµ 6= 0. In the classical cases corresponding to GR = Sp(n, R) and
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SO∗(2n), this last equivalence follows from Klyachko’s saturation conjecture, which
is now a theorem of Knutson and Tao [21] and also of Derksen and Weyman [3].

There is some overlap between the topics of this paper (especially Section 5) and
earlier work of Ruitenburg [28]. For the reader’s convenience, we have tried to give a

relatively self-contained account.

2 A Classical Example

2.1 The Regular Representation of a Reductive Group

Let G be a complex reductive algebraic group. By reductive we mean linearly re-

ductive, i.e., all representations are completely reducible. (In particular, we do not
assume here that G is connected.) Let R = C[G] denote the ring of regular functions

on G. Recall that R carries a natural action of G × G, the regular representation ρreg ,

given by

(ρreg(g1, g2) f )(x) = f (g−1
1 xg2)

for f ∈ R and g1, g2, x ∈ G. By the algebraic Peter–Weyl theorem, R decomposes, as
a G × G-representation, into a direct sum R =

⊕
λ∈bG Rλ, where Rλ ≃ Vλ ⊠ V ∗

λ .

The following proposition is observed in [1, §3.2].

Proposition 2.1 Let G be a complex reductive algebraic group, and let R = C[G] be

the ring of regular functions on G. Then Rν ⊆ Rλ · Rµ if and only if Vν →֒ Vλ ⊗Vµ for

all λ, µ, ν ∈ Ĝ.

Proof If Rν ⊆ Rλ · Rν , then the G × G-representation Vν ⊠ V ∗
ν appears in (Vλ ⊠

V ∗
λ ) ⊗ (Vµ ⊠ V ∗

µ ), which implies that the G-representation Vν appears in Vλ ⊗ Vµ.

We now prove the converse. For λ ∈ Ĝ let χλ ∈ R denote the character of Vλ, i.e.,

χλ(g) = tr ρλ(g). Recall that since Rλ is spanned by the matrix coefficients of ρλ

(with respect to any basis of Vλ), we have that χλ ∈ Rλ. Moreover, in R, we have

χλ · χµ =
∑

cν
λµχν , where cν

λµ is the multiplicity of Vν in Vλ ⊗Vµ. Let πλ : R → Rλ

denote the projection. Since Rλ ·Rµ is a G× G-stable subspace of R, and since G × G

is reductive, we have Rν ⊆ Rλ · Rµ if and only if πν(Rλ · Rµ) is non-zero. If Vν occurs

in Vλ ⊗Vµ then cν
λµ 6= 0. Hence πν(χλ ·χµ) 6= 0, so πν(Rλ ·Rµ) 6= 0, completing the

proof.

Remark 2.2 Note that the decomposition R =
∑

Rλ is a decomposition into iso-

typic components for the G × G-action as well as the G-action induced by left mul-
tiplication on G (the latter action being not multiplicity free). We recall that the

irreducible representations of G×G are parametrized by pairs (λ, µ) ∈ Ĝ× Ĝ. With

this notation we then have R(λ,µ) = 0 if µ 6= λ∗ and R(λ,λ∗) = Rλ, where λ∗ denotes

the isomorphism class of the G-representation dual to Vλ.

2.2 Proof of the Conjectures for SU (p, p)

We use the notation of Subsection 2.1 with G = GLp(C). (To simplify the notation in

the following, we will write GLp for GLp(C).) The set ĜLp is parametrized by integer
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sequences λ = (λ1, . . . , λp) with λ1 ≥ · · · ≥ λp. More precisely, if λ = (λ1, . . . , λp)
let Fλ be the irreducible GLp-representation with lowest weight

−λ1ε1 − λ2ε2 − · · · − λpεp.

By abuse of notation we will identify elements of ĜLp with such sequences. Let Mp

denote the space of complex p×p-matrices and let S = C[Mp]. The open embedding
GLp →֒ Mp induces a GLp × GLp-equivariant embedding of coordinate rings S →֒

R = S[det−1]. This embedding identifies S as the subring

S = C[Mp] ≃
∑

λ∈Λ

Rλ ⊆ R = C[GLp] ,

where Λ = {(λ1, . . . , λp) ∈ Z
p | λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0}. Using notation as in the

remark at the end of Subsection 2.1, the only non-vanishing isotypic components for

the GLp × GLp-action on S are of the form S(λ,λ∗) = Rλ for λ ∈ ĜLp with λp ≥ 0.

It follows that Conjecture A and Conjecture B for the K = GLp × GLp-action on
X = Mp are an immediate consequence of the results in Subsection 2.1.

2.3 Proof of the Conjectures for SU (p, q)

Next we consider the action of K = GLp × GLq on X = Mp,q, where Mp,q denotes

the space of p × q-matrices. Without loss of generality, we may assume p ≤ q. Let
Mp,q ։ Mp be the natural projection given by “forgetting the last (q − p)-columns”.

This projection is GLp-equivariant with respect to the actions given by left multi-
plication and thus we obtain a GLp-equivariant embedding C[Mp] →֒ C[Mp,q]. If

xi j are the canonical coordinate functions on Mp,q then C[Mp,q] = C[xi j | 1 ≤
i ≤ p, 1 ≤ j ≤ q] and C[Mp] is identified (via the embedding given above) with
the subring C[xi j | 1 ≤ i, j ≤ p]. Let N−

p ⊆ GLp be the group of lower tri-

angular unipotent p × p-matrices and Nq ⊆ GLq the group of upper triangular

unipotent q × q-matrices. Let C[Mp,q]N−

p ×Nq be the ring of N−
p × Nq-invariants in

C[Mp,q]. It is a theorem of classical invariant theory due to Weyl (see, e.g., [6]) that

C[Mp,q]N−

p ×Nq = C[u1, . . . , up], where uk(x) is the k-th principal minor of x ∈ Mp,q.

Note that uk is in fact in C[Mp] and hence

C[Mp]N−

p ×Np = C[Mp,q]N−

p ×Nq .

Furthermore, the polynomials u1, . . . , ur are algebraically independent and for each

λ ∈ Λ = {(λ1, . . . , λp) ∈ Z
p | λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0} , the polynomial

uλ = uλ1

1 uλ2−λ3

2 · · · uλr
r is a weight vector of weight (−λ1ε1−λ2ε2−· · ·−λpεp, λ1ε1 +

λ2ε2 + · · · + λpεp) for the group GLp × GLq. Thus, as a GLp × GLq-representation,

C[Mp,q] ≃
⊕
λ∈Λ

F
(p)
λ ⊠

(
F

(q)
λ

)∗
.

Here we use superscripts p and q to emphasize that F
(p)
λ is a representation of GLp

and F
(q)
λ is representation of GLq.
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Let S = C[Mp] and T = C[Mp,q]. If λ ∈ Λ, let Sλ and Tλ denote the

λ-isotypic components of S and T, respectively, i.e., Sλ ≃ F
(p)
λ ⊠ (F

(p)
λ )∗ as a

GLp × GLp-representation and Tλ ≃ F
(p)
λ ⊠ (F

(p)
λ )∗ as a GLp × GLq-representation.

We note that Sλ →֒ Tλ via the embedding S →֒ T. This follows from the observation

that Sλ and Tλ are also the λ-isotypic components for the GLp-action on S and T,

respectively.

Suppose now that the GLp × GLq-representation F
(p)
ν ⊠ (F

(q)
ν )∗ appears in (F

(p)
λ ⊠

(F
(q)
λ )∗)⊗(F

(p)
µ ⊠(F

(q)
µ )∗). Then the GLp-representation F

(p)
ν appears in F

(p)
λ ⊗F

(p)
µ . By

the previous subsection, it follows that Sν ⊆ Sλ · Sµ. In particular, uν ∈ Sλ · Sµ. Since
uν ∈ Tν (via the embedding S →֒ T) this implies that Tν ⊆ Tλ · Tµ. It follows that

Conjecture A and Conjecture B are also true for the GLp × GLq-action on X = Mp,q

for q > p.

Remark 2.3 The argument in the previous section is a special case of a “reduction

to tube type” argument introduced by Wallach in [34]. We will discuss this kind of

argument for general Hermitian symmetric pairs in more detail in Section 4.

3 Polynomials on Hermitian Symmetric Spaces

3.1 Hermitian Symmetric Spaces

We recall some well-known results and constructions related to Hermitian symmetric

spaces which we will use in the following sections. Let Ω be an irreducible Hermitian
symmetric space of non-compact type. Distinguishing a point o ∈ Ω, we have Ω ≃
GR/KR, where GR is the connected group of biholomorphic transformations of Ω

and KR is the stabilizer group of o. The group GR is a simple non-compact Lie group
and KR is a maximal compact subgroup of GR. (These groups coincide with the

groups of Table 1, up to local isomorphism.) Let g and k denote the complexified Lie
algebras of GR and KR, respectively, and let g = k ⊕ p be the Cartan decomposition.

There is an element z in the center of k such that k = Cz ⊕ [k, k] with ad(z) having

the eigenvalues 0 and ±1 on g. Define p± = {x ∈ g | [z, x] = ±x}. Then p =

p+⊕p−, [p±, p±] = 0, [p±, p∓] = k and [k, p±] = p±. Harish-Chandra contructed

a canonical KR-equivariant open embedding Ω →֒ p+ that sends o to the origin in

p+; via this embedding we will view Ω as an open subset of p+.

3.2 Strongly Orthogonal Roots

Let hR be a Cartan subalgebra of kR. The complexification h of hR is a Cartan sub-

algebra of k and of g. Let ∆ ⊆ h∗ be the root system of (g, h). For α ∈ ∆,

let gα denote the root subspace of g corresponding to α. Define the set of com-
pact roots as ∆c = {α ∈ ∆ | gα ⊆ k} and the set of non-compact roots as

∆n = {α ∈ ∆ | gα ⊆ p}. We may choose a system of positive roots ∆
+ for ∆

such that p+ is the sum of the root subspaces for the roots in ∆
+
n = ∆n ∩ ∆

+. The

set ∆
+
c = ∆c ∩ ∆

+ is a system of positive roots for ∆c. Following Harish-Chandra

we define a maximal set {γ1, . . . , γr} of strongly orthogonal roots in ∆
+
n inductively
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as follows. Let γ1 be the largest root in ∆
+
n (with respect to the usual ordering on

∆ induced by the choice of ∆
+); for 1 < i ≤ r, let γi be the largest root in ∆

+
n

that is orthogonal to γ1, . . . , γi−1. Table 2 shows the γi ’s explicitly for all cases. For

g k r {γ1, . . . , γr}

slp+q(C) s(glp(C) ⊕ glq(C)) min{p, q} {e1 − ep+q, e2 − ep+q−1, . . .}

sp2n(C) gln(C) n {2e1, . . . , 2en}

so2n(C) gln(C) ⌊n/2⌋ {e1 + e2, e3 + e4, . . .}

son+2(C) son(C) ⊕ C 2 {e1 + e2, e1 − e2}

e6(C) so10(C) ⊕ C 2 { 1 2 3 2 1
2 , 1 1 1 1 1

0 }

e7(C) e6(C) ⊕ C 3 { 2 3 4 3 2 1
2 , 0 1 2 2 2 1

1 , α7}

Table 2: Strongly orthogonal roots.

1 ≤ i ≤ r, define πi :=
∑i

j=1 γ j ; the πi are ∆
+
c -integral and dominant weights. Let

Λ = {(λ1, . . . , λr) ∈ Z
r | λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0} be the set of partitions of

length at most r. If λ = (λ1, . . . , λr) ∈ Λ, then
∑r

i=1 λiγi =
∑r

i=1(λi − λi+1)πi

is a ∆
+
c -integral and dominant weight. (Here it is understood that λr+1 = 0.) In

[31], Schmid gave an explicit decomposition of S = C[p+] as a K-representation
as follows. If λ ∈ Λ, let Vλ be the irreducible k-representation with lowest weight

−
∑r

i=1 λiγi . Then S ≃
⊕

λ∈Λ
Vλ. Furthermore, Sλ is contained in the space of

homogeneous polynomials of degree |λ|, where |λ| =
∑r

i=1 λi .

3.3 Tube Domains and a Result of Schmid

For the convenience of the reader and to provide a context for the material in Sec-

tions 4 and 5, we include here some more details from Schmid [31] and Koranyi and
Wolf [22]. For each α ∈ ∆

+
n let {hα, eα, e−α} be an sl2-triple such that eα ∈ gα,

e−α ∈ g−α, hα ∈ [gα, gα] and e−α = σ(eα), where σ : g → g denotes complex con-

jugation with respect to gR = Lie(GR). Let e+ = eγ1
+ · · · + eγr

. Then e+ is on the
Shilov boundary of Ω in p+. In fact, the Shilov boundary is the KR-orbit through e+,

and hence isomorphic to KR/MR, where MR = StabKR
(e+) = {k ∈ KR | ke+ = e+}.

Let M = StabK(e+) = {k ∈ K | ke+ = e+} and let m be the Lie algebra of M. Define

an automorphism τ : g → g by τ = Ad exp(iπ(e+ + e+)/2). Then τ 4
= 1, τ 2(k) = k,

m = {x ∈ k | τ(x) = x} and the following are equivalent (see [22, Proposition 4.4
and Lemma 4.8]):

(i) Ω is a tube domain;
(ii) τ 2

= 1;

(iii) τ(k) = k ;

(iv) dim k − dim m = dim p+.
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Suppose from now on that Ω is a tube domain. Then by (iv), the K-orbit through
e+ is open and dense in p+ and the corresponding open embedding K/M →֒ p+

gives a K-equivariant inclusion of coordinate rings S = C[p+] →֒ C[K/M]. By the
algebraic Peter-Weyl theorem, C[K/M] ≃

⊕
λ∈bK Vλ ⊗ (V ∗

λ )M . We may identify K̂

with the set of ∆+
c -dominant integral weights in h∗. If λ ∈ K̂, let Vλ be the irreducible

K-representation with lowest weight −λ. Then V M
λ 6= 0 (or equivalently (V ∗

λ )M 6= 0)

if and only if λ is in the lattice generated by the γi , i.e., if and only if λ is of the
form λ =

∑
λiγi with λi ∈ Z and λ1 ≥ λ2 ≥ · · · ≥ λr (see [31, Lemma 1]

). Furthermore, if V M
λ 6= 0, then dim V M

λ = 1. Schmid then showed (see [31,
Behauptung c] ) that via the embedding S = C[p+] →֒ C[K/M],

S = C[p+] ≃
⊕
λ∈Λ

Vλ ⊗ (V ∗
λ )M →֒ C[K/M],

where

Λ = {λ ∈ K̂ | λ =

∑
λiγi , λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0}.

The connection with root systems of type A is as follows. Since we assume that Ω is

of tube type, the pair (k, m) is a symmetric pair with involution τ . Let kR = mR ⊕ sR

be the corresponding decomposition, i.e.,

m = {x ∈ k | τ(x) = x} and s = {x ∈ k | τ(x) = −x}.

This complexifies to k = m ⊕ s. Define h+
R

= hR ∩ mR and h−
R

= hR ∩ sR. Then

h = h+⊕h− and h− is a maximal abelian subspace of s. By a result of Moore [25] (see

also the remarks in the next section), if α ∈ ∆
+
c , then α|h− = 0 or α|h− =

1
2
(γi − γ j)

with i < j. Thus the restricted root system Σ is of type Ar−1. Schmid’s result above

(which is a version of the Cartan–Helgason theorem; see also Section 5) implies that

the K-representations occurring in C[K/M] are exactly the Vλ, where λ =
∑r

i=1 λiγi

with λi ∈ Z and λ1 ≥ λ2 ≥ · · · ≥ λr. Table 3 shows the symmetric pairs (k, m)

associated to the Hermitian symmetric spaces Ω = GR/KR of tube type. The last
column shows the root multiplicity m of the restricted roots. This root multiplicity

will play an important role later in Section 5.

Remark 3.1 Note that in our context here, K is not simply connected and M is in
general not connected. Furthermore, K is not semisimple: it has a one-dimensional

center. In Section 5, to avoid technical difficulties, we will work with symmetric pairs

(K, M), where K is a connected and simply connected semisimple complex algebraic
group. In Subsection 5.8, we will then return to the context of this section.

4 Reduction to Tube Type

4.1 A Construction Due to Wallach

We retain the notation from the previous section. In particular, let {γ1, . . . , γr} be

Harish-Chandra’s strongly orthogonal roots with the convention that γ1 is the largest
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GR k m m

SU (p, p) s(glp(C) ⊕ glp(C)) slp(C) 2

Sp(n, R) gln(C) son(C) 1

SO∗(4p) gl2p(C) sp 2p(C) 4

SO0(n, 2), n ≥ 3 son(C) ⊕ C son−1(C) n − 2

E VII e6(C) ⊕ C f4(C) 8

Table 3: The symmetric pairs (k, m) associated to Ω = GR/KR of tube type.

root in ∆
+
n and γ1 > γ2 > · · · > γr . We point out to the reader that this is different

from the convention in much of the literature (e.g., [25, 31, 34]), where γ1 is taken to

be the smallest root in ∆
+
n . If (g, k) is of tube type (and only then), our γi corresponds

to the other’s γr−i . Let h− be the subspace of h spanned by the coroots of γ1, . . . , γr

and let h+
= {h ∈ h | γi(h) = 0, 1 ≤ i ≤ r}. If (g, h) is of tube type, the spaces

h− and h+ agree with the ones of 3.3. The following results are due to Moore [25]. If

α ∈ ∆
+
c , then α|h− =

1
2
(γi − γ j) with i < j, α|h− =

1
2
γi , or α|h− = 0. If α ∈ ∆

+
n ,

then α|h− =
1
2
(γi + γ j) with i ≤ j or α|h− =

1
2
γi . The Hermitian symmetric

pair (g, k) is of tube type if and only if for every α ∈ ∆, α|h− = ± 1
2
(γi ± γ j),

where 1 ≤ i ≤ j ≤ r. The following construction is due to Wallach [34]. Let

∆0 = {α ∈ ∆ | α|h− = ± 1
2
(γi ± γ j)}. Then ∆0 is a root subsystem of ∆. Define

g̃0 = h ⊕
⊕

α∈∆0
gα, k̃0 = k ∩ g̃0, and p±

0 = p± ∩ g̃0. Then g̃0 = k̃0 ⊕ p+
0 ⊕ p−

0 ,

[k̃0, p±
0 ] = p±

0 , [p±
0 , p±

0 ] = 0 and [p±
0 , p∓

0 ] ⊆ k̃0. Define k0 = [p+
0 , p−

0 ] and g0 =

k0 ⊕ p+
0 ⊕ p−

0 . By [34, Lemma 2.2], g0 is a simple Lie subalgebra of g and (g0, k0) is an

irreducible Hermitian symmetric pair of tube type of rank r. Furthermore, h− ⊆ k0

and h0 = (h+ ∩ k0) ⊕ h− is a Cartan subalgebra of k0 (and of g0). By slight abuse of

notation, the set {γ1, . . . , γr}, via restriction to h0, is also a maximal set of strongly

orthogonal roots for p+
0 .

4.2 Reduction to Tube Type

Let n−
=

⊕
α∈∆+

c
g−α and let C[p+]n−

, i.e., the space of lowest vectors of the k-

module. By Schmid’s result, the lowest weights in C[p+] are of the form −
∑r

i=1 λiγi .

For 1 ≤ k ≤ r, let uk be a lowest weight vector in C[p+] of weight −
∑k

i=1 γi . Then

C[p+]n
−

= C[u1, . . . , ur] and the functions u1, . . . , ur are algebraically independent.
Recall that via the Killing form (p+)∗ ≃ p−, and hence we can identify C[p+] with

the symmetric algebra S(p−). Similarly, we can identify C[p+
0 ] with S(p−

0 ). Thus

C[p+
0 ] may be viewed as a subring of C[p+]. Wallach showed [34, Lemma 3.3] that

uk ∈ C[p+
0 ] for 1 ≤ k ≤ r. Using Schmid’s result again, this time for the pair (g0, k0),

we have

C[p+
0 ]k0∩n−

= C[p+
0 ]k̃0∩n−

= C[p+]n−

.
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Let S = C[p+
0 ] and T = C[p+]. If λ =

∑r
i=1 λiγi , then Sλ = S ∩ Tλ. Furthermore,

Sλ is an isotypic component of S as a k0-module as well as a k̃0-module.

Proposition 4.1 Let (g, k) be an irreducible Hermitian symmetric pair of rank r and

let (g0, k0) be the associated Hermitian symmetric pair of tube type of the same rank.

Then Conjecture B is true for (g, k) if and only if it is true for (g0, k0).

Proof We will show that Sν ⊆ Sλ · Sµ if and only if Tν ⊆ Tλ · Tµ. By the remarks
above, Sν ⊆ Sλ · Sµ trivially implies that Tν ⊆ Tλ · Tµ. To prove the converse

we will use an induction argument sketched by Enright and Wallach in [5]. Define
q = k̃0 ⊕ u+, where u+ is the sum of all root spaces gα with α ∈ ∆

+
c such that

α|h− =
1
2
γi for some 1 ≤ i ≤ r. Then q is a parabolic subalgebra of k with Levi factor

k̃0 and abelian nilradical u+ (see proof of Lemma 1 in [5]). Let q− = k̃0 ⊕ u− be

the opposite parabolic. If E is an irreducible finite dimensional k̃0-module, let N(E)
denote the k-module obtained by inducing from q−, i.e., N(E) = U (k) ⊗U (q−) E.

Claim If ν is of the form ν = λ + µ +
∑r

i=1 aiγi with
∑r

i=1 ai = 0, then the

inclusion Sλ ⊗ Sµ →֒ N(Sλ) ⊗ N(Sλ) induces an equality of −ν-weight spaces

[Sλ ⊗ Sµ]−ν = [N(Sλ) ⊗ N(Sµ)]−ν

Proof of Claim As an h-module, N(E) ≃ U (u+)⊗E. The weights in U (u+) restricted
to h− are of the form

∑r
i=1

1
2
niγi , where the ni are non-negative integers. The restric-

tion of the weights in Sλ ⊗ Sµ to h− are all of the form −λ−µ +
∑

i≤ j
1
2
mi j(γi − γ j),

where the mi j are non-negative integers.
To show that Tν ⊆ Tλ ·Tµ implies Sν ⊆ Sλ ·Sµ, we take E = Sλ and F = Sµ. By the

universal property of generalized Verma modules, there are canonical quotient maps
N(Sλ) → Tλ and N(Sµ) → Tµ such that the following diagram commutes:

Sλ ⊗ Sµ //

��

Sλ · Sµ

��

N(Sλ) ⊗ N(Sµ) // Tλ · Tµ

If ν ∈ Λ such that Tν ⊆ Tλ·Tµ then |ν| = |λ|+|µ| and hence ν satisfies the hypothesis
of the claim. If we restrict the commutative diagram above to −ν-weight spaces,

the vertical arrow on the left is an isomorphism. It follows that the inclusion [Sλ ·

Sµ]−ν →֒ [Tλ · Tµ]−ν is surjective and hence an isomorphism. Since Sk̃0∩n−

= Tn−

,

we conclude that Sλ · Sµ contains a lowest weight vector of weight −ν and hence

Sν ⊆ Sλ · Sµ.

4.3 A Pieri Rule for Hermitian Symmetric Pairs

Enright and Wallach [5] proved the following Pieri rule for multiplication of func-

tions in S = C[p+] by an induction on the rank of the Hermitian symmetric pair.
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Theorem 4.2 (Enright-Wallach [5]) With notation as above, for every λ ∈ Λ and

k ∈ N, Sλ · Skγ1
=

∑
ν Sν , where the sum is over all µ ∈ Λ with |ν| = |λ| + k and

ν1 ≥ λ1 ≥ ν2 ≥ · · · ≥ λr−1 ≥ νr ≥ λr.

Corollary 4.3 Let (g, k) be an irreducible Hermitian symmetric pair of rank ≤ 2.

Then Conjecture B is true for (g, k).

Proof By Proposition 4.1 we may assume that (g, k) is of tube type. In this case
(see Schlichtkrull [30]), the k-module with lowest weight −γ1 − · · · − γr is one-

dimensional, i.e., dim Sγ1+···+γr
= 1. Since S is a domain, this implies that for every

λ ∈ Λ,

Sλ · Sγ1+···+γr
= Sλ+γ1+···+γr

.

Suppose now that r = 2. Then for µ ∈ Λ,

S(µ1,µ2) = S(µ1−µ2,0) · S(µ2,µ2).

By using the Pieri rule of the theorem above, we can then compute the decomposition
of Sλ · Sµ for any λ, µ ∈ Λ. If λ, µ, ν ∈ Λ are such that |λ|+ |µ| = |ν|, then one finds

that Sν ⊆ Sλ · Sµ if and only if cν
λµ 6= 0. Explicitly, if a = λ1 − λ2, b = µ1 − µ2 and

c = ν1 − ν2, then

cν
λµ =

{
1 if c = a + b − 2k for some non-negative integer k,

0 otherwise.

Remark 4.4 In [4], the theorem above was proved for k = 1. This special case
is enough to determine all the K-invariant ideals of S = C[p+]. The authors of [4]

were not aware at the time of writing that Ruitenburg in [28] proved a Pieri rule

and determined all the K-invariant ideals of S = C[p+] in a uniform manner for all
cases corresponding to Hermitian symmetric spaces of tube type. Ruitenburg did not

work in the context of Hermitian symmetric spaces, but instead used the structure

of Riemannian symmetric spaces and spherical functions. In the next section we will
use the same approach. Finally, note that much earlier Stanley [32] proved a Pieri rule

for the multiplication of Jack polynomials, from which the above Pieri rule could be
deduced using the ideas of the next section.

5 Spherical Functions and Jack Polynomials

5.1 Preliminaries

We begin with some preliminaries about symmetric spaces and introduce some no-

tation which we will use throughout the section. Let K be a connected and simply
connected complex semisimple algebraic group. Let τ be an involution of K and let

M = Kτ ; the group M is connected (see [24, p. 171]). There exists a compact real
form (KR, MR) of the pair (K, M); here KR is a maximal compact subgroup of K

which is preserved by τ , and MR = (KR)τ is a maximal compact subgroup of M.

This can be seen as follows. There exists a real form k0 of k such that the involution dτ
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of k is the complexification of a Cartan involution of k0 (see [11, Lemma III.4.1]). Let
k0 = mR + s0 denote the corresponding Cartan decomposition; the complexification

k = m + s is the decomposition of k into +1 and −1 eigenspaces for τ . Write sR = is0.
We can define a Cartan involution dτ ′ of k by requiring that dτ ′ act as multiplication

by 1 on kR := mR + sR, and as multiplication by −1 on ik0 + isR. Since K is sim-

ply connected, there is a corresponding involution τ ′ of K , and the fixed point set
KR = Kτ ′

is a maximal compact subgroup of K with Lie algebra kR (see [10, p. 252]).

In particular, KR is connected and simply connected. Moreover, by consideration of

the Lie algebra one can see that KR is preserved by τ . Since KR is simply connected,
the fixed point set MR := (KR)τ ′

is connected (again by [24]). Finally, dτ ′ restricts

to a Cartan involution of m, and MR = Mτ ′

, so MR is a maximal compact subgroup
of M. The space K/M is a symmetric space, and it is the complexification (in the

sense of differential geometry) of the Riemannian symmetric space KR/MR.

5.2 Restricted Roots and Characters

Let aR be a maximal abelian subspace of sR, let hR be any maximal abelian subspace
of kR containing aR, and let h denote the complex span of tR in k. Then h is a Cartan

subalgebra of k [10, p. 259]. Let H ⊇ A denote the algebraic tori in K whose Lie

algebras are h and a, respectively, and HR ⊇ AR the compact tori of KR whose Lie
algebras are hR and aR. The torus A is called a maximal split (or anisotropic) torus.

Let X∗(A) denote the group of characters of A, viewed as a subset of a∗; similarly we

have X∗(H) ⊆ h∗. The group algebra over C of X∗(A) can be identified with the
coordinate ring C[A]; write eλ ∈ C[A] for the element of C[A] corresponding to the

character λ ∈ X∗(A).

Let Σ ⊆ X∗(A) denote the set of restricted roots; that is, the elements of Σ are

the non-zero weights for the A-action on k. Then Σ is a root system in the real sub-

space of a∗ it spans (see [27, §4]). Choose a positive system of roots Φ
+ for (k, h)

and let Σ
+ denote the corresponding set of positive restricted roots. This choice of

positive system induces an ordering on a∗ as usual, by the rule µ ≤ λ iff λ − µ is

a non-negative linear combination of positive restricted roots. Let X∗(H)+ ⊆ h∗

and X∗(A)+ ⊆ a∗ denote the sets of dominant weights corresponding to the choice

of positive system. We write Vλ for the irreducible representation of K with lowest
weight −λ ∈ X∗(H)+. Note that the decomposition h = (h∩m)⊕a allows us to view

a∗ as a summand in h∗. If λ ∈ 2X∗(A), then λ ∈ X∗(H); this follows since A ∩ M

consists of the elements a ∈ A with a2
= 1.

5.3 A Result of Ruitenburg

Let C[K] denote the coordinate ring of K . By the algebraic Peter–Weyl theorem, as a

K-representation,

C[K/M] =
⊕
λ∈bK

Vλ ⊗ (V ∗
λ )M.

The group M has the property that for any λ ∈ K̂, the dimension of the space V M
λ is

either 1 or 0 (see [11, Ch. IV §3]). The Cartan–Helgason theorem (see [11, Ch. V §2],
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or [33]) states that the irreducible K-representations occurring in C[K/M] (that is,
the K-representations with a non-zero M-fixed vector) are exactly the Vλ, where λ ∈
2X∗(A)+. For each such weight λ choose a left M-invariant function ϕλ in the Vλ-
isotypic component of C[K/M]; this choice is unique up to scaling (we will choose a

scaling in the discussion after Proposition 5.3). We may view ϕλ as a function on K ,

bi-invariant under M; these are called spherical functions. The spherical functions
ϕλ, as λ runs through 2X∗(A)+, form a basis of the ring C[K/M]M as a vector space.

Thus, we can expand the product of two spherical functions as follows: ϕλϕµ =∑
aν

λµϕν , where the aν
λµ are constants. Let R = C[K/M] and let Rλ denote the Vλ-

isotypic component of R. In [28], Ruitenburg proved the following result.

Theorem 5.1 (Ruitenburg [28, Theorem 3.1]) For fixed λ, µ, ν ∈ 2X∗(A)+, Rν ⊆
Rλ · Rµ if and only if aν

λµ 6= 0.

To prove this result, Ruitenburg used the compact real form described above. We

will later use Ruitenburg’ result to prove our main theorem from the introduction.

Remark 5.2 If χλ ∈ C[K] denotes the character of the representation ρλ : K →
GL(Vλ), then up to scaling, ϕλ is the projection of χλ onto the space of M-invariants

(with respect to the left action of M on C[K]). This follows from [11, Theorem 4.2,
Ch. IV].

5.4 A Result of Richardson and the Functions Pλ

The negative of the Killing form induces a positive definite inner product on aR; let

sα ∈ GL(aR) denote the reflection in the hyperplane α = 0 in aR. The Weyl group of
the pair (K, M), the “little Weyl group”, is

W = NM(A)/ZM(A) ≃ NMR
(AR)/ZMR

(AR).

(Here, if G ⊇ H are groups, NG(H) and ZG(H) denote the normalizer and centralizer
of H in G, respectively). The group W acts on aR and can be identified with its image

in GL(aR), which is generated by the reflections sα. (See [27] and [10, Ch. VII] for

proofs of these facts.)
The natural map A/(A ∩ M) → K/M induces a map of coordinate rings

C[K/M] → C[A/(A ∩ M)]. The induced map C[K/M]M → C[A/(A ∩ M)]W is

an isomorphism. This is a reformulation of a theorem of Richardson [27]. Indeed,
let P be the subset of K consisting of elements of the form kτ(k)−1 . There is a com-

mutative diagram

A/(A ∩ M) //

��

K/M

��

A // P

Here the horizontal maps are the inclusions. The vertical maps are isomorphisms;

the left vertical map takes a(A ∩ M) to a2, and the right vertical map takes kM to
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kτ(k)−1. Note that M acts by left translation on K/M and by conjugation on P,
and the right vertical map is M-equivariant. Richardson’s result states that the in-

duced map C[P]M → C[A]W is an isomorphism, from which the version stated
above follows. Composing the isomorphisms C[K/M]M → C[A/(A ∩ M)]W and

C[A/(A ∩ M)]W → C[A]W yields an isomorphism C[K/M]M → C[A]W . For

λ ∈ 2X∗(A)+, let Qλ denote the image of the spherical function ϕλ. Finally, we
define the function Pλ in C[A]W by Pλ(a) = Qλ(a−1) for a ∈ A. Thus, by definition,

we have Pλ(a2) = ϕλ(a−1). Note that in light of the remark at the end of the previous

subsection, Pλ = Qλ∗ (up to scaling), where λ∗ ∈ 2X∗(A)+ is such that Vλ∗ ≃ (Vλ)∗.
Since the spherical functions ϕλ form a basis for C[K/M]M, the preceding discussion

implies that the functions Pλ form a basis for C[A]W . Furthermore, the structure
constants for the multiplication of the functions Pλ and the spherical functions ϕλ

are the same, i.e., PλPµ =
∑

aν
λµPν , where the aν

λµ are the same constants as at the

end of the previous subsection.

5.5 A Characterization of the Functions Pλ

In the cases most of interest in this paper, the functions Pλ will turn out to be spe-

cializations of Jack polynomials. Before we show this in the next subsection, we
give an alternative characterization of the functions Pλ. For λ ∈ 2X∗(A)+, de-

fine mλ ∈ C[A]W by mλ = (1/|Wλ|)
∑

w∈W ewλ/2, where |Wλ| is the order of the

stabilizer of λ in W . Define a function δ on the compact torus AR by δ(a) :=∏
α∈Σ+ |1 − eα(a)|mult(α), where mult(α) is the multiplicity of the restricted root α.

Finally, define an inner product on C[A] by the rule

〈 f , g〉A =

∫

AR

f (a)g(a)δ(a) da.

The following result is known, but because a complete proof seems hard to find in

the literature, we provide the argument. As a side remark, it is perhaps interesting to
note that most of the ideas in the proof already appear in a paper of Harish-Chandra

from 1958 [9].

Proposition 5.3 The functions Pλ satisfy the following properties:

(a) There exist constants cλµ such that

Pλ =

∑

µ/2 ≤ λ/2

cλµmµ with cλλ 6= 0.

(b) For all λ 6= µ, 〈Pλ, Pµ〉A = 0.

Proof We prove the equivalent of the proposition for the functions Qλ. For λ ∈
2X∗(A)+, define nλ ∈ C[A]W by nλ = (1/|Wλ|)

∑
w∈W e−wλ/2. The fact that Qλ =∑

cλµnµ with cλλ 6= 0 is proved in [9, p. 274]. Harish-Chandra [9, p. 275] also gives a
Freudenthal-type recursion formula for ϕλ which implies that Qλ =

∑
cλµnµ, where

the sum is over µ ∈ 2X∗(A)+ such that µ/2 ∈ X∗(A) and µ/2 ≤ λ/2. (It is easy to

see that the sum is over µ ≤ λ, but the ordering is defined using integral linear
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combinations of positive roots, so the fact that we can divide this inequality by 2 does
not seem obvious without using Harish-Chandra’s formula. Arguments analogous

to those in Humphreys [13, Lemma B, §13.3] show that the leading term of Harish-
Chandra’s formula is non-zero, so the formula determines ϕλ up to scaling.) This

implies (a). As for (b), we have already observed that the Qλ form a basis of C[A]W .

If λ 6= µ, then ∫

KR

ϕλ(k)ϕµ(k) dk = 0,

by the usual orthogonality relation for matrix coefficients of different representa-

tions. The function ϕλϕµ is bi-invariant under the group MR, so using the integra-
tion formula of Theorem 5.10 of [11, Ch. I §5], we see that the above integral is a

non-zero constant times

∫

AR/(AR∩MR )

ϕλ(a)ϕµ(a)δ(a2)da.

Via the isomorphism AR/(AR ∩MR) → AR that takes a(AR ∩MR) to a2, this leads to
the desired orthogonality.

Henceforth, we will normalize the ϕλ so that the coefficient cλλ equals 1.

5.6 Jack Polynomials

Much of the following discussion generalizes to arbitrary root systems. But for the
application to our main results, we only need the case where the root system Σ is

of type Ar−1, so from now on, to simplify the exposition, we will assume this. The

torus A is isomorphic to a maximal torus TSLr−1
via an isomorphism respecting the

roots and the character lattices. The reason is that our assumption that K is simply

connected implies that the integrality conditions characterizing the character lattice

X∗(A) are the same as the integrality conditions characterizing the character lattice
X∗(TSLr−1

) (see [10, Ch. VII §8]). Therefore, we can write the positive roots as εi −ε j ,

1 ≤ i < j ≤ r, where εi are elements of X∗(A) such that
∑r

i=1 εi = 0. Let γi := 2εi .
Then the positive roots are 1

2
(γi − γ j), 1 ≤ i < j ≤ r, as in Subsection 3.3. The

coordinate ring C[A] can be identified with the ring C[x±1
1 , . . . , x±1

r ]/(
∏

xi − 1) in

such a way that eεi = eγi/2 corresponds to xi . In particular, we have a projection
homomorphism π : C[x1, . . . , xr] → C[A]. If we let the symmetric group Sr act

on C[x1, . . . , xr] as usual, then π induces a homomorphism of rings of invariants

π : C[x1, . . . , xr]
Sr → C[A]W .

Let Λ = {(λ1, . . . , λr) ∈ Z
r | λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0}. If λ ∈ Λ, then∑r

i=1 λiγi is an element of 2X∗(A)+; thus we have a natural map Λ → 2X∗(A)+,
which is surjective. By abuse of notation, if λ ∈ Λ, we will denote its image in

2X∗(A)+ also by λ. With this convention, the image of the monomial xλ := xλ1

1 · · · xλr
r

under the mapping π is the element eλ/2. It follows that for λ ∈ Λ, the function

mλ ∈ C[A] that was defined in Subsection 5.3 (just before the proposition) is the

image of the monomial symmetric function corresponding to the partition λ.
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Corresponding to any partition λ ∈ Λ there is an element P(α)
λ ∈ C(α)[x1, . . . , xr],

called a Jack polynomial (or Jack symmetric function). Here α is a parameter, not

to be confused with a root (unfortunately it is customary to denote this parameter
by α). These polynomials are defined in [26, Section 10]; here we recall the for-

mulation of [20]. If α is such that 1/α is a non-negative integer, then ∆
1/α(x) :=∏

i 6= j(1 − xi/x j)
1/α is an element of the Laurent polynomial ring C[x±1

1 , . . . , x±1
r ].

Define an inner product on C[x1, . . . , xr] by the rule 〈 f , g〉α = [ f (x)g(x−1)∆1/α(x)]0

where the subscript 0 denotes taking the constant term of a Laurent polynomial. This

inner product can be defined in an alternative way using integration; the alternative
definition makes sense for all nonnegative real α; see [26]. Then the Jack polynomials

are characterized by the fact that the coefficient in P(α)
λ of the monomial symmetric

function corresponding to λ is 1, and by the fact that if λ 6= µ, then 〈P(α)
λ , P(α)

µ 〉α = 0

for all λ, µ ∈ Λ and α with 1/α ∈ N (see [20]). The functions P(1)
λ are the Schur

functions sλ. A version of the following proposition appears in [28].

Proposition 5.4 Let λ ∈ Λ and identify λ with its image in 2X∗(A)+. Then under

the map π : C[x1, . . . , xr]
Sr → C[A]W , the Jack polynomial P

(2/m)
λ is mapped to the

function Pλ.

Proof Let f and g be homogeneous polynomials in C[x1, . . . , xr]. If f and g have the

same degree, then 〈 f , g〉2/m = 〈π( f ), π(g)〉A; if f and g have different degrees, then

〈 f , g〉2/m = 0. It follows that the images of the Jack polynomials P
(2/m)
λ satisfy the

properties of Proposition 5.3. Since these properties characterize the Pλ, the result

follows.

5.7 Stanley’s Conjecture on the Multiplication of Jack Polynomials

One can expand the product of Jack polynomials as a sum of Jack polynomials

P(α)
λ P(α)

µ =

∑
f ν
λµ(α)P(α)

ν ,

where the f ν
λµ(α) are rational functions of α. If α = 1, then the f ν

λµ(α) = cν
λµ

are Littlewood–Richardson coefficients for the group GLr(C); if α = 2/m, then the

f ν
λµ(α) = aν

λµ are the structure coefficients for the multiplication of the spherical

functions. Stanley conjectured that the f ν
λµ(α) have a certain positivity property,

which we can formulate as follows. (Stanley’s formulation used another inner prod-

uct, which we do not want to define here, but the equivalence of the formulations
follows from [26, Ch. VI, Section 10].) For a partition λ, let cλ(α) and c ′λ(α) be the

polynomials in α with non-negative integer coefficients as defined in [26, Ch. VI,

Section 10, (10.21)]. It is known that cλ(α)cµ(α)c ′ν(α) f ν
λµ(α) is a polynomial with

integer coefficients. This follows from another conjecture of Stanley and Macdonald

(see [26, Ch. VI, Section 10, (10.26?) and (10.33)]), which was proved by Knop and

Sahi in [20], and also (in part) by Lapointe and Vinet [23].

Conjecture (Stanley [32, Conjecture 8.3]) For fixed partitions λ, µ, ν ∈ Λ, the poly-

nomial cλ(α)cµ(α)c ′ν(α) f ν
λµ(α) has non-negative integer coefficients.
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We will only need the following consequence of Stanley’s conjecture.

Corollary 5.5 Assume that Stanley’s conjecture holds. Then for fixed partitions

λ, µ, ν ∈ Λ, the following are equivalent:

(i) f ν
λµ(α) is non-zero for all positive real values of α.

(ii) The Littlewood–Richardson coefficient cν
λµ is non-zero.

(iii) aν
λµ is non-zero.

Proof Clearly, (i) implies (ii) and (iii). Conversely, suppose (ii) holds. We

have f ν
λµ(1) = cν

λµ. If this is non-zero, then some coefficient of the polynomial
cλ(α)cµ(α)c ′ν(α) f ν

λµ(α) must be non-zero. Stanley’s conjecture implies that this poly-

nomial is non-zero for all positive real values of α, proving (i). The proof that (iii)
implies (i) is similar.

5.8 Main Theorem

We now return to the notation of Section 3. By Proposition 4.1, Conjecture B is true if

and only if it is true for pairs of tube type, so we assume the pair (g, k) is of tube type.
Recall that Λ denotes the set of partitions of length at most r, identified with a subset

of K̂ by sending λ to Vλ, the irreducible K-representation of lowest weight −
∑

λiγi .

We can decompose S = C[p+] into K-isotypic components: S ≃
⊕

λ∈Λ
Sλ, where

Sλ is isomorphic to Vλ. Note that in this case K is not semisimple; it has a one-

dimensional center. However, we can replace K by K ′, the simply connected cover of
the derived group [K, K], and M by the fixed point set M ′ ⊆ K ′ of the corresponding

involution. We have a surjective group homomorphism K ′× C
× → K and hence we

may view representations of K as representations of K ′ × C
×. Thus, we can view the

above decomposition as a K ′ × C
×-module decomposition of S.

Since M has finite intersection with the center of K , the Lie algebras of M and M ′

coincide. Decomposing into eigenspaces of the involution τ gives k ′ = m ⊕ s′ and
k = m ⊕ s, and s = s′ ⊕ z where z is the center of k. In fact, we have k ′

R
= mR ⊕ s′

R
,

and we can take our maximal abelian subspace of s′
R

to be a ′
R

:= h−
R
∩ s′

R
. We obtain

a corresponding algebraic torus A ′ of K ′. By Moore’s result [25] the restricted roots

of (k ′, m) are of the form 1
2
(γi − γ j). The integrality conditions of [10, Ch. VII §8]

imply that ε j := 1
2
γ j ∈ X∗(A ′). Therefore, the analysis of Subsections 5.6 and 5.7

applies to C[K ′/M ′].

Theorem 5.6 Suppose that Stanley’s conjecture is true. Then for λ, µ, ν ∈ Λ, Sν ⊆
Sλ · Sµ if and only if the Littlewood–Richardson coefficient cν

λµ is non-zero.

Proof By Proposition 4.1, we may assume (g, k) is of tube type. In this case, recall

from 3.3 that we have an inclusion S =
⊕

λ∈Λ
Sλ →֒

⊕
λ∈bK Rλ, where R = C[K/M]

is a multiplicity-free K-representation. Replacing R by R′
= C[K ′/M ′ × C

×] =

C[K ′/M ′] ⊗ C[t, t−1], we can view S as a subring of R′; in particular, if λ ∈ Λ, then
Sλ = R′

λ. As above, for each λ ∈ K̂ we have an M-invariant element ϕλ of R′
λ. If

λ and µ are in Λ, then, since S is a subring of R′, we have ϕλϕµ =
∑

aν
λµϕν . By

Ruitenburg’s result, we have Sν ⊆ Sλ · Sµ if and only if aν
λµ 6= 0. By our discussion in

the previous subsection, aν
λµ = f ν

λµ(2/m) . Therefore, assuming Stanley’s conjecture,

aν
λµ 6= 0 if and only if cν

λµ 6= 0. The theorem follows.
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6 Multiplicities and Littlewood–Richardson Coefficients

6.1 Equivalence of Conjectures A and B

Let (g, k) be an irreducible Hermitian symmetric pair of rank r and let {γ1, . . . , γr}
be the set of strongly orthogonal roots in p+ as defined in Section 3. Let

Λ = {(λ1, . . . , λr) ∈ Z
r|λ1 ≥ · · · ≥ λr ≥ 0}.

In this section, if λ ∈ Λ, let λ̃ denote the ∆
+
c -dominant integral weight given by

λ̃ = λ1γ1 + · · · + λrγr. Then define

Vλ = irreducible k-module with lowest weight − λ̃,

F(r)
λ = irreducible glr-module with lowest weight − λ.

For λ, µ, ν ∈ Λ, let [Vλ ⊗Vµ,Vν] denote the multiplicity of Vν in Vλ ⊗Vµ.

Proposition 6.1 Let (g, k) be an irreducible Hermitian symmetric pair of classical type

of rank r and let λ, µ, ν ∈ Λ such that |ν| = |λ| + |µ|. Then [Vλ ⊗Vµ,Vν] 6= 0 if and

only if cν
λµ 6= 0.

As an immediate consequence we obtain the following:

Corollary 6.2 Let (g, k) be an irreducible Hermitian symmetric pair of classical type

of rank r. Then Conjecture A is true for (g, k) if and only if Conjecture B is true for (g, k).

6.2 Littlewood–Richardson Coefficients

Before we prove Proposition 6.1 we recall some known facts about Littlewood–

Richardson coefficients that are needed in the proof. We first need a little bit more

notation about partitions. We use the same notation as in Macdonald’s book [26].
A partition is a sequence λ = (λ1, λ2, . . . , λr, . . .) of non-negative integers such that

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ · · · and λi = 0 for i ≫ 1. The integer ℓ(λ) = min{i|λi 6= 0}
is the length of λ and |λ| =

∑
i λi is the size of λ. The partition conjugate to λ is the

partition λ′ given by (λ′)i = #{λ j | λ j ≥ i}. Let λ, µ, ν be partitions of length at

most r. By the Littlewood–Richardson rule it follows that for any n ≥ r,

[F(n)
λ ⊗ F(n)

µ , F(n)
ν ] = [F(r)

λ ⊗ F(r)
µ , F(r)

ν ] = cν
λµ.

Another interpretation of Littlewood–Richardson coefficients is in terms of Schur

functions. For partition λ and µ, we have sλsµ =
∑

ν cν
λµsν . A simple, but very

useful necessary condition for cν
λµ 6= 0 is that |λ| + |µ| = |ν|. We will also need that

cν
λµ = cν ′

λ ′µ ′ . This follows since there is an involution ω on the ring of symmetric

functions such that ω(sλ) = sλ ′ . Finally, we will need that

cν
λµ 6= 0 if and only if c2ν

2λ,2µ 6= 0.

This is a special case of Klyachko’s saturation conjecture [17], which is now a theorem

of Knutson and Tao [21] and also of Derksen and Weyman [3].
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6.3 Proof of Proposition 6.1

We will prove the proposition case by case.

Case (i) gR = su(p, q). It is slightly more convenient to work with gR = u(p, q)
instead of su(p, q). In this case, (g, k) = (gln, glp × glq) and r = p. Here we assume

that p ≤ q. From Table 2, if λ = (λ1, . . . , λp), then

λ̃ = (λ1, . . . , λp, 0, . . . , 0,−λp, . . . ,−λ1).

Hence Vλ ≃ F
(p)
λ ⊠

(
F

(q)
λ

)∗
and it follows that [Vλ ⊗Vµ,Vν] = (cν

λµ)2. The equiva-

lence is now obvious.

Case (ii) gR = sp(n, R). In this case, (g, k) = (sp2n, gln) and r = n. From
Table 2, if λ = (λ1, . . . , λn) then λ̃ = (2λ1, . . . , 2λn) = 2λ. Hence Vλ ≃ F(n)

2λ

and it follows that [Vλ ⊗ Vµ,Vν] = c2ν
2λ,2µ. The equivalence is now an immediate

consequence of the saturation conjecture.
Case (iii) gR = so∗(2n). In this case, (g, k) = (so2n, gln) and r = ⌊n/2⌋. From

Table 2, if λ = (λ1, . . . , λr) then λ̃ = (λ1, λ1, λ2, λ2, . . .) = (2λ′) ′. Hence Vλ ≃

F(n)
(2λ ′) ′ and it follows that [Vλ ⊗Vµ,Vν] = c(2ν ′) ′

(2λ ′) ′,(2µ ′) ′ = c2ν ′

2λ ′,2µ ′ . The equivalence is

now a consequence of the saturation conjecture and the fact that cν ′

λ ′µ ′ = cν
λµ.

Case (iv) gR = so(n, 2). In this case, (g, k) = (son+2, son ⊕ C) and r = 2.
We may assume that n ≥ 4 since so(3, 2) ≃ sp(2, R). Let {ε1, . . . , ε⌊n/2⌋} be the

canonical basis for the standard Cartan subalgebra of son. Extend this basis to the

standard basis (with non-standard labeling) {ε0, ε1, . . . , ε⌊n/2⌋} of son+2. With this

convention, γ1 = ε0 + ε1 and γ2 = ε0 − ε1. So, if λ = (λ1, λ2) then λ̃ = (λ1 +

λ2)ε0 + (λ1 − λ2)ε1. Thus, as a k = son ⊕ C-module, Vλ ≃ E(n)
(λ1−λ2)ε1

⊠ C−λ1−λ2
,

where E(n)
(λ1−λ2)ε1

is the irreducible son-module with lowest weight −(λ1 − λ2)ε1. In
the following we will show that [Vλ ⊗Vµ,Vν] = cν

λµ.

Lemma 6.3 Suppose that n ≥ 4. If a and b are non-negative integers then

E(n)
aε1

⊗ E(n)
bε1

≃
b⊕

k=0

b−k⊕
l=0

E(n)
(a+b−2k−l)ε1+lε2

.

Proof The assumption n ≥ 4 makes sure that we are in the “stable range”. We can

then use the branching rule [12, Theorem 2.1.2] to decompose the tensor product

E(n)
aε1

⊗E(n)
bε1

. The lemma then follows by the usual Pieri rule for Littlewood–Richardson
coefficients.

We now return to the proof of Proposition 6.1. Let λ, µ, ν ∈ Λ such that |λ| +

|µ| = |ν|. We note that F(2)
λ ≃ F(2)

(λ1−λ2,0) ⊗ F(2)
(λ2,λ2) and F(2)

(λ2,λ2) is one-dimensional,

which implies that we can calculate cν
λµ by using the Pieri rule. If we put a = λ1 −λ2,

b = µ1 − µ2, and c = ν1 − ν2, then

cν
λµ =

{
1 if c = a + b − 2k for some non-negative integer k,

0 otherwise.

By Lemma 6.3, [E(n)
aε1

⊗ E(n)
bε1

, E(n)
cε1

] = cν
λµ and hence [Vλ ⊗ Vµ,Vν] = cν

λµ. This

completes the proof of Proposition 6.1.
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6.4 A Conjecture for the Exceptional Groups

We conjecture that Proposition 6.1 also holds in the two exceptional cases.

Case (i) gR = E III. In this case, (g, k) = (e6, so10 ⊕C) and r = 2. Let ω1, . . . , ω6

be the fundamental weights of e6 (Bourbaki ordering). By Table 2, γ1 = ω2, γ2 =

ω1−ω2+ω6. Thus if λ = (λ1, λ2), then λ̃ = λ2ω1+(λ1−λ2)ω2+λ2ω6. Let ̟1, . . . , ̟5

be the fundamental weights of so10 (Bourbaki ordering). If λ = (λ1, λ2) ∈ Λ, then
as a k = so10 ⊕ C-module, Vλ ≃ E(λ1−λ2)̟1+λ2̟5

⊠ C−λ1−λ2
, where E(λ1−λ2)̟1+λ2̟5

denotes the irreducible so10-module of lowest weight −(λ1 − λ2)̟1 − λ2̟5. We

conjecture that if λ, µ, ν ∈ Λ with |λ| + |µ| = |ν|, then [Vλ ⊗Vµ,Vν] = cν
λµ.

Case (ii) gR = E VII. In this case, (g, k) = (e7, e6 ⊕ C) and r = 3. Let

ω1, . . . , ω7 be the fundamental weights of e7 (Bourbaki ordering). By Table 2, γ1 =

ω1, γ2 = −ω1 + ω6 and γ3 = −ω6 + 2ω7. If λ = (λ1, λ2, λ3), then λ̃ = (λ1 −
λ2)ω1 + (λ2 − λ3)ω6 + 2λ3ω7. Let ̟1, . . . , ̟6 be the fundamental weights of e6

(Bourbaki ordering). If λ = (λ1, λ2, λ3) ∈ Λ, then as a k = e6 ⊕ C-module,

Vλ ≃ W(λ1−λ2)̟1+(λ2−λ3)̟6
⊠ C−λ1−λ2−λ3

, where W(λ1−λ2)̟1+(λ2−λ3)̟6
denotes the

irreducible e6-module with lowest weight −(λ1 − λ2)̟1 − (λ2 − λ3)̟6. We conjec-

ture that if λ, µ, ν ∈ Λ with |λ| + |µ| = |ν|, then

[Vλ ⊗Vµ,Vν] =
cν
λµ(cν

λµ + 1)

2
.

We arrived at this conjecture by computing examples using the computer algebra
package LiE [2].

K X = p+ [Vλ ⊗Vµ,Vν]

GLp(C) × GLq(C) C
p ⊗ (C

q)∗ (cν
λµ)2

GLn(C) S2(C
n) c2ν

2λ,2µ

GLn(C) ∧2(C
n) c(2ν ′) ′

(2λ ′) ′,(2µ ′) ′ = c2ν
2λ,2µ

SOn(C) × C
×

C
n cν

λµ

Spin10(C) × C
×

C
16 (spin) cν

λµ (?)

E6(C) × C
×

C
27 (min)

cν
λµ(cν

λµ+1)

2
(?)

Table 4: Multiplicities [Vλ ⊗Vµ,Vν] in terms of Littlewood–Richardson coefficients.
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