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triangle ABC from BC is £ AX. It remains, therefore, to prove
that V V + W F - UM = AX.

From the encyclic quadrilateral AXCV, by application of
Ptolemy's theorem, there results

AXCV + CXAV = VX-AC.
Now CV = AV = AC/ J'2 ;
therefore AX + CX = VX J~2 = 2V V.
Similarly AX + BX =2WW.
But BC = 2UM;
therefore 2(VV + W - UM) = 2AX + BX + CX - BC

= 2AX.
Hence also the distance of the centroid of UVW from either AB

or CA is the same as the distance of the centroid of ABC from AB
or CA. The two triangles consequently have the same centroid.

§ 40. Ox is the centre of a circle which passes through the follow-
ing ten points:—V, W, M, X, N, Y, the feet of the perpendiculars
from V on WU, WU', and from W on VU, VU'.

The circle with O, as centre and OV or OW as radius is readily
seen to pass through the feet of the four perpendiculars from V and
W. Also this circle will pass through N and Y, if it can be shown
to pass through M and X.

Now O,M is half of AU, and AU = VW ; therefore OXU is half
of VW ; therefore the circle passes through M.

But since AX and ZM are perpendicular to BC, and OjA = OiZ,
therefore O^X = OlM ; and therefore the circle passes through X.

[The circle on VW as diameter can be proved to pass through X
thus: the angle VXC is half a right angle, by § 38, and so is the
angle WXB ; therefore the angle VXW is a right angle.]

If Oj, O3 be the middle points of WU, UV then, O2, O:. will be
the centres of two other ten point circles.

The Potential of a Spherical Magnetic Shell deduced from the
Potential of a Coincident Layer of Attracting Matter.

By A. C. ELLIOTT, B.SC, C.E.

This is the problem of § 670 in Clerk Maxwell's Electricity and
Magnetism. The author proposes to proceed by another method and
to obtain the result in a different form. Let 0 be the centre of the
spherical surface on which the shell lies and Z the point where the
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magnetic potential Vm is to be found. Also let </> be the strength of
the shell (magnetic moment per unit area), a its internal, and a + 8a
its external radius. To represent the magnetic distribution let a
layer of negative magnetic matter of density <r cover the inside face,
and a corresponding positive layer the outside face. Finally, let Z
be without the matter of the shell and on the positive side.

Since in a magnet the total quantity of magnetic matter is zero,
these hypothetical layers are subject to the condition

«2<r = const. (1).
Let V be the potential at Z due to a single layer of density o- and
radius a. The magnetic potential V,,, is the sum of the potentials
due to the two imaginary layers; and hence by Taylor's theorem

Vm = V + ——oa + So- - V
da d

?*. + £* (2).
da d&

From the nature of the potential function
V = A<r (3),

where A is independent of <r—in fact, the potential for unit density.
From (1)

From (3)

Therefore (2) becomes

v.

~dV =

da

- —oa
aA = I

Sa - ——S«
a

or since S« is an independent variation

But /
Hence if P be the potential at Z due to a layer of density numerically
equal to <£

Calling r the distance OZ, Maxwell obtains

It appears therefore that the operations denoted by (5) and (6)
respectively are equivalent. The first might sometimes be the more
convenient to use—for instance, Maxwell, § 695, pqn. C.
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