triangle ABC from BC is $\frac{1}{3} \mathrm{AX}$. It remains, therefore, to prove that $V V^{\prime}+W W^{\prime}-U M=A X$.

From the encyclic quadrilateral AXCV, by application of Ptolemy's theorem, there results

$$
\mathrm{AX} \cdot \mathrm{CV}+\mathrm{CX} \cdot \mathrm{AV}=\mathrm{VX} \cdot \mathrm{AC} .
$$

Now

$$
\mathrm{CV}=\quad \mathrm{AV}=\mathrm{AC} / \sqrt{2} ;
$$

therefore
Similarly
But
$\mathrm{AX}+\mathrm{CX} \quad=\mathrm{VX} \sqrt{2}=2 \mathrm{VV}^{\prime}$.
therefore
$\mathrm{BC} \quad=2 \mathrm{UM}$;
$2\left(V^{\prime}+W W^{\prime}-U M\right)=2 A X+B X+C X-B C$
$=2 \mathrm{AX}$.
Hence also the distance of the centroid of UVW from either AB or CA is the same as the distance of the centroid of $A B C$ from $A B$ or CA. The two triangles consequently have the same centroid.
$\S 40 . O_{1}$ is the centre of a circle which passes through the following ten points:-V, W, M, X, N, Y, the feet of the perpendiculars from V on $\mathrm{WU}, \mathrm{WU}^{\prime}$, and from W on $\mathrm{VU}, \mathrm{VU}^{\prime}$.

The circle with O_{3} as centre and OV or OW as radius is readily seen to pass through the feet of the four perpendiculars from V and W. Also this circle will pass through N and Y , if it can be shown to pass through M and X .

Now $\mathrm{O}_{1} \mathrm{M}$ is half of AU , and $\mathrm{AU}=\mathrm{VW}$; therefore $\mathrm{O}_{1} \mathrm{M}$ is half of VW ; therefore the circle passes through M.

But since $A X$ and $Z M$ are perpendicular to $B C$, and $O_{1} A=O_{1} Z$, therefore $\mathrm{O}_{1} \mathrm{X}=\mathrm{O}_{1} \mathrm{M}$; and therefore the circle passes through X .
[The circle on VW as diameter can be proved to pass through X thus : the angle VXC is half a right angle, by $\S 38$, and so is the angle $W X B$; therefore the angle $V X W$ is a right angle.]

If $\mathrm{O}_{2}, \mathrm{O}_{3}$ be the middle points of $W U, U V$ then, $\mathrm{O}_{2}, \mathrm{O}_{3}$ will be the centres of two other ten point circles.

The Potential of a Spherical Magnetic Shell deduced from the
 Potential of a Coincident Layer of Attracting Matter. By A. O. Ellott, B.Sc., C.E.

This is the problem of $\S 670$ in Clerk Maxwell's Electricity and Magnetism. The author proposes to proceed by another method and to obtain the result in a different form. Let O be the centre of the spherical surface on which the shell lies and Z the point where the
magnetic potential V_{m} is to be found. Also let ϕ be the strength of the shell (magnetic moment per unit area), a its internal, and $a+\delta a$ its external radius. To represent the magnetic distribution let a layer of negative magnetic matter of density σ cover the inside face, and a corresponding positive layer the outside face. Finally, let Z be without the matter of the shell and on the positive side.

Since in a magnet the total quantity of magnetic matter is zero, these hypothetical layers are subject to the condition

$$
\begin{equation*}
a^{2} \boldsymbol{\sigma}=\text { const. } \tag{1}
\end{equation*}
$$

Let V be the potential at Z due to a single layer of density σ and radius a. The magnetic potential V_{m} is the sum of the potentials due to the two imaginary layers; and hence by Taylor's theorem

$$
\begin{align*}
\mathrm{V}_{m} & =\mathrm{V}+\frac{d \mathrm{~V}}{d a} \delta a+\frac{d \mathrm{~V}}{d \sigma} \delta \sigma-\mathrm{V} \\
& =\frac{d \mathrm{~V}}{d a} \delta a+\frac{d \mathrm{~V}}{d \sigma} \delta \sigma \tag{2}
\end{align*}
$$

From the nature of the potential function

$$
\begin{equation*}
\mathrm{V}=\mathbf{A} \sigma \tag{3}
\end{equation*}
$$

where A is independent of σ-in fact, the potential for unit density.
From (1)

$$
\delta \sigma=-\frac{2 \sigma}{a} \delta \sigma
$$

From (3)

$$
\frac{d \mathrm{~V}}{d \sigma}=\mathrm{A}=\underset{\sigma}{\mathrm{V}}
$$

Therefore (2) becomes

$$
\mathrm{V}_{m}=\frac{d \mathrm{~V}}{d a} \dot{\partial} a-\frac{2 \mathrm{~V}}{a} \delta a
$$

or since δa is an independent variation

$$
\begin{equation*}
\mathrm{V}_{m}=a_{d a}^{d}\left(\frac{\mathrm{~V} \delta a}{a^{2}}\right) \tag{4}
\end{equation*}
$$

But

$$
\mathrm{V} \delta a=\mathbf{A} \boldsymbol{\sigma} \delta \cdot a=\mathbf{A} \phi .
$$

Hence if \mathbf{P} be the potential at Z due to a layer of density numerically equal to ϕ

$$
\begin{equation*}
\mathrm{V}_{m}=a^{2} \frac{d}{d a}\left(\frac{\mathrm{P}}{a^{2}}\right) \tag{5}
\end{equation*}
$$

Calling r the distance OZ, Maxwell obtains

$$
\begin{equation*}
\mathrm{V}_{m}=-\frac{1}{a} \frac{d}{d r}(\mathrm{P} r) \tag{6}
\end{equation*}
$$

It appears therefore that the operations denoted by (5) and (6) respectively are equivalent. The first might sometimes be the more convenient to use-for instance, Maxwell, § 695 , eqn. 6^{\prime}.

