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Abstract

We consider a sequence, of random length M , of independent, continuous observations
Xi, 1 ≤ i ≤ M, where M is geometric, X1 has cumulative distribution function (CDF) G,
and Xi, i ≥ 2, have CDF F . Let N be the number of upper records and let Rn, n ≥ 1, be
the nth record value. We show that N is independent of F if and only if G(x) = G0(F (x))

for some CDF G0, and that if E(|X2|) is finite then so is E(|Rn|), n ≥ 2, whenever
N ≥ n or N = n. We prove that the distribution of N , along with appropriately
chosen subsequences of E(Rn), characterize F and G and, along with subsequences of
E(Rn − Rn−1), characterize F and G up to a common location shift. We discuss some
applications to the identification of the wage offer distribution in job search models.
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1. Introduction

Let {Xi, i ≥ 1} be an infinite sequence of independent random variables. Suppose that
M is a positive, integer-valued random variable independent of the Xi , and assume that only
Xi, 1 ≤ i ≤ M , are observed. Define L(1) = 1 and L(n) = min{k : Xk > XL(n−1)} for n > 1
and Rn = XL(n) for n ≥ 1. Then R1 is the initial record (sometimes called the trivial record)
and the Rn, n ≥ 2, represent the upper record values from the sequence {Xi, i ≥ 1}. The total
number of records we observe is given by N = max{j : L(j) ≤ M} and is itself a random
variable.

When the Xi are identically distributed, this model is called a random record model (see,
e.g. Arnold et al. (1998, p. 224)). When we further assume that M has a geometric distribution,
i.e. Pr(M = m) = qm−1p for m ≥ 1, where 0 < p < 1 and q = 1 − p, we have a geometric
random record (GRR) model. Nagaraja and Barlevy (2003) derived several characterization
results for the GRR model using record moments. In this paper, we consider a variation of
the GRR model in which the initial observation, X1, has a potentially different distribution
from the sequence of remaining observations {Xi, i ≥ 2}. We refer to this as a GRR model
with a nonidentically distributed initial record, or a modified GRR model. Our purpose in this
paper is to determine whether there exist analogous characterization results for this alternative
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1120 G. BARLEVY AND H. N. NAGARAJA

formulation and to discuss some applications of this variation concerning identification of job
search models.

Formally, let X1 be distributed with continuous cumulative distribution function (CDF) G,
where G(x) = Pr(X1 ≤ x), and let the Xi, i ≥ 2, be independent and identically distributed
with continuous CDF F , where F(x) = Pr(Xi ≤ x).

Define a mapping � from the set of continuous CDFs into itself such that G = �(F). This
notation allows us to view the model as being parameterized by a single CDF, F . We make the
following assumption of �.

Assumption 1. The probability measure implied by G = �(F) is absolutely continuous with
respect to the probability measure implied by F .

This assumption implies that the support of G forms a subset of the support of F . An
implication of this assumption is that we can express the CDF G at the uth percentile in
the distribution F as an absolutely continuous function of u. Formally, define F−1(u) =
inf{x : F(x) ≥ u}. We then have the following result.

Lemma 1. G(F−1(u)) is absolutely continuous in u ∈ (0, 1).

Proof. By the Radon–Nikodým theorem, Assumption 1 implies the existence of a function δ

such that G(y) = ∫ y

−∞ δ(x) dF(x) for all y. Moreover, since G is a CDF,
∫ ∞
−∞ δ(x) dF(x) = 1.

Define u = F(x); then we can write G(y) = ∫ F(y)

0 δ(F−1(u)) du. Since F is continuous,
F(F−1(u)) = u and

G(F−1(v)) =
∫ F(F−1(v))

0
δ(F−1(u)) du =

∫ v

0
δ(F−1(u)) du,

confirming that G(F−1(v)) is absolutely continuous in v.

Remark 1. The identity mapping � : F �→ F trivially satisfies Assumption 1. Our model thus
includes the GRR model as a special case.

Remark 2. Our formulation is itself a special case of the Pfeifer (1982) model, in which the
distribution of the underlying observations changes after each record is set. Here the distribution
changes only after the first record, and the distribution of the first record, G = �(F), is assumed
to satisfy Assumption 1. Although Pfeifer assumed that M = ∞, Bunge and Nagaraja (1991)
subsequently generalized his model to allow the number of observations to be random.

Remark 3. Our assumptions do not require � to be one-to-one, as illustrated in Example 2,
below. However, Assumption 1 implies that � cannot assign a single G to all CDFs F . Thus,
G cannot be independent of F .

Here are some examples of functions G(x) = �(F)(x) that satisfy Assumption 1. The
motivation for these examples will become clear in Section 6, when we discuss how the model
can be applied to estimate job search models.

1. �(F)(x) = F(x)

1 + κ(1 − F(x))
for some constant κ .

2. �(F)(x) = F(x)/z if F(x) ≤ z and �(F)(x) = 1 if F(x) > z, for some constant
z ∈ (0, 1).
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Characterizations in a random record model 1121

3. �(F)(x) =
∫ x

−∞ H(w) dF(w)∫ ∞
−∞ H(w) dF(w)

=
∫ F(x)

0 H(F−1(u)) du∫ 1
0 H(F−1(u)) du

, where H(·) is a CDF.

In Example 1 �(F) = ∑∞
i=1 pqi−1F i with p = (1 + κ)−1, implying that X1 has the

same distribution as the maximum of a random (geometric) number of independent, identically
distributed random variables distributed in the same way as X2. In Example 2 G arises from
F by the truncation of the latter’s upper tail, and in Example 3 G has the form of a weighted
distribution. Note that, in the first two examples, �(F)(x) can be represented as G0(F (x)) for
some function G0, i.e. the CDF G = �(F) evaluated at x depends only on F(x) and not on
the value of F at any point other than x. This is not true in the last example.

We show in Section 2 that �(F)(x) = G0(F (x)) for some function G0 if and only if the
distribution of the number of observed records, N , is independent of F . In Section 3 we focus
on the case where �(F)(x) = G0(F (x)), and show that, under an additional assumption on �,
the distribution F is characterized by subsequences of the following moments:

(a) E(Rn | N ≥ n),

(b) E(Rn | N = n),

(c) E(Rn − Rn−1 | N ≥ n),

(d) E(Rn − Rn−1 | N = n).

In demonstrating this result, we appeal not only to the Müntz–Szász theorem (Müntz (1914),
Szász (1916)), which is often invoked in moment-based characterization theorems (see Kamps
(1998)), but also to a relatively unutilized convolution theorem due to Titchmarsh (1926). In
Section 4 we consider more general mappings � and provide characterizations of F and G

using the same moment subsequences together with a subset of values for Pr(N = n). All of
these results are premised on there being a known geometric distribution for M . In Section 5
we analyze the case where M is known to have a geometric distribution but its parameter is
unknown. In Section 6 we then discuss how our results can be used to nonparametrically
identify the wage offer distribution in job search models when wage data can only be measured
with noise.

In our proofs, we assume that F(x) is absolutely continuous in x and denote its density
by f . By Lemma 1, this assumption implies that G(x) is also absolutely continuous in x

and has density function g(x) = δ(x)f (x), where δ(x) is as defined in Lemma 1. While this
simplifies our proofs, our results hold even when F is merely continuous, since we can always
define a series of random variables Yi = F(Xi) whose respective distribution functions will be
absolutely continuous for all i underAssumption 1, and repeat the analysis using transformations
of record values from the sequence {Yi, i ≥ 1}.

2. Characterization results for � and N

We begin with results that characterize the mapping �. Our first result shows that the number
of observed records, N , is independent of F if and only if �(F)(x) can be expressed solely as
a function of F(x), i.e. F evaluated at the point x.

Proposition 1. In the modified GRR model, the number of observed records, N , is independent
of F if and only if �(F)(x) = G0(F (x)) for some absolutely continuous CDF G0 with
support [0, 1].
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Proof. Building on Bunge and Nagaraja (1991) and Nagaraja and Barlevy (2003), we can
express the likelihood of having exactly n observed records with values r1 through rn as

h({r1, . . . , rn} ∩ {N = n}) = (1 − q)g(r1)

1 − qF(r1)

n∏
i=2

qf (ri)

1 − qF(ri)
.

Next, we integrate out r2, . . . , rn, to obtain

h({r1} ∩ {N = n}) = 1

(n − 1)!
1 − q

1 − qF(r1)

[
ln

(
1 − qF(r1)

1 − q

)]n−1

g(r1).

Hence, Pr(N = n) can be expressed as

Pr(N = n) = 1

(n − 1)!
∫ ∞

−∞
1 − q

1 − qF(r1)

[
ln

(
1 − qF(r1)

1 − q

)]n−1

g(r1) dr1.

Suppose that �(F)(x) = G0(F (x)) for some absolutely continuous function G0. We want
to show that Pr(N = n) is independent of F . Since G0 is absolutely continuous, it has a related
density function g0(x) = (d/dx)G0(x). This implies that

g(r1) = d

dx
G0(F (x))

∣∣
x=r1

= g0(F (r1))f (r1).

Substituting this into the expression for Pr(N = n) and using the change of variable u = F(r1)

yields

Pr(N = n) = 1

(n − 1)!
∫ 1

0

1 − q

1 − qu

[
ln

(
1 − qu

1 − q

)]n−1

g0(u) du,

which is indeed independent of F .
Next, suppose that Pr(N = n) is independent of F . We want to show that this implies

�(F)(x) = G0(F (x)) for some absolutely continuous CDF G0(·). From Lemma 1, we can
rewrite Pr(N = n) using the change of variable u = F(r1), to obtain

Pr(N = n) = 1

(n − 1)!
∫ 1

0

1 − q

1 − qu

[
ln

(
1 − qu

1 − q

)]n−1
g(F−1(u))

f (F−1(u))
du. (1)

Since {Pr(N = n), n ≥ 1} does not depend on the distribution of F , for any two distributions F1
and F2 we thus have, for n = 1, 2, 3, . . . ,∫ 1

0

1 − q

1 − qu

[
ln

(
1 − qu

1 − q

)]n−1 g(F−1
1 (u))

f1(F
−1
1 (u))

du

=
∫ 1

0

1 − q

1 − qu

[
ln

(
1 − qu

1 − q

)]n−1 g(F−1
2 (u))

f2(F
−1
2 (u))

du

or, more compactly, ∫ 1

0
h(u)

[
ln

(
1 − qu

1 − q

)]n−1

du = 0, (2)

where

h(u) = 1 − q

1 − qu

[
g(F−1

1 (u))

f1(F
−1
1 (u))

− g(F−1
2 (u))

f2(F
−1
2 (u))

]
.
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We now appeal to the Müntz–Szász theorem, which states that, for any increasing sequence
of positive integers, {nj , j ≥ 1}, the sequence of polynomials {xnj } is complete on L(0, 1) if
and only if

∑∞
j=1 n−1

j = ∞. For a proof and history of the theorem, see Borwein and Erdélyi
(1995, Section 4.2). From this theorem, it follows that (2) implies h(u) = 0 for almost all
u ∈ (0, 1). Let F1 be any continuous CDF, and set F2 to be the uniform CDF, i.e. F−1

2 (u) = u,
so g(F−1

2 (u))/f2(F
−1
2 (u)) = g(u). Hence,

g(F−1
1 (u))

f1(F
−1
1 (u))

= g(u). (3)

Defining y = F−1
1 (u) in (3), we obtain g(y) = g(F1(y))f1(y). Hence, we have

�(F1)(x) =
∫ x

−∞
g(y) dy

=
∫ x

−∞
g(F1(y))f1(y) dy

=
∫ F1(x)

0
g(z) dz

≡ G0(F1(x)).

Since G is a CDF, it follows that G0 is nondecreasing, G0(0) = 0, and G0(1) = 1. Hence, G0
is a CDF with support [0, 1]. The absolute continuity of G0 is immediate.

We next argue that the mapping � is further characterized by the dependence structure of
the record indicators derived from {Xi, i ≥ 1}. Define the mth record indicator, Im, to be a
random variable that takes the value 1 if Xm is a record, i.e. if Xm > max{X1, . . . , Xm−1},
and takes the value 0 otherwise. Note that Im is defined even for m > M , since the infinite
sequence of Xi is defined. Previous work by Nevzorov (1986) has shown that if the Xi are
independent random variables and Xi has CDF

Fi(x) = {F(x)}α(i) (4)

for some common F , then the Im, m ≥ 2, are independent and Im is Bernoulli with success
probability α(m)/

∑m
i=1 α(i). Conversely, Nevzorov showed that if the supports of the Xi are

not disjoint and I2, . . . , In−1 are independent of In for any Fn, then (4) holds for i = 1, . . . , n−1
(see alsoArnold et al. (1998, p. 219)). We now derive a related result in our model. In particular,
we argue that

�(F)(x) = {F(x)}α, (5)

for some α > 0, if and only if the record indicator I2 is independent of the record indicators
I3, . . . , Im for all m, conditional on at least m observations.

Proposition 2. In a random record model with a nonidentically distributed initial record,

Pr(I3 = 1, . . . , Im = 1 | M ≥ m) = Pr(I3 = 1, . . . , Im = 1 | I2 = 1, M ≥ m), (6)

for all m ≡ mj ≥ 3, j ≥ 1, such that
∑

j m−1
j = ∞, if and only if (5) holds.
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1124 G. BARLEVY AND H. N. NAGARAJA

Proof. Condition (6) can be expressed as

Pr(I2 = 1, . . . , Im = 1) = Pr(I3 = 1, . . . , Im = 1) Pr(I2 = 1).

Without loss of generality we take F(x) = x. Upon conditioning on X1, the left-hand side
(denoted LHS) can be simplified to

1

(m − 1)!
∫ 1

0
(1 − x)m−1 dG(x).

Applying integration by parts yields

1

(m − 2)!
∫ 1

0
(1 − x)m−2G(x) dx.

Furthermore, Pr(I3 = 1, . . . , Im = 1) = LHS + Pr(I2 = 0, I3 = 1, . . . , Im = 1). The
second term on the right-hand side here, upon conditioning on X1, can be written as

1

(m − 2)!
∫ 1

0
(1 − x)m−2xg(x) dx.

Let c = Pr(I2 = 1) = ∫ 1
0 G(x) dx. Then (6) reduces to the condition∫ 1

0
(1 − x)m−2[(1 − c)G(x) − cxg(x)] dx = 0, m = mj , j ≥ 1. (7)

By the Müntz–Szász theorem, it follows that, for almost all x ∈ (0, 1),

g(x)

G(x)
= 1 − c

c

1

x
.

This differential equation shows that (5) holds with α = (1 − c)/c.
Conversely, if (4) holds with F(x) = x and G(x) = xα , then set c = (1 + α)−1. It follows

that (1 − c)G(x) = cxg(x) for all x ∈ (0, 1). Thus, (7) holds for all mj ≥ 1 and, so, (6) holds.

Corollary 1. If (6) holds then (5) holds and, in turn, the record indicators Im, m ≥ 2, are all
independent and the distribution of the number of observed records, N , is independent of F .

3. Results in a special case

We now turn to characterization results for F in the modified GRR model. We begin by
deriving expressions for the relevant moments, and provide conditions for these moments
to exist. We then consider the special case where �(F)(x) = G0(F (x)), and provide a
characterization result.

Consider record moments that condition on the event {N ≥ n}. Using the expression for
the likelihood h({r1, . . . , rn} ∩ {N ≥ n)} from Bunge and Nagaraja (1991), and integrating out
r2, . . . , rn−2, yields the following expression for the joint likelihood of r1, rn−1, and rn when
N ≥ n, n ≥ 3:

h({r1, rn−1, rn} ∩ {N ≥ n})

= 1

(n − 3)!
[
− ln

(
1 − qF(rn−1)

1 − qF(r1)

)]n−3
qg(r1)

1 − qF(r1)

qf (rn−1)

1 − qF(rn−1)
f (rn).
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Limiting our attention to n ≥ 3, we derive the following expression for E(Rn | N ≥ n):

E(Rn | N ≥ n) = 1

Pr(N ≥ n)

∫ ∞

−∞

∫ rn−1

−∞

∫ ∞

rn−1

rnh({r1, rn−1, rn} ∩ {N ≥ n}) drn dr1 drn−1

=
∫ 1

0

∫ un−1

0

[− ln((1 − qun−1)/(1 − qu1))]n−3

(n − 3)! Pr(N ≥ n)

g(F−1(u1))

f (F−1(u1))

× φF (un−1)
qdu1

1 − qu1

qdun−1

1 − qun−1
. (8)

Here

φF (un−1) =
∫ 1

un−1

F−1(un) dun. (9)

Similarly, the expected record spacing E(Rn − Rn−1 | N ≥ n), n ≥ 3, can be expressed as

E(Rn − Rn−1 | N ≥ n) =
∫ 1

0

∫ un−1

0

[− ln((1 − qun−1)/(1 − qu1))]n−3

(n − 3)! Pr(N ≥ n)

g(F−1(u1))

f (F−1(u1))

× φF (un−1)
qdu1

1 − qu1

qdun−1

1 − qun−1
,

where

φF (un−1) =
∫ 1

un−1

[F−1(un) − F−1(un−1)] dun. (10)

In the same fashion, we can use the expression for h({r1, . . . , rn} ∩ {N = n}) derived in
Section 2, and integrate out r2, . . . , rn−2, to obtain the joint likelihood of r1, rn−1, and rn when
N = n, n ≥ 3:

h({r1, rn−1, rn} ∩ {N = n})

= 1

(n − 3)!
[
− ln

(
1 − qF(rn−1)

1 − qF(r1)

)]n−3
qg(r1)

1 − qF(r1)

qf (rn−1)

1 − qF(rn−1)

(1 − q)f (rn)

1 − qF(rn)
.

Using this, we deduce that

E(Rn | N = n) =
∫ 1

0

∫ un−1

0

[− ln((1 − qun−1)/(1 − qu1))]n−3

(n − 3)! Pr(N = n)

g(F−1(u1))

f (F−1(u1))

× φF (un−1)
qdu1

1 − qu1

qdun−1

1 − qun−1
,

where

φF (un−1) =
∫ 1

un−1

F−1(un)
(1 − q)dun

1 − qun

, (11)

and, likewise, that

E(Rn − Rn−1 | N = n) =
∫ 1

0

∫ un−1

0

[− ln((1 − qun−1)/(1 − qu1))]n−3

(n − 3)! Pr(N = n)

g(F−1(u1))

f (F−1(u1))

× φF (un−1)
qdu1

1 − qu1

qdun−1

1 − qun−1
,
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where

φF (un−1) =
∫ 1

un−1

1 − q

1 − qun

[F−1(un) − F−1(un−1)] dun. (12)

All four moment sequences above can thus be expressed as an integral of a common term
multiplying a function φF (un−1) that varies with the particular moment at hand.

We now provide a sufficient condition for the above moments to exist. Here we use the fact
that, for any random variable Y , E(Y ) exists if and only if E(|Y |) < ∞.

Proposition 3. If E(|X2|) < ∞ then E(|Rn| | N ≥ n) and E(|Rn| | N = n) exist for all
n ≥ 2.

Proof. Suppose first that n ≥ 3. From (8), we have

E(|Rn| | N ≥ n) =
∫ 1

0

∫ un−1

0

∫ 1

un−1

[− ln((1 − qun−1)/(1 − qu1))]n−3

(n − 3)! Pr(N ≥ n)

g(F−1(u1))

f (F−1(u1))

× |F−1(un)| dun

qdu1

1 − qu1

qdun−1

1 − qun−1
.

Since u1 and un−1 both lie in [0, 1], the above expression is less than or equal to

[− ln(1 − q)]n−3

(n − 3)! Pr(N ≥ n)

(
q

1 − q

)2 ∫ 1

0

∫ 1

un−1

{∫ un−1

0

g(F−1(u1))

f (F−1(u1))
du1

}
|F−1(un)| dun dun−1

= [− ln(1 − q)]n−3

(n − 3)! Pr(N ≥ n)

(
q

1 − q

)2 ∫ 1

0

∫ 1

un−1

G(F−1(un−1))|F−1(un)| dun dun−1

≤ [− ln(1 − q)]n−3

(n − 3)! Pr(N ≥ n)

(
q

1 − q

)2 ∫ 1

0

∫ 1

0
G(F−1(un−1))|F−1(un)| dun dun−1

≤ [− ln(1 − q)]n−3

(n − 3)! Pr(N ≥ n)

(
q

1 − q

)2

E(|X2|).

As long as E(|X2|) < ∞, E(|Rn| | N ≥ n) exists. A similar argument applies in the case where
n = 2. Extending the argument for E(|Rn| | N = n) is straightforward.

Remark 4. For n ≥ 2, the existence of the nth record moment does not depend on whether
E(X1) exists. This is because, for n ≥ 2, the relevant moment is always conditioned on an
event in which M ≥ n and max{X2, . . . , XM} > X1. As demonstrated in Nagaraja and Barlevy
(2003), if M is geometric with success probability p, then E(E(| max{X2, . . . , XM}| | M))

< p−1 E(|X2|). Thus, we are conditioning on the event that X1 is exceeded by a random
variable whose mean is finite. Even if X1 does not have a well-defined unconditional mean,
conditioning on the event that its value is exceeded by a random variable with a finite mean
suffices to ensure that E(X1 | N ≥ n) is finite.

Equipped with these preliminaries, we turn to characterizing F using moment sequences.
However, we first need to make an additional assumption about the range of �.

Assumption 2. For any continuous CDF F , there exists an ε > 0 such that

g(F−1(u)) = d

dx
�(F )(x)

∣∣
x=F−1(u)

is positive for almost all u ∈ (0, ε).
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This assumption implies that G−1(0) ≤ F−1(0). However, by Assumption 1, G−1(0) ≥
F−1(0). Hence, G−1(0) = F−1(0). This restriction is clearly necessary: if two distributions
F1 and F2, F1 
= F2, differ only below G−1(0), they will necessarily yield identical record
moment sequences.

We first focus on a special case for �, namely that in which �(F) = G0(F (x)) for some
absolutely continuous CDF G0 : [0, 1] → [0, 1]. Recall from Proposition 1 that this is true if
and only if Pr(N = n) does not depend on F . We return to the more general case in the next
section.

Proposition 4. Suppose that Assumptions 1 and 2 are satisfied, that E(|X2|) < ∞, and that
�(F)(x) = G0(F (x)) for some absolutely continuous CDF G0 : [0, 1] → [0, 1].

(a) If two distributions F1 and F2 give rise to either the same sequence {E(Rn | N ≥ n), n =
n1, n2, . . .} or the same sequence {E(Rn | N = n), n = n1, n2, . . .}, where {nj , j ≥ 1}
is an increasing sequence of positive integers and

∑
j n−1

j = ∞, then F1(x) = F2(x).

(b) If two distributions F1 and F2 give rise to either the same sequence {E(Rn −Rn−1 | N ≥
n), n = n1, n2, . . .} or the same sequence {E(Rn − Rn−1 | N = n), n = n1, n2, . . .},
where {nj , j ≥ 1} is an increasing sequence of positive integers and

∑
j n−1

j = ∞, then
there exists a c such that F1(x) = F2(x − c).

Proof. Since �(F)(x) = G0(F (x)), it follows that g(x) = g0(F (x))f (x), which implies
that g(F−1(u1))/f (F−1(u1)) = g0(u1). We can therefore express the respective record
moments in the statement of the proposition as

1

(n − 3)! an

∫ 1

0

∫ 1

u1

g0(u1)

[
− ln

(
1 − qun−1

1 − qu1

)]n−3

φF (un−1)
q dun−1

1 − qun−1

q du1

1 − qu1
,

where an = Pr(N ≥ n) or an = Pr(N = n), and φF depends on the particular moment and
conditioning event, i.e. (9) or (11) in case (a) and (10) or (12) in case (b). Changing variables
according to

t = − ln(1 − qun−1) �⇒ dt = qdun−1

1 − qun−1
, un−1 = 1 − e−t

q
,

s = − ln(1 − qu1) �⇒ ds = qdu1

1 − qu1
, u1 = 1 − e−s

q
,

and setting c = − ln(1 − q) allows us to rewrite the above expression as

1

(n − 3)! an

∫ c

0

∫ c

s

g0

(
1 − e−s

q

)
φF

(
1 − e−t

q

)
(t − s)n−3 dt ds.

We change variable yet again by setting ω = t − s, and rewrite the above as

1

(n − 3)! an

∫ c

0

∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF

(
1 − e−t

q

)
ωn−3 dt dω.

Define

ηF (ω) =
∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF

(
1 − e−t

q

)
dt.
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Let F1 and F2 denote two continuous CDFs that give rise to the same subsequence of moments.
Since �(F)(x) = G0(F (x)) implies that an is independent of F , it follows that, for all n ≥ 3,∫ c

0
ηF1(ω)ωn−3 dω =

∫ c

0
ηF2(ω)ωn−3 dω.

By the Müntz–Szász theorem, it follows that ηF1(ω) = ηF2(ω) for almost all ω ∈ (0, c), i.e. for
almost all ω ∈ (0, c),

∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF1

(
1 − e−t

q

)
dt =

∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF2

(
1 − e−t

q

)
dt. (13)

We next argue that (13) implies φF1((1−e−t )/q) = φF2((1−e−t )/q) for almost all t ∈ (0, c).
It will suffice to prove that if

∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φ(t) dt = 0 for almost all ω ∈ (0, c), (14)

then φ(t) = 0 for almost all t ∈ (0, c). By making a change in variables to w = c − t

and z = c − ω, (14) can be transformed into the following integral equation, where a(x) =
g0((1 − e−x)/q) and b(x) = φ(c − x):∫ z

0
a(z − w)b(w) dw = 0 for almost all z ∈ (0, c). (15)

From Theorem VII of Titchmarsh (1926) (see also Boas (1954, p. 234) for a more accessible
reference), there exists a c∗ such that a(x) = 0 for all x ∈ (0, c∗) and b(x) = 0 for all
x ∈ (0, c − c∗). However, Assumption 2 implies that there exists an ε > 0 such that g0(z) > 0
for almost all z ∈ (0, ε), which in turn implies that a(z) > 0 for almost all z ∈ (0, ε). Hence,
c∗ must equal 0, implying that b(z) = 0 for almost all z ∈ (0, c). Then φ(t) = b(c − t) = 0
for almost all t ∈ (0, c), as claimed.

Lastly, we need to show that the statement of the proposition follows from the fact that
φF1((1 − e−t )/q) = φF2((1 − e−t )/q) for almost all t ∈ (0, c). In case (a), with φF given
by (9) or (11), ∫ 1

(1−e−t )/q

[F−1
1 (u) − F−1

2 (u)] du = 0

or ∫ 1

(1−e−t )/q

F−1
1 (u) − F−1

2 (u)

1 − qu
du = 0,

for almost all t ∈ (0, c). However, from Taylor (1965, p. 415), this implies that the function
inside the integral is equal to 0 almost everywhere. It follows that F1(u) = F2(u) almost
everywhere. Since F1 and F2 are both right continuous (in fact, under our assumption both are
continuous), F1 and F2 must be equal everywhere. In case (b), with φF given by (10), the fact
that φF1(t) = φF2(t) for almost all t ∈ (0, c) implies that, for almost all u ∈ (0, 1),

∫ 1

u

[F−1
1 (un) − F−1

1 (u)] dun =
∫ 1

u

[F−1
2 (un) − F−1

2 (u)] dun.
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With φF as given in (12), we analogously obtain

∫ 1

u

F−1
1 (un) − F−1

1 (u)

1 − qun

dun =
∫ 1

u

F−1
2 (un) − F−1

2 (u)

1 − qun

dun.

Nagaraja and Barlevy (2003) have shown that this implies the existence of a constant c such
that F−1

1 (u) = F−1
2 (u) + c, or F1(x) = F2(x − c).

Remark 5. From the proof above, we can further deduce what happens when we relaxAssump-
tion 2, i.e. when we assume that G−1

0 (0) > 0. By the Titchmarsh (1926) convolution theorem,
for any solution b(w) to (15) there exists a value c∗ such that a(x) = 0 for all x ∈ (0, c∗) and
b(x) = 0 for all x ∈ (0, c − c∗). However, without making Assumption 2, we can conclude
only that c∗ ≤ − ln(1 − qG−1

0 (0)). Consequently, we can deduce that φ(t) = b(c− t) = 0 for
almost all t ∈ (− ln(1 − qG−1

0 (0)), c) and, hence, that φF1((1 − e−t )/q) = φF2((1 − e−t )/q)

for almost all t ∈ (− ln(1 − qG−1
0 (0)), c). In case (a) it would therefore follow that F1(x) =

F2(x) for x > F−1(G−1
0 (0)), and in case (b) it would follow that F1(x) = F2(x − c) for

x > F−1(G−1
0 (0)). In other words, we can generalize Proposition 4 to imply that the moment

sequences in the statement of the proposition uniquely characterize the distribution F over the
range (F−1(G−1

0 (0)), ∞).

4. Results in the general case

We now move to the general case of any arbitrary mapping � that satisfies Assumptions 1
and 2. In this case, it will no longer be true that record moments alone characterize the
distribution F . However, record moments together with the distribution of the number of
records do characterize F . We begin with the following lemma.

Lemma 2. In the modified GRR model, the sequence {Pr(N = nj ), j ≥ 1}, for any increasing
sequence of positive integers nj such that

∑∞
j=1 n−1

j = ∞, uniquely determines the probability
mass function of N .

Proof. Consider two modified GRR models with respective CDFs F1 and G1 and F2 and
G2. If Pr(N = nj ) remains the same for these two models, from (1) we have

∫ 1

0

1 − q

1 − qu

[
ln

(
1 − qu

1 − q

)]nj −1[g1(F
−1
1 (u))

f1(F
−1
1 (u))

− g2(F
−1
2 (u))

f2(F
−1
2 (u))

]
du = 0.

Set t = ln((1 − qu)/(1 − q)) and rewrite the equation above as

∫ − ln(1−q)

0
h1(t)t

nj −1 dt = 0.

Since − ln(1 − q) < ∞, the Müntz–Szász theorem is applicable and it thus follows that
h1(t) = 0 almost everywhere or

g1(F
−1
1 (u))

f1(F
−1
1 (u))

= g2(F
−1
2 (u))

f2(F
−1
2 (u))

(16)

for almost all u ∈ (0, 1). Again, upon appealing to (1) we conclude that Pr(N = n) and, thus,
Pr(N ≥ n) remain the same for all n ≥ 1 under the two models.
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Proposition 5. Suppose that Assumptions 1 and 2 are satisfied and that E(|X2|) < ∞.

(a) If two distributions F1 and F2 give rise to the same sequences {E(Rn | N ≥ n), n =
n1, n2, . . .} and {Pr(N = n), n = n1, n2, . . .}, where {nj , j ≥ 1} is an increasing
sequence of positive integers and

∑
j n−1

j = ∞, then F1 = F2 and G1 = G2.

(b) If two distributions F1 and F2 give rise to the same sequences {E(Rn − Rn−1 | N ≥ n),

n = n1, n2, . . .} and {Pr(N = n), n = n1, n2, . . .}, where {nj , j ≥ 1} is an increasing
sequence of positive integers and

∑
j n−1

j = ∞, then F1(x) = F2(x − c) and G1(x) =
G2(x − c) for some constant c.

Proof. Since both F1 and F2 give rise to the same sequence {Pr(N = nj ), j ≥ 1} where∑
j n−1

j = ∞, from Lemma 2 and (16) we conclude that the Pr(N ≥ n) also match for n ≥ 1,
and that, for almost all u ∈ (0, 1),

g1(F
−1
1 (u))

f1(F
−1
1 (u))

= g2(F
−1
2 (u))

f2(F
−1
2 (u))

.

Let us write this common function as g0(u). In contrast to in the previous section, g0(u) now
depends on the sequence {Pr(N = nj )} as opposed to being a stand-alone function.

Recall that all four moment sequences above can respectively be written as

∫ 1

0

∫ un−1

0

[− ln((1 − qun−1)/(1 − qu1))]n−3

(n − 3)! Pr(N ≥ n)
g0(u1)φF (un−1)

qdu1

1 − qu1

qdun−1

1 − qun−1

for an appropriately defined φF . Using the change of variables

t = − ln(1 − qun−1) �⇒ ds = qdun−1

1 − qun−1
, un−1 = 1 − e−t

q
,

s = − ln(1 − qu1) �⇒ dt = qdu1

1 − qu1
, u1 = 1 − e−s

q
,

c = − ln(1 − q),

we can rewrite this expression as

∫ c

0

∫ c

s

g0

(
1 − e−s

q

)
φF (t)

(t − s)n−3

(n − 3)! Pr(N ≥ n)
dt ds.

Setting ω = t − s, we can further rewrite this expression as

∫ c

0

∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF (t)

ωn−3

(n − 3)! Pr(N ≥ n)
dt dω.

Let us define

ηF (ω) =
∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF (t) dt,

and let F1 and F2 denote two continuous CDFs that give rise to the same sequences. Define N1
to be the number of records when X2 is distributed according to F1, and N2 to be the number
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of records when X2 is distributed according to F2. If F1 and F2 give rise to the same moment
sequences, then

1

(n − 3)! Pr(N1 ≥ n)

∫ c

0
ηF1(ω)ωn−3 dω = 1

(n − 3)! Pr(N2 ≥ n)

∫ c

0
ηF2(ω)ωn−3 dω.

Since Pr(N1 ≥ n) = Pr(N2 ≥ n), it follows that∫ c

0
ηF1(ω)ωn−3 dω =

∫ c

0
ηF2(ω)ωn−3 dω

and, thus, by the Müntz–Szász theorem, that ηF1(ω) = ηF2(ω) almost everywhere, i.e.∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF1(t) dt =

∫ c

ω

g0

(
1 − e−(t−ω)

q

)
φF2(t) dt.

As in the proof of Proposition 4, we rely on the Titchmarsh (1926) convolution theorem to
establish that φF1(t) = φF2(t) almost everywhere, from which we conclude that F1 = F2 in
case (a) and F−1

1 (u) = F−1
2 (u) + c in case (b).

Next, in case (a), we use the fact that F1(x) = F2(x) and the fact (from Lemma 2) that

g1(F
−1
1 (u))

f1(F
−1
1 (u))

= g2(F
−1
2 (u))

f2(F
−1
2 (u))

for almost all u to conclude that

g1(F
−1
1 (u)) = g2(F

−1
2 (u))

for almost all u ∈ (0, 1). Hence,

G1(x) =
∫ x

F−1
1 (0)

g1(x) dx =
∫ x

F−1
2 (0)

g2(x) dx = G2(x),

as claimed.
In case (b), we use the fact that F−1

1 (u) = F−1
2 (u) + c for all u to conclude that

g1(F
−1
2 (u) + c)

f1(F
−1
2 (u) + c)

= g2(F
−1
2 (u))

f2(F
−1
2 (u))

for almost all u ∈ (0, 1). Also, since F2(x) = F1(x +c) implies that f2(x) = f1(x +c) almost
everywhere, it follows that f1(F

−1
2 (u) + c) = f2(F

−1
2 (u)) for almost all u ∈ (0, 1). Hence,

we have
g1(F

−1
2 (u) + c)

f2(F
−1
2 (u))

= g2(F
−1
2 (u))

f2(F
−1
2 (u))

.

This implies that, for almost every u ∈ (0, 1),

g1(F
−1
2 (u) + c) = g2(F

−1
2 (u))

and, hence,

G1(x + c) =
∫ x+c

F−1
2 (0)+c

g1(x) dx =
∫ x

F−1
2 (0)

g2(x) dx = G2(x),

which implies that G−1
1 (u) = G−1

2 (u) + c. This completes the proof.
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By a similar argument, we can show that the proposition above remains true if we condition
on the event that N = n rather than on the event that N ≥ n.

Remark 6. If � is known then, once we identify F , we can also recover G = �(F). However,
Proposition 5 implies that G is itself characterized by the sequences {E(Rn | N ≥ n)} and
{Pr(N = n)}. Hence, we can independently verify whether the distribution �(F) at the F we
identify is the same as the distribution G directly implied by the moment sequences and the
distribution of N .

5. Characterization results across GRR models

The modified GRR model we study can be summarized by a triple {�, F, q}. So far, we have
implicitly focused on results that characterize F within a given model. That is, for a given q

and �, we showed that there is at most one F for which the model is consistent with a given
sequence of record moments and a given distribution for N . In this section, we ask whether it is
possible to characterize the model itself as opposed to the distribution F within a given model.
We show that if two modified GRR models, {�1, F1, q1} and {�2, F2, q2}, yield the same record
moments and the same distribution for the number of records, then q1 = q2, F1 = F2, and
�1(F1) = �2(F2). In other words, the sequences considered in Proposition 5 characterize not
only F and G but also the particular geometric distribution of M .

Proposition 6. Suppose that two models, {�1, F1, q1} and {�2, F2, q2}, both satisfy Assump-
tions 1 and 2, and that E(|X2|) < ∞ in both models. Let G1 = �1(F1) and G2 = �2(F2), and
assume that

∑
j n−1

j = ∞.

(a) If {�1, F1, q1} and {�2, F2, q2} give rise to the same sequence {Pr(N = nj ), j ≥ 1},
then q1 = q2 and (16) holds, i.e.

g1(F
−1
1 (u))

f1(F
−1
1 (u))

= g2(F
−1
2 (u))

f2(F
−1
2 (u))

for almost all u ∈ (0, 1).

(b) If, in addition to the condition in (a), the two GRR models give rise to the same sequence
{E(Rn | N ≥ n), n = n1, n2, . . .}, then G1 = G2 and F1 = F2.

(c) If, in addition to the condition in (a), the two GRR models give rise to the same sequence
{E(Rn − Rn−1 | N ≥ n), n = n1, n2, . . .}, then there exists a c such that G1(x) =
G2(x − c) and F1(x) = F2(x − c).

Proof. We prove (a). The two remaining claims then follow from Proposition 5.
Since both {G1, F1, q1} and {G2, F2, q2} give rise to the same sequence {Pr(N = n)}, for

n = n1, n2, . . . we have

∫ 1

0

1 − q1

1 − q1u

[
ln

(
1 − q1u

1 − q1

)]n−1 g1(F
−1
1 (u))

f1(F
−1
1 (u))

du

=
∫ 1

0

1 − q2

1 − q2u

[
ln

(
1 − q2u

1 − q2

)]n−1 g2(F
−1
2 (u))

f2(F
−1
2 (u))

du.
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Set t = ln((1 − q1u)/(1 − q1)) on the left-hand side and t = ln((1 − q2u)(1 − q2)) on the
right-hand side. We can then rewrite the equation above as

∫ − ln(1−q1)

0

1 − q1

q1

g1(F
−1
1 ([1 − (1 − q1)et ]/q1))

f1(F
−1
1 ([1 − (1 − q1)et ]/q1))

tn−1 dt

=
∫ − ln(1−q2)

0

1 − q2

q2

g2(F
−1
2 ([1 − (1 − q2)et ]/q2))

f2(F
−1
2 ([1 − (1 − q2)et ]/q2))

tn−1 dt.

Let us rewrite this equation as

∫ − ln(1−q1)

0
h1(t)t

n−1 dt =
∫ − ln(1−q2)

0

q1

q2

1 − q2

1 − q1
h2(t)t

n−1 dt.

We now proceed to prove the claim by contradiction. Suppose, without loss of generality, that
q2 > q1. Then

− ln(1 − q2) > − ln(1 − q1).

Define

ĥ1(t) =
{

h1(t) if t ≤ − ln(1 − q1),

0 if t ∈ (− ln(1 − q1), − ln(1 − q2)).

Then ∫ − ln(1−q2)

0
ĥ1(t)t

n−1 dt =
∫ − ln(1−q2)

0

q1

q2

1 − q2

1 − q1
h2(t)t

n−1 dt

for all n = 1, 2, . . . . By the Müntz–Szász theorem, it follows that

ĥ1(t) = q1

q2

1 − q2

1 − q1
h2(t) for almost all t ∈ (0, − ln(1 − q2)),

which implies that h2(t) = 0 for almost all t ∈ (− ln(1 − q1), − ln(1 − q2)). However, this
implies that g2(x) = 0 for almost all x ∈ [F−1

2 (0), F−1
2 ((q2 − q1)/[q2(1 − q1)])], which

violates Assumption 2.
Given q1 = q2 ≡ q, the fact that both {G1, F1, q} and {G2, F2, q} give rise to the same

sequence {Pr(N = nj )} implies, in view of Lemma 2, that (16) holds.

6. Application

Finally, we turn to applications of our results, specifically estimation of job search models that
have been successfully applied by economists to study labor markets. In particular, we show that
the offer distribution is identified in a larger class of models than was previously demonstrated
in work by Nagaraja and Barlevy (2003) and Barlevy (2005). For a more comprehensive review
of the literature on the identification and estimation of these models, see Eckstein and van den
Berg (2006).

Consider the following job search model, which is frequently used in labor economics.
At any point in time, a worker can be either employed or unemployed. While unemployed,
a worker receives a fixed dollar amount X∗ per unit time (which may be 0). This amount
reflects unemployment benefits, as well as the monetary value of the leisure she enjoys while
not working. Employed and unemployed workers encounter employers at a constant rate λ per
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unit time. Each time a worker encounters an employer, the latter offers her a wage of X that
is drawn independently from a continuous offer distribution F . The worker must then choose
whether to stay in her current job (or remain unemployed) or to accept the new offer and change
employers (or leave unemployment). In addition, a worker can lose her job, an event that occurs
at constant rate δ whenever she is employed. When a worker loses her job, she cannot recall
any of her past offers, and instead becomes unemployed. Workers are assumed to maximize
their earnings. Hence, the optimal strategy for an employed worker is to only accept offers that
surpass her current wage. Similarly, while unemployed, the worker should only accept offers
that exceed X∗. We assume that F−1(0) ≥ X∗, i.e. all employers offer at least X∗ (otherwise
their offers would never be accepted).

Let M denote the number of job offers a worker receives between intervening spells of
unemployment, and index the offers, according to the order in which they arrive, so that Xi

denotes the ith offer since the worker was last unemployed. Barlevy (2005) showed that M will
have a geometric distribution, i.e. Pr(M = m) = qm−1p, where p = δ(δ+λ)−1 and q = 1−p.
Given the worker’s strategy, the wages for the jobs the worker accepts correspond to records
from the sequence {Xi, 1 ≤ i ≤ M}. In the typical data-sets economists use, workers are only
queried on the jobs they work on, not on job offers they have received but turned down. Thus,
the only available data consists of Rn, 1 ≤ n ≤ N , the record offers the worker received since
her last unemployment spell, not the original offers, Xi, 1 ≤ i ≤ M , or even the number of
offers, M . A question of interest for economists is whether this data can be used to identify the
offer distribution F .

Since R1 = X1, the distribution F is obviously identified from the empirical distribution of
wages of workers on the first job. However, a key obstacle in applying the model to real-world
data is that, empirically, a considerable number of workers voluntarily move into lower-wage
jobs, in direct violation of the model. To resolve this discrepancy, economists have argued
that wages in the data are a noisy version of wages in the model, i.e. we observe not Rn but
Rn + εn for some random variable εn with E(εn) = 0. The εn can be viewed as measurement
errors, but alternative interpretations for this term have been offered (see Barlevy (2005) for a
discussion). Once we assume that we only observe Rn + εn, we can no longer identify F from
the distribution of X1. Previous work, as summarized in Eckstein and van den Berg (2006),
resorted to parametric assumptions on F and the distribution of ε to proceed with estimation. By
contrast, Nagaraja and Barlevy (2003) and Barlevy (2005) argued that characterization results
for the GRR model imply that F is identified nonparametrically, since it is possible to recover
E(Rn) from noise-ridden data.

However, in order to apply this identification result, we need to keep track of all jobs between
spells of unemployment, so that we can determine which record number n each job represents.
Unfortunately, this is not possible in many data-sets. In particular, many surveys collect data on
workers who are already employed. For those workers, we have no way of classifying which
record number to assign to the jobs we observe for them. Although we could wait until the
worker is next unemployed, unemployment is often a sufficiently low-probability event that a
large part of the data would have to be thrown out. The results of this paper suggest a way to
incorporate data for workers who are already employed. In particular, we know from previous
work on search models, e.g. Burdett and Mortensen (1998), that the economy described by this
model converges in the limit to a steady state in which the fraction of all employed workers
who earn a wage of x or less is equal to

G(x) = F(x)

1 + λ/δ(1 − F(x))
. (17)
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Moreover, the number of offers the worker receives, starting from any job, continues to have
a geometric distribution. Thus, as long as the economy we consider is in its steady state,
the wages on the jobs we observe for a randomly chosen employed worker will correspond
to records from a sequence {Xi, 1 ≤ i ≤ M} where M has a geometric distribution, X1 is
distributed according to G as defined in (17), and X2, . . . , XM are distributed according to F .
Since G ≡ G0(F (x)) with a known G0, we can appeal to Proposition 4 to argue that average
wages or average wage changes identify the wage offer distribution F . For example, if the
average wage gains of workers is constant regardless of how many jobs they have had since the
first job we observe them in, the wage offer distribution must be exponential.

More generally, our results can be applied whenever the distribution of the wages in the first
job we observe for a worker differs from the offer distribution F . For example, some surveys
focus on low-wage workers, using the initial earnings of a worker as a criterion for selection
into the survey. In this case, even if we could track workers from their very first job out of
unemployment, the distribution of wages on the worker’s first job would correspond to

G(x) =
{

F(x)/z if F(x) < z,

1 otherwise,

where z reflects the percentile of the threshold wage workers must earn within the wage offer
distribution to qualify for the survey. Once again, we can appeal to Proposition 4 to argue that
average wages or average wage changes identify the offer distribution F .

Discrepancies between the wages in the first job we observe for a worker and the offer
distribution F are not confined to sampling issues. Suppose that we can track workers from
the first job out of unemployment and that no wages are censored, but that the amount, X∗, that
workers earn while unemployed varies across workers. For example, they might enjoy leisure
differently, or they might earn different unemployment benefits (which is not unreasonable,
given that these often depend on what the worker earned in her last job before becoming
unemployed). Let H(x) denote the fraction of workers for whom X∗ is x or less, and suppose
that H−1(0) ≤ F−1(0). Workers for whom X∗ is bigger than x will hold out for a higher wage
before they accept a job offer. The wages in the first job out of unemployment for a worker
chosen at random from H is now given by

G(x) =
∫ x

−∞ H(w) dF(w)∫ ∞
−∞ H(w) dF(w)

=
∫ F(x)

0 H(F−1(u)) du∫ 1
0 H(F−1(u)) du

. (18)

Workers continue to draw offers from F at rate λ, so the wages of a worker chosen at random
between two consecutive unemployment spells will correspond to records from a sequence
{Xi, 1 ≤ i ≤ M} where M has a geometric distribution, X1 is distributed according to G

as defined in (18), and X2, . . . , XM are distributed according to F . Since G(x) cannot be
represented as G0(F (x)) for some function G0, we must appeal to Proposition 5 to argue
that average wages or average wage changes, together with the distribution of the number of
jobs workers hold between unemployment spells, identify F . If the distribution of reservation
wages, H , is itself unknown, then Proposition 5 implies that we can also identify the distribution
of wages of workers on their first job G. It is easily demonstrated that, given F and G, we
can recover H . Thus, when workers have different reservation wages, not only is the common
offer distribution, F , they face still identified, but so is the distribution of X∗ across workers.
Thus, we could infer the distribution of how much workers value leisure from the extent of job
mobility we observe for them once they become employed. Lastly, Proposition 6 tells us that
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we do not need to know the ratio λ/δ in advance to identify F , since we can recover it from data
on N , i.e. the distribution of how many jobs workers hold between consecutive unemployment
spells. For an empirical implementation of these ideas using panel data on young workers, see
Barlevy and Nagaraja (2006).
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