A generalization of Lagrange multipliers

B. D. Craven

The method of Lagrange multipliers for solving a constrained stationary-value problem is generalized to allow the functions to take values in arbitrary Banach spaces (over the real field). The set of Lagrange multipliers in a finite-dimensional problem is shown to be replaced by a continuous linear mapping between the relevant Banach spaces. This theorem is applied to a calculus of variations problem, where the functional whose stationary value is sought and the constraint functional each take values in Banach spaces. Several generalizations of the Euler-Lagrange equation are obtained.

1. Constrained stationary points in a Banach space

Let $f: U \to Y$ and $h: U \to Z$ be Fréchet-differentiable maps, where X, Y, Z are Banach spaces and U is an open subset of X. Under some additional restrictions Theorem 1 gives a necessary and sufficient condition for stationarity of f(x) subject to h(x) = 0. The proof depends on three preliminary lemmas.

LEMMA 1. Let S, U_0 , V_0 be real Banach spaces; let $A : S \neq U_0$ and $B : S \neq V_0$ be continuous linear maps, whose null spaces are N(A)respectively N(B); let $N(A) \subset N(B)$; let A map S onto U_0 . Then there exists a continuous linear map $C : U_0 \neq V_0$ such that $B = C \circ A$.

Proof. Let p denote the projector of S onto the factor space S/N(A); define $A_0: S/N(A) \Rightarrow U_0$ by $A_0(x+N(A)) = Ax$; then A_0 is a

Received 10 August 1970.

353

continuous bijection of S/N(A) onto U_0 . So A_0^{-1} exists, continuous by Banach's bounded inverse theorem. Define similarly B_0 : $S/N(B) + V_0$. Since $N(A) \subseteq N(B)$, S/N(B) is a subspace of S/N(A); let q denote the projector of S/N(A) onto S/N(B). Define $C = (B_0 \circ q) \circ A_0^{-1}$; then $C \circ A = B_0 \circ q \circ A_0^{-1} \circ A = B_0 \circ q \circ p = B$.

LEMMA 2. (Bartle [1]). Let X_1 and Z be real Banach spaces; S_1 the closed ball in X_1 with centre x_0 , radius α ; $\phi : S_1 \rightarrow Z$ a continuously Fréchet-differentiable map, whose Fréchet derivative $\phi'(x_0)$ is invertible, and satisfies $\|\phi'(x_0)\| < \frac{1}{2}\rho < \infty$. Then there exists a constant β such that, if $\|\phi(x_0)\| < \beta/\rho$, then the equation $\phi(x) = 0$ has one and only one solution \bar{x} satisfying $\|\bar{x}-x_0\| \leq \beta$.

DEFINITION 1. The linear map $M: X \neq Z$, where X and Z are real Banach spaces, has full rank if there are subspaces X_1, X_2 of X with $X = X_1 + X_2$, $X_1 \cap X_2 = \{0\}$, $\{0\} \neq \overline{X}_1 \neq X$, such that the restriction of M to X_1 is a bijection of X_1 onto Z. $(\overline{X}_1 = \text{closure of } X_1 .)$

REMARK. If X and Z have finite dimensions $n, m \quad (m < n)$, then M has full rank iff the matrix representing M has rank m.

LEMMA 3. Let X, Z be real Banach spaces; S an open ball in X with centre 0; $h: S \neq Z$ a continuously Fréchet-differentiable map, for which h'(0) has full rank, and h(0) = 0. Then to each vector b such that h'(0)b = 0, ||b|| = 1 and each sufficiently small $\lambda > 0$, there exists a solution $x = \lambda b + u$ of h(x) = 0, where $||u|| = o(|\lambda|)$; and conversely every solution of h(x) = 0 for which ||x|| is sufficiently small is of this form.

Proof. If X is a direct sum $X_1 + X_2$, express $x \in X$ as x = v + w with $v \in X_1$, $w \in X_2$. Since h'(0) has full rank, h'(0)x = Av + Bw where A and B are continuous linear maps and A is invertible. For fixed w, define $\phi : \overline{X}_1 \to Z$ by $\phi(v) = h(v, w)$; then $\phi'(0) = A$, which is invertible, and $\|\phi(0)\| = \|h(0, w)\| < s$ if
$$\begin{split} \|w\| &< \Delta(s) \leq s \text{ say, since } h \text{ is continuous. So by Lemma 2, for each} \\ \varepsilon &\leq \beta \text{, } \phi(v) = 0 \text{ has a unique solution } v = v(w) \text{, with } \|v-0\| < \varepsilon \text{, if} \\ \|w\| &< \Delta(\varepsilon/\rho) \text{ (where } \Delta(\varepsilon/\rho) \leq \varepsilon/\rho \text{ may be assumed). Since } h \text{ is differentiable} \end{split}$$

$$0 = h(v(\omega), \omega) = Av + B\omega + \psi(v, \omega) ,$$

where $\|\psi(v, w)\| \leq \varepsilon(\|v\| + \|w\|)$ if $\|v\| + \|w\| < \delta(\varepsilon)$.

Choose $\varepsilon < \frac{1}{2} ||A^{-1}||^{-1}$ and $\varepsilon' \le \varepsilon$ such that $\varepsilon' (1+\rho^{-1}) < \delta(\varepsilon)$; if $||w|| < \Delta(\varepsilon'/\rho)$ then $||v|| + ||w|| < \varepsilon' + \varepsilon'/\rho < \delta(\varepsilon)$; hence

$$\|v\| = \|A^{-1}B\omega + A^{-1}\psi\| \le \|A^{-1}B\|\|\omega\| + \|A^{-1}\|\varepsilon(\|v\| + \|\omega\|) ,$$

hence

$$\|v\| \leq \left(\|A^{-1}B\| + \varepsilon \|A^{-1}\| \right) \|w\| / \left(1 - \varepsilon \|A^{-1}\| \right) < \left(2\|A^{-1}B\| + 1 \right) \|w\| .$$

Therefore, taking any smaller ϵ and ϵ' ,

$$\|\psi(v(w), w)\| \le \varepsilon(\|v\| + \|w\|) < \varepsilon(2\|A^{-1}B\| + 2)\|w\| = o(\|w\|)$$

So h(x) = 0 has a solution

$$x = v + w = -A^{-1}Bw + w - A^{-1}\psi(v(w), w) = -\lambda b + u$$

where $\lambda = \|-A^{-1}B\omega + \omega\|$, $b = \lambda^{-1}(-A^{-1}B\omega + \omega)$, so h'(0)b = 0, and $\|u\| = o(|\lambda|)$; and any vector b such that h'(0)b = 0 is necessarily of the form $-A^{-1}B\omega + \omega$ for some $\omega \in X_2$, since then $-A^{-1}B\omega \in X_1$.

REMARK. If X and Z are finite-dimensional, then an application of Brouwer's fixed-point theorem proves Lemma 3 for h differentiable only, not necessarily continuously differentiable. (Differentiable is here taken to imply that the Fréchet derivative is a continuous linear mapping from X into Z.)

THEOREM 1. Let X, Y, Z be real Banach spaces; U an open subset of X; $f: U \rightarrow Y$ a Fréchet-differentiable map, and $h: U \rightarrow Z$ a continuously Fréchet-differentiable map; assume (by restricting Y and Z) that f(U) is dense in Y and h(U) is dense in Z. Let $E = \{x \in U : h(x) = 0 \text{ and } h'(x) \text{ has full rank}\}$. Then f(x) is stationary, subject to the constraint h(x) = 0, at $x = a \in E$ if and only if there is a continuous linear map $M : Z \rightarrow Y$ such that

 $(*) \qquad f'(a) = M \circ h'(a) .$

REMARKS. f(x) stationary means $f(x-\delta) - f(a) = o(||x-a||)$.

(*) is equivalent to the stationarity at x = a of $f(x) - M \circ h(x)$ without constraints.

If Y = R and $Z = R^{m}$ then M reduces to a set of m constraints, the usual Lagrange multipliers.

E is relatively open in $\{x : h(x) = 0\}$.

Proof. For $a \in E$, $f(x) - f(a) = f'(a)(x-a) + \xi$ where $\|\xi\| = o(\|x-a\|)$. By Lemma 3, h(x) = 0 for x in a sufficiently small neighbourhood of a if and only if $x - a = \lambda b + \eta$ where h'(a)b = 0, $\|b\| = 1$, and $\|\eta\| = o(|\lambda|)$; and then

$$f(x) - f(a) = \lambda f'(a)b + f'(a)\eta + \xi = \lambda f'(a)b + o(|\lambda|)$$

since f'(a) is a continuous linear map. Hence, for $a \in E$,

 $\begin{aligned} f(x) & \text{ is stationary at } x = a \text{ , subject to the constraint } h(x) = 0 \\ \Leftrightarrow & \left(h'(a)b = 0 \Rightarrow f'(a)b = 0\right) \end{aligned}$

 \Leftrightarrow there is a continuous linear map $M : Z \to Y$ such that $f'(a) = M \circ h'(a)$, by Lemma 1.

2. Calculus of variations in Banach spaces

Let V, S, W be (real) Banach spaces, $I = [\alpha, b]$ a compact real interval, and $F : I \times V \times V \rightarrow S$ and $H : I \times V \times V \rightarrow W$ continuously Fréchet-differentiable maps. Let Q be a set of continuously Fréchet-differentiable functions $y : I \rightarrow V$, such that $y(b) = \beta$ and $y(\alpha) = \alpha$ for all $y \in Q$, and such that the vector space Q - Q contains $\xi(\cdot)e$ for each fixed $e \in V$ and each continuously differentiable real function ξ which vanishes on the boundary of I. Let f and hdenote the maps defined, for $y \in Q$, by the Bochner integrals

$$f(y) = \int_{I} F(t, y(t), y'(t)) dt ; h(y) = \int_{I} H(t, y(t), y'(t)) dt .$$

Denote by F_{μ} and F_{μ} , the partial Fréchet derivatives of F with

respect to its second and third arguments; for $t \in I$, $y \in Q$, denote $F_{y}[t, y] = F_{y}\{t, y(t), y'(t)\}$ and similarly for $F_{y'}[t, y]$; denote also

$$F^{+}[t, y] = \int_{a}^{t} F_{y}[\tau, y] d\tau ; \quad F^{*}[t, y] = -F^{+}[t, y] + F_{y}, [t, y] .$$

Denote by S_0 (respectively W_0) the closure of the range of $f'(y) : Q - Q \neq S$ (respectively $h'(y) : Q - Q \neq W$).

Since F is Fréchet-differentiable, so is f , and, for $y \in Q$, $\eta \in Q - Q$,

$$f'(y)n = \int_{I} \left(F_{y}[t, y]n(t) + F_{y}, [t, y]n'(t) \right) dt$$
$$= -\int_{I} F^{\dagger}[t, y]n'(t) dt + F^{\dagger}[b, y] \left(n(b) - n(a) \right) + \int_{I} F_{y}, [t, y]n'(t) dt$$
integrating by parts using Theorem 2 of [2]

$$= \int_{I} F^{*}[t, y]n'(t)dt + 0 .$$

LEMMA 4. For fixed $y \in Q$, $\int_{I} F^{*}[t, y]n'(t)dt = 0$ for each $n \in Q - Q \iff F^{*}[t, y] = 0$ for each $t \in I$.

Proof. Let P be the projector of S onto the one-dimensional subspace spanned by the vector $s \in S$; substitute $\eta(t) = \xi(t)e$ where $e \in V$ and $\xi(\cdot)$ is a continuously differentiable real function on I. Then, for fixed y, $P \circ F^*[t, y]\eta'(t) = \alpha(t)\xi'(t)s$, where $\alpha(\cdot)$ is a continuous function (with y as parameter). If the first statement of the lemma holds, then $\int_I \alpha(t)\xi'(t)dt = 0$ for each continuously differentiable $\xi(\cdot)$ which vanishes at a and b. By [4], page 10, Lemma 2, $\alpha(t) = 0$ for each t; therefore $P \circ F^*[t, y]e = 0$; so, since s and e are arbitrary, $F^*[t, y] = 0$. The converse is immediate.

THEOREM 2. Let F and h be as defined above; let E denote the set of $y \in Q$ such that h'(y) has full rank. Then f(y) is stationary, subject to the constraint h(y) = 0, at $a \in E$ if and only if there is a continuous linear map $M : W_0 \rightarrow S_0$ such that, at y = a,

$$\frac{d}{dt}K_{y},[t, y] = K_{y}[t, y], \text{ where } K = F - M \circ H.$$

Proof. By Theorem 1, f(y) is stationary, given h(y) = 0, at y = a if and only if there is a continuous linear map $M: W_0 \neq S_0$ such that $f(y) - M \circ h(y)$ has zero Fréchet derivative at y = a. Then (in the notation preceding Lemma 4)

$$(f'(y)-M \circ h'(y))\eta = \int_{I} K^{*}[t, y]\eta'(t)dt$$

By Lemma 4, this vanishes for all $\eta \in Q - Q$ if and only if, for all $t \in I$

$$K^{*}[t, y] = -\int_{\alpha}^{t} K_{y}[\tau, y] d\tau + K_{y}[\tau, y] = 0 .$$

If so, then $(d/dt)K_{u'}[t, y]$ exists, as a Fréchet derivative, and

$$\frac{d}{dt} K_{y}, [t, y] = K_{y}[t, y] .$$

The converse is immediate.

REMARK. Theorem 2 has a partial generalization where I is replaced by a bounded closed subset of \mathbb{R}^p (*p*-space), with boundary ∂I ; and the boundary condition on $y \in Q$ becomes $y(\cdot) = \rho(\cdot)$ on ∂I , where ρ is a given function. Then $y' = (y'_1, \ldots, y'_p)$ and $\eta' = (\eta'_1, \ldots, \eta'_p)$

become p-vectors, mapping \mathbb{R}^p into V, and F and H become functions of t, y, y'_1, \ldots, y'_p . The proof depends on a Banach-space generalization of the Gauss-Green theorem, given in [2], Theorem A.

Let $\Phi(\cdot)$ denote the measure of (p-1)-dimensional surface area, used in [2]. Call a subset $E_0 \subset \mathbb{R}^p$ thin if $\Phi(E) < \infty$ and E_0 is a countable union of disjoint continuous images of the unit sphere in \mathbb{R}^p . (It follows that the p-dimensional Lebesgue measure of E_0 is zero.)

THEOREM 3. Let f and h be as in Theorem 2, but with the compact interval I replaced by a compact subset of R^p whose boundary ∂I is thin; let I_o be a thin subset of the interior of I; let Q be a set

https://doi.org/10.1017/S0004972700046050 Published online by Cambridge University Press

of continuously Fréchet-differentiable functions $y : I \rightarrow V$, such that $y(t) = \rho(t)$ for $t \in \partial I$, $\rho(\cdot)$ being a given function. Let E denote the set of $y \in Q$ such that h'(y) has full rank.

For i = 1, 2, ..., p let the partial Fréchet derivative

$$\frac{\partial}{\partial t_i} F_{y_i}[t, y]$$

exist at each point of $I - I_0$, and have norm integrable over I, with respect to p-dimensional Lebesgue measure. Let H satisfy similar hypotheses to F.

Then f(y) is stationary, subject to the constraint h(y) = 0, at $y = a \in E$ if and only if there is a continuous linear map $M : W_0 \to S_0$ such that, at y = a,

$$\operatorname{div}_{y}(t, y) = K_{y}(t, y)$$

where $K = F - M \circ H$, K_y , is the vector in \mathbb{R}^p whose *i*-th component is $K_{y'_i}$, and

$$\operatorname{div}_{X_{y}}[t, y] = \sum_{i=1}^{p} \frac{\partial}{\partial t_{i}} K_{y_{i}}[t, y] .$$

Proof. By Theorem 1, f(y) is stationary, given h(y) = 0, at $y = a \in E$ if and only if $f(y) - M \circ h(y)$ has zero Fréchet derivative at y = a. Since the partial Fréchet derivatives $(\partial/\partial t_i)K_{y'}$ exist,

$$\sum_{i=1}^{p} K_{y_{i}}[t, y]n_{i}'(t) = \operatorname{div}\{K_{y_{i}}[t, y]n(t)\} - \{\operatorname{div}K_{y_{i}}[t, y]\}n(t)$$

For $y \in Q$, $\eta \in Q - Q$, and dt denoting p-dimensional Lebesgue measure,

$$(f'(y) - M \circ h'(y)) \eta = \int_{I} \left(K_{y}[t, y] \eta(t) + \sum_{i=1}^{p} K_{y_{i}}[t, y] \eta_{i}'(t) \right) dt$$

=
$$\int_{I} \left(K_{y}[t, y] - \operatorname{div} K_{y}[t, y] \eta(t) dt \right),$$

since by [2], Theorem A,

$$\int_{I} \operatorname{div}\{K_{y}, [t, y]n(t)\}dt$$

equals an integral of $K_{y},[t,\,y]\eta(t)$ over ∂I , and $\eta(t)=0$ for $t\in\partial I$.

Since η is an arbitrary member of Q,

$$f'(y) - M \circ h'(y) = 0 \iff K_y[t, y] - \operatorname{div}K_y[t, y] = 0$$

3. An application

Let $V = S = W = S_0 = W_0 = C(J)$, the space of all continuous complex functions on J = [0, 1]; let I = [a, b] be a compact real interval. If $y \in Q$ maps I into V, then y is represented by a map (also denoted y) of $I \times J$ into complex numbers; define Q by requiring that $(\forall s \in J) \ y(b, s) = \beta$ and $y(a, s) = \alpha$; $(\forall s) \ y(\cdot, s)$ is continuously differentiable, and $(\forall t \in I) \ y(s, \cdot)$ is continuous. Let $P(\cdot, \cdot, \cdot, \cdot)$ be a continuously differentiable function of three real variables. For each $s \in J$, let $w(\cdot, s)$ be a (complex) measure on $I \times J$, which is weak-*-continuous in $s \in J$ and satisfies

$$\sup_{s \in J} \|\omega(\cdot, s)\| < \infty$$

(where norm of a measure means total variation). For $u, v \in Q$, $s \in J$, $t \in I$, define

$$F(t, u(t), v(t))(s) = F(t, u(t, s), v(t, s)) = \int_{I \times J} P(t, u(t, \alpha), v(t, \beta)) dw((\alpha, \beta), s) .$$

Then $F(t, u(t), v(t)) \in V$, and F is continuously Fréchet-differentiable. Define H in terms of a function \overline{P} and a measure \overline{w} , satisfying similar hypotheses to P and w.

In Theorem 2, M is a continuous linear map from C(J) into C(J); so by [3], Theorem 3, $K = F - M \circ H$ has the representation

360

$$(*) \quad K\{t, y(t), y'(t)\}(s) = F\{t, y(t), y'(t)\}(s) - \int_{J} H\{t, y(t), y'(t)\}(z) dg(z, s)$$

where, for each $s \in J$, $g(\cdot, s)$ is a (complex) measure on J, weak-*-continuous in s and satisfying

$$\sup_{s \in J} \|g(\cdot, s)\| < \infty$$

Write (*) briefly as

$$K[t, y](s) = F[t, y](s) - \int_{J} H[t, y](z) dg(z, s)$$
.

Denote by D the differential operator defined by

$$DK[t, y] = \frac{d}{dt}K_{y}, [t, y] - K_{y}[t, y]$$
.

Then the criterion of Theorem 2 is formally equivalent to the following generalization of the Euler-Lagrange equation

(#)
$$DF[t, y](\cdot) = \int_J DH[t, y](z)dg(z, \cdot) .$$

Since, by Theorem 2, DK exists, (#) will be valid provided that also

$$\frac{d}{dt}H_{y}$$
,[t, y]

exists (so DH exists), and (to validate differentiation under the integral sign in (#)) is, for each $t \in I$, locally dominated by a function g-integrable on I.

References

- [1] Robert G. Bartle, "Newton's method in Banach spaces", Proc. Amer. Math. Soc. 6 (1955), 827-831.
- [2] B.D. Craven, "Two properties of Bochner integrals", Bull. Austral. Math. Soc. 3 (1970), 363-368.
- [3] B.D. Craven, "Linear mappings between topological vector spaces", (submitted for publication).

- [4] I.M. Gelfand and S.V. Fomin, Calculus of variations (Russian; translated by R.A. Silverman). (Prentice-Hall, Englewood Cliffs, New Jersey, 1963).
- [5] Kôsaku Yosida, Functional analysis, 2nd ed. (Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin, Heidelberg, New York, 1968).

University of Melbourne, Parkville, Victoria.