A generalization of Lagrange multipliers

B. D. Craven

Abstract

The method of Lagrange multipliers for solving a constrained stationary-value problem is generalized to allow the functions to take values in arbitrary Banach spaces (over the real field). The set of Lagrange multipliers in a finite-dimensional problem is shown to be replaced by a continuous linear mapping between the relevant Banach spaces. This theorem is applied to a calculus of variations problem, where the functional whose stationary value is sought and the constraint functional each take values in Banach spaces. Several generalizations of the Euler-Lagrange equation are obtained.

1. Constrained stationary points in a Banach space

Let $f: U \rightarrow Y$ and $h: U \rightarrow Z$ be Fréchet-differentiable maps, where X, Y, Z are Banach spaces and U is an open subset of X. Under some additional restrictions Theorem 1 gives a necessary and sufficient condition for stationarity of $f(x)$ subject to $h(x)=0$. The proof depends on three preliminary lemmas.

LEMMA 1. Let S, U_{0}, V_{0} be real Banach spaces; let $A: S \rightarrow U_{0}$ and $B: S \rightarrow V_{0}$ be continuous linear maps, whose null spaces are $N(A)$ respectively $N(B)$; let $N(A) \subset N(B)$; Let A map S onto U_{0}. Then there exists a continuous linear map $C: U_{0} \rightarrow V_{0}$ such that $B=C \circ A$.

Proof. Let p denote the projector of S onto the factor space $S / N(A)$; define $A_{0}: S / N(A) \rightarrow U_{0}$ by $A_{0}(x+N(A))=A x$; then A_{0} is a
continuous bijection of $S / N(A)$ onto U_{0}. So A_{0}^{-1} exists, continuous by Banach's bounded inverse theorem. Define similarly $B_{0}: S / N(B) \rightarrow V_{0}$. Since $N(A) \subset N(B), S / N(B)$ is a subspace of $S / N(A)$; let q denote the projector of $S / N(A)$ onto $S / N(B)$. Define $C=\left(B_{0} \circ q\right) \circ A_{0}^{-1}$; then $C \circ A=B_{0} \circ q \circ A_{0}^{-1} \circ A=B_{0} \circ q \circ p=B$.

LEMMA 2. (Bartle [1]). Let X_{1} and Z be real Banach spaces; S_{1} the closed ball in X_{1} with centre x_{0}, radius $\alpha ; \phi: S_{1} \rightarrow 2 a$ continuously Fréchet-differentiable map, whose Fréchet derivative $\phi^{\prime}\left(x_{0}\right)$ is invertible, and satisfies $\left\|\phi^{\prime}\left(x_{0}\right)\right\|<\frac{1}{2} \rho<\infty$. Then there exists a constant β such that, if $\left\|\phi\left(x_{0}\right)\right\|<\beta / \rho$, then the equation $\phi(x)=0$ has one and only one solution \bar{x} satisfying $\left\|\bar{x}-x_{0}\right\| \leq \beta$.

DEFINITION 1. The linear map $M: X \rightarrow Z$, where X and Z are real Banach spaces, has full rank if there are subspaces X_{1}, X_{2} of X with $X=X_{1}+X_{2}, X_{1} \cap X_{2}=\{0\},\{0\} \neq \bar{X}_{1} \neq X$, such that the restriction of M to X_{1} is a bijection of X_{1} onto Z. ($\bar{X}_{1}=$ closure of X_{1}.)

REMARK. If X and Z have finite dimensions $n, m \quad(m<n)$, then M has full rank iff the matrix representing M has rank m.

LEMMA 3. Let X, Z be real Banach spaces; S an open ball in X with centre $0 ; h: S \rightarrow Z$ a continuously Fréchet-differentiable map, for which $h^{\prime}(0)$ has full rank, and $h(0)=0$. Then to each vector b such that $h^{\prime}(0) b=0,\|b\|=1$ and each sufficiently small $\lambda>0$, there exists a solution $x=\lambda b+u$ of $h(x)=0$, where $\|u\|=o(|\lambda|)$; and conversely every solution of $h(x)=0$ for which $\|x\|$ is sufficiently small is of this form.

Proof. If X is a direct sum $X_{1}+X_{2}$, express $x \in X$ as $x=v+w$ with $v \in X_{1}, w \in X_{2}$. Since $h^{\prime}(0)$ has full rank, $h^{\prime}(0) x=A v+B w$ where A and B are continuous linear maps and A is invertible. For fixed w, define $\phi: \bar{X}_{1} \rightarrow Z$ by $\phi(v)=h(v, w)$; then $\phi^{\prime}(0)=A$, which is invertible, and $\|\phi(0) i\|=\|h(0, w)\|<s$ if
$\|w\|<\Delta(s) \leq s$ say, since h is continuous. So by Lemma 2, for each $\varepsilon \leq \beta, \phi(v)=0$ has a unique solution $v=v(w)$, with $\|v-0\|<\varepsilon$, if $\|w\|<\Delta(\varepsilon / \rho)$ (where $\Delta(\varepsilon / \rho) \leq \varepsilon / \rho$ may be assumed). Since h is differentiable

$$
0=h(v(w), w)=A v+B w+\psi(v, w)
$$

where $\|\psi(v, w)\| \leq \varepsilon(\|v\|+\|w\|)$ if $\|v\|+\|w\|<\delta(\varepsilon)$.
Choose $\varepsilon<\frac{1}{2}\left\|A^{-1}\right\|^{-1}$ and $\varepsilon^{\prime} \leq \varepsilon$ such that $\varepsilon^{\prime}\left(1+\rho^{-1}\right)<\delta(\varepsilon)$; if $\|w\|<\Delta\left(\varepsilon^{\prime} / \rho\right)$ then $\|v\|+\|w\|<\varepsilon^{\prime}+\varepsilon^{\prime} / \rho<\delta(\varepsilon) ;$ hence

$$
\|v\|=\left\|A^{-1} B w+A^{-1} \psi\right\| \leq\left\|A^{-1} B\right\|\|w\|+\left\|A^{-1}\right\| \varepsilon(\|v\|+\|w\|)
$$

hence

$$
\|v\| \leq\left(\left\|A^{-1} B\right\|+\varepsilon\left\|A^{-1}\right\|\right)\|w\| /\left(1-\varepsilon\left\|A^{-1}\right\|\right)<\left(2\left\|A^{-1} B\right\|+1\right)\|w\|
$$

Therefore, taking any smaller ε and ε^{\prime},

$$
\|\psi(v(w), w)\| \leq \varepsilon(\|v\|+\|w\|)<\varepsilon\left(2\left\|A^{-1} B\right\|+2\right)\|w\|=o(\|w\|)
$$

So $h(x)=0$ has a solution

$$
x=v+w=-A^{-1} B w+w-A^{-1} \psi(v(w), w)=-\lambda b+u
$$

where $\lambda=\left\|-A^{-1} B \omega+\omega\right\|, \quad b=\lambda^{-1}\left(-A^{-1} B \omega+w\right)$, so $h^{\prime}(0) b=0$, and $\|u\|=o(|\lambda|)$; and any vector b such that $h^{\prime}(0) b=0$ is necessarily of the form $-A^{-1} B w+w$ for some $w \in X_{2}$, since then $-A^{-1} B w \in X_{1}$.

REMARK. If X and Z are finite-dimensional, then an application of Brouwer's fixed-point theorem proves Lemma 3 for h differentiable only, not necessarily continuously differentiable. (Differentiable is here taken to imply that the Fréchet derivative is a continuous linear mapping from X into 2.)

THEOREM 1. Let X, Y, Z be real Banach spaces; U an open subset of $X ; f: U \rightarrow Y$ a Fréchet-differentiable map, and $h: U \rightarrow Z a$ continuously Fréchet-differentiable map; assume (by restricting Y and Z) that $f(U)$ is dense in Y and $h(U)$. is dense in 2. Let $E=\left\{x \in U: h(x)=0\right.$ and $h^{\prime}(x)$ has full rank $\}$. Then $f(x)$ is stationary, subject to the constraint $h(x)=0$, at $x=a \in E$ if and
only if there is a continuous linear map $M: Z \rightarrow Y$ such that

$$
\begin{equation*}
f^{\prime}(a)=M \circ h^{\prime}(a) . \tag{*}
\end{equation*}
$$

REMARKS. $f(x)$ stationary means $f(x-\delta)-f(a)=o(\|x-\alpha\|)$.
(*) is equivalent to the stationarity at $x=\alpha$ of $f(x)-M \circ h(x)$ without constraints.

If $Y=\mathrm{R}$ and $Z=\mathrm{R}^{m}$ then M reduces to a set of m constraints, the usual Lagrange multipliers.
E is relatively open in $\{x: h(x)=0\}$.
Proof. For $a \in E, f(x)-f(a)=f^{\prime}(\alpha)(x-\alpha)+\xi$ where $\|\xi\|=O(\|x-a\|)$. By Lemma $3, h(x)=0$ for x in a sufficiently small neighbourhood of a if and only if $x-a=\lambda b+\eta$ where $h^{\prime}(a) b=0$, $\|b\|=1$, and $\|n\|=O(|\lambda|)$; and then

$$
f(x)-f(a)=\lambda f^{\prime}(a) b+f^{\prime}(a) \eta+\xi=\lambda f^{\prime}(a) b+o(|\lambda|)
$$

since $f^{\prime}(a)$ is a continuous linear map. Hence, for $a \in E$,
$f(x)$ is stationary at $x=a$, subject to the constraint $h(x)=0$
$\Leftrightarrow \quad\left(h^{\prime}(a) b=0 \Rightarrow f^{\prime}(a) b=0\right)$
\Leftrightarrow there is a continuous linear map $M: Z \rightarrow Y$ such that $f^{\prime}(a)=M \circ h^{\prime}(a)$, by Lemma 1 .

2. Calculus of variations in Banach spaces

Let V, S, W be (real) Banach spaces, $I=[a, b]$ a compact real interval, and $F: I \times V \times V \rightarrow S$ and $H: I \times V \times V \rightarrow W$ continuously Fréchet-differentiable maps. Let Q be a set of continuously Fréchet-differentiable functions $y: I \rightarrow V$, such that $y(b)=\beta$ and $y(a)=\alpha$ for all $y \in Q$, and such that the vector space $Q-Q$ contains $\xi(\cdot)_{e}$ for each fixed $e \in V$ and each continuously differentiable real function ξ which vanishes on the boundary of I, Let f and h denote the maps defined, for $y \in Q$, by the Bochner integrals

$$
f(y)=\int_{I} F\left(t, y(t), y^{\prime}(t)\right) d t ; \quad h(y)=\int_{I} H\left(t, y(t), y^{\prime}(t)\right) d t .
$$

Denote by F_{y} and F_{y}, the partial Fréchet derivatives of F with
respect to its second and third arguments; for $t \in I, y \in Q$, denote $F_{y}[t, y]=F_{y}\left(t, y(t), y^{\prime}(t)\right)$ and similarly for $F_{y^{\prime}}[t, y]$; denote also

$$
F^{+}[t, y]=\int_{a}^{t} F_{y}[\tau, y] d \tau ; F^{*}[t, y]=-F^{+}[t, y]+F_{y},[t, y]
$$

Denote by S_{0} (respectively W_{0}) the closure of the range of $f^{\prime}(y): Q-Q \rightarrow S$ (respectively $\left.h^{\prime}(y): Q-Q \rightarrow W\right)$.

Since F is Fréchet-differentiable, so is f, and, for $y \in Q$, $\eta \in Q-Q$,

$$
\begin{aligned}
f^{\prime}(y) \eta= & \int_{I}\left(F_{y}[t, y] \eta(t)+F_{y},[t, y] \eta^{\prime}(t)\right) d t \\
= & -\int_{I} F^{+}[t, y] \eta^{\prime}(t) d t+F^{+}[b, y](\eta(b)-\eta(a))+\int_{I} F_{y^{\prime}}[t, y] \eta^{\prime}(t) d t \\
& \quad \text { integrating by parts using Theorem } 2 \text { of } \\
= & \int_{I} F^{*}[t, y] \eta^{\prime}(t) d t+0 .
\end{aligned}
$$

LEMMA 4. For fixed $y \in Q, \int_{I} F^{*}[t, y] \eta^{\prime}(t) d t=0$ for each $\eta \in Q-Q \Leftrightarrow F^{*}[t, y]=0$ for each $t \in I$.

Proof. Let P be the projector of S onto the one-dimensional subspace spanned by the vector $s \in S$; substitute $\eta(t)=\xi(t) e$ where $e \in V$ and $\xi(\cdot)$ is a continuously differentiable real function on I. Then, for fixed $y, P \circ F^{*}[t, y] \eta^{\prime}(t)=\alpha(t) \xi^{\prime}(t) s$, where $\alpha(\cdot)$ is a continuous function (with y as parameter). If the first statement of the lemma holds, then $\int_{I} \alpha(t) \xi^{\prime}(t) d t=0$ for each continuously differentiable $\xi(\cdot)$ which vanishes at a and b. By [4], page 10, Lemma 2, $\alpha(t)=0$ for each t; therefore $P \circ F^{*}[t, y] e=0$; so, since s and e are arbitrary, $F^{*}[t, y]=0$. The converse is immediate.

THEOREM 2. Let F and h be as defined above; let E denote the set of $y \in Q$ such that $h^{\prime}(y)$ has full rank. Then $f(y)$ is stationary, subject to the constraint $h(y)=0$, at $a \in E$ if and only if there is a continuous linear map $M: W_{0} \rightarrow S_{0}$ such that, at $y=a$,

$$
\frac{d}{d t} K_{y}[t, y]=K_{y}[t, y], \text { where } K=F-M \circ H .
$$

Proof. By Theorem $1, f(y)$ is stationary, given $h(y)=0$, at $y=a$ if and only if there is a continuous linear map $M: W_{0} \rightarrow S_{0}$ such that $f(y)-M \circ h(y)$ has zero Fréchet derivative at $y=a$. Then (in the notation preceding Lemma 4)

$$
\left(f^{\prime}(y)-M \circ h^{\prime}(y)\right) \eta=\int_{I} K^{*}[t, y] n^{\prime}(t) d t .
$$

By Lemma 4, this vanishes for all $\eta \in Q-Q$ if and only if, for all $t \in I$

$$
K^{*}[t, y]=-\int_{a}^{t} K_{y}[\tau, y] d \tau+K_{y},[t, y]=0
$$

If so, then $(d / d t) K_{y},[t, y]$ exists, as a Fréchet derivative, and

$$
\frac{d}{d t} K_{y}[t, y]=K_{y}[t, y] .
$$

The converse is immediate.
REMARK. Theorem 2 has a partial generalization where I is replaced by a bounded closed subset of R^{p} (p-space), with boundary ∂I; and the boundary condition on $y \in Q$ becomes $y(\cdot)=\rho(\cdot)$ on ∂I, where ρ is a given function. Then $y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{p}^{\prime}\right)$ and $\eta^{\prime}=\left(\eta_{1}^{\prime}, \ldots, \eta_{p}^{\prime}\right)$ become p-vectors, mapping R^{p} into V, and F and H become functions of $t, y, y_{1}^{\prime}, \ldots, y_{p}^{\prime}$. The proof depends on a Banach-space generalization of the Gauss-Green theorem, given in [2], Theorem A.

Let $\Phi(\cdot)$ denote the measure of ($p-1$)-dimensional surface area, used in [2]. Call a subset $E_{0} \subset R^{p}$ thin if $\Phi(E)<\infty$ and E_{0} is a countable union of disjoint continuous images of the unit sphere in R^{p}. (It follows that the p-dimensional Lebesgue measure of E_{0} is zero.)

THEOREM 3. Let f and h be as in Theorem 2, but with the compact interval I replaced by a compact subset of R^{p} whose boundary ∂I is thin; let I_{0} be a thin subset of the interior of I; let Q be a set
of continuously Fréchet-differentiable functions $y: I \rightarrow V$, such that $y(t)=\rho(t)$ for $t \in \partial I, \rho(\cdot)$ being a given function. Let E denote the set of $y \in Q$ such that $h^{\prime}(y)$ has full rank.

For $i=1,2, \ldots, p$ let the partial Fréchet derivative

$$
\frac{\partial}{\partial t_{i}} F_{y_{i}^{\prime}}[t, y]
$$

exist at each point of $I-I_{0}$, and have norm integrable over I, with respect to p-dimensional Lebesgue measure. Let H satisfy similar hypotheses to F.

Then $f(y)$ is stationary, subject to the constraint $h(y)=0$, at $y=a \in E$ if and only if there is a continuous linear map $M: W_{0} \rightarrow S_{0}$ such that, at $y=a$,

$$
\operatorname{div}_{y^{\prime}}[t, y]=K_{y}[t, y]
$$

where $K=F-M \circ H, K_{y}$, is the vector in \mathbb{R}^{p} whose i-th component is $K_{y_{i}^{\prime}}$, and

$$
\operatorname{div}_{y^{\prime}}[t, y]=\sum_{i=1}^{p} \frac{\partial}{\partial t_{i}} K_{y_{i}^{\prime}}[t, y]
$$

Proof, By Theorem $1, f(y)$ is stationary, given $h(y)=0$, at $y=a \in E$ if and only if $f(y)-M \circ h(y)$ has zero Fréchet derivative at $y=a$. Since the partial Fréchet derivatives $\left(\partial / \partial t_{i}\right) K_{y_{i}^{\prime}}$ exist,

$$
\sum_{i=1}^{p} K_{y_{i}^{\prime}}[t, y] n_{i}^{\prime}(t)=\operatorname{div}\left\{K_{y},[t, y] n(t)\right\}-\left\{\operatorname{div}_{y^{\prime}}[t, y]\right\} n(t)
$$

For $y \in Q, \eta \in Q-Q$, and $d t$ denoting p-dimensional Lebesgue measure,

$$
\begin{aligned}
\left(f^{\prime}(y)-M \circ h^{\prime}(y)\right) n & =\int_{I}\left(K_{y}[t, y] n(t)+\sum_{i=1}^{p} K_{y_{i}^{\prime}}[t, y] n_{i}^{\prime}(t)\right) d t \\
& =\int_{I}\left(K_{y}[t, y]-\operatorname{div} K_{y},[t, y]\right) n(t) d t
\end{aligned}
$$

since by [2], Theorem A,

$$
\int_{I} \operatorname{div}\left(K_{y^{\prime}}[t, y \ln (t)\} d t\right.
$$

equals an integral of $K_{y}{ }^{\prime}[t, y] n(t)$ over ∂I, and $n(t)=0$ for $t \in \partial I$.

$$
\begin{aligned}
& \text { Since } \eta \text { is an arbitrary member of } Q, \\
& \qquad f^{\prime}(y)-M \circ \hbar^{\prime}(y)=0 \Leftrightarrow K_{y}[t, y]-\operatorname{div}_{y^{\prime}}[t, y]=0 .
\end{aligned}
$$

3. An application

Let $V=S=W=S_{0}=W_{0}=C(J)$, the space of all continuous complex functions on $J=[0,1]$; let $I=[a, b]$ be a compact real interval. If $y \in Q$ maps I into V, then y is represented by a map (also denoted y) of $I \times J$ into complex numbers; define Q by requiring that $(\forall s \in J) y(b, s)=\beta$ and $y(a, s)=\alpha ;(\forall s) y(\cdot, s)$ is continuously differentiable, and $(\forall t \in I) y(s, \cdot)$ is continuous. Let $P(\cdot, \cdot, \cdot$,$) be a continuously differentiable function of three real$ variables. For each $s \in J$, let $\omega(\cdot, s)$ be a (complex) measure on $I \times J$, which is weak-*-continuous in $s \in J$ and satisfies

$$
\sup _{s \in \mathcal{J}}\|\omega(\cdot, s)\|<\infty
$$

(where norm of a measure means total variation). For $u, v \in Q, s \in J$, $t \in I$, define

$$
\begin{aligned}
& F(t, u(t), v(t))(s)=F(t, u(t, s), v(t, s))= \\
& \int_{I \times J} P(t, u(t, \alpha), v(t, \beta)) d \omega((\alpha, \beta), s) .
\end{aligned}
$$

Then $F(t, u(t), v(t)) \in V$, and F is continuously Fréchet-differentiable. Define H in terms of a function \bar{P} and a measure $\bar{\omega}$, satisfying similar hypotheses to P and w.

In Theorem 2, M is a continuous linear map from $C(J)$ into $C(J)$; so by [3], Theorem 3, $K=F-M \circ H$ has the representation
(*) $K\left(t, y(t), y^{\prime}(t)\right)(s)=F\left(t, y(t), y^{\prime}(t)\right)(s)-$

$$
\int_{J} H\left(t, y(t), y^{\prime}(t)\right)(z) d g(z, s)
$$

where, for each $s \in J, g(\cdot, s)$ is a (complex) measure on J, weak-*-continuous in s and satisfying

$$
\sup _{s \in J}\|g(\cdot, s)\|<\infty
$$

Write (*) briefly as

$$
K[t, y](s)=F[t, y](s)-\int_{J} H[t, y](z) d g(z, s)
$$

Denote by D the differential operator defined by

$$
D K[t, y]=\frac{d}{d t} K_{y^{\prime}}[t, y]-K_{y}[t, y]
$$

Then the criterion of Theorem 2 is formally equivalent to the following generalization of the Euler-Lagrange equation

$$
D F[t, y](\cdot)=\int_{J} D H[t, y](z) d g(z, \cdot)
$$

Since, by Theorem 2, $D K$ exists, (\#) will be valid provided that also

$$
\frac{d}{d t} H_{y},[t, y]
$$

exists (so $D H$ exists), and (to validate differentiation under the integral sign in (\#)) is, for each $t \in I$, locally dominated by a function g-integrable on I.

References

[1] Robert G. Bartle, "Newton's method in Banach spaces", Proc. Amer. Math. Soc. 6 (1955), 827-831.
[2] B.D. Craven, "Two properties of Bochner integrals", Bull. Austral. Math. Soc. 3 (1970), 363-368.
[3] B.D. Craven, "Linear mappings between topological vector spaces", (submitted for publication).
[4] I.M. Gelfand and S.V. Fomin, Calculus of variations (Russian; translated by R.A. Silverman). (Prentice-Hall, Englewood Cliffs, New Jersey, 1963).
[5] Kôsaku Yosida, Functional analysis, 2nd ed. (Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin, Heidelberg, New York, 1968).

University of Melbourne, Parkville, Victoria.

