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The Bochner-flat cone of a CR manifold

Liana David

Abstract

We construct a Kähler structure (which we call a generalised Kähler cone) on an open
subset of the cone of a strongly pseudo-convex CR manifold endowed with a one-parameter
family of compatible Sasaki structures. We determine those generalised Kähler cones which
are Bochner-flat and we study their local geometry. We prove that any Bochner-flat Kähler
manifold of complex dimension bigger than two is locally isomorphic to a generalised
Kähler cone.

1. Introduction

The Bochner tensor of a Kähler manifold is the biggest irreducible component of the curvature ten-
sor under the action of the unitary group. In complex dimension two, the Bochner tensor coincides
with the anti-self-dual Weyl tensor. A Kähler manifold is Bochner-flat if its Bochner tensor vanishes.
Bochner-flat Kähler manifolds represent an important class of Kähler manifolds and have been inten-
sively studied: the local geometry of Bochner-flat Kähler manifolds and its interactions with Sasaki
geometry has been studied, using the Webster’s correspondence, in [DG06]; complete Bochner-flat
Kähler structures on simply connected manifolds have been classified in [Bry01]; generalisations
of Bochner-flat Kähler manifolds (like weakly Bochner-flat Kähler manifolds and Kähler manifolds
with a hamiltonian 2-form) have also been developed (see, for example, [ACG04, ACG06, Gau01]).

An important class of Kähler manifolds is represented by the Kähler cones of Sasaki manifolds.
Unfortunately, except when the Sasaki manifold is an open subset of the standard CR sphere with
its standard metric as the Sasaki metric, the Kähler cones are not Bochner-flat. In this paper we
propose an alternative construction, which is a natural generalisation of the Kähler cone construction
and which produces, locally, all Bochner-flat Kähler structures of complex dimension bigger than
two. More precisely, we consider, on a fixed CR manifold (N,H, I), a one-parameter family of Sasaki
Reeb vector fields {Tr, r ∈ J } (with J ⊂ R

>0 an open connected interval). On the cone manifold
N × J we define an almost complex structure J , which on H ⊂ T (N × J ) coincides with I and
which sends the radial vector field V = r ∂/∂r to the vector field T , defined by T (p, r) := Tr(p),
for any (p, r) ∈ N × J . It turns out that J is integrable and that the pair (ω := 1

4ddJr2, J) is a
Kähler structure on the open subset of N × J where ω(V, T ) > 0. Such a Kähler structure will
be called a generalised Kähler cone and coincides with the usual Kähler cone of a Sasaki manifold
when the family of Reeb vector fields is constant. A strong motivation for this construction comes
from the fact that the Bryant family of Bochner-flat Kähler structures (which were discovered by
Bryant in his classification theorem of complete Bochner-flat Kähler structures on simply connected
manifolds [Bry01] and have been further studied in [DG06]) are generalised Kähler cones. Our main
result is the following.
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Theorem 1. Any Bochner-flat Kähler manifold of complex dimension bigger than two is locally
isomorphic to a generalised Kähler cone.

The plan of the paper is the following. In § 2 we review the theory of Kähler and Sasaki manifolds,
which will be useful later on in our study of generalised Kähler cones. In § 3 we determine the
generalised Kähler cones which are Bochner-flat and in § 4 we study their local geometry. This study
will readily imply Theorem 1. The last section is dedicated to examples. We explain how Kähler
manifolds with constant holomorphic sectional curvature, weighted projective spaces and Bryant
family of Bochner-flat Kähler structures fit into our formalism of generalised Kähler cones. We also
look at Bochner-flat generalised Kähler cones of order one and at those which are of Tachibana and
Liu type [TL70].

2. Notation and earlier results

2.1 The Bochner tensor of a Kähler manifold
In this section we recall the definition of the Bochner tensor of a Kähler manifold. We use the
formalism developed in [ACG06, Gau01].

Let (V, g, J) be a real vector space together with a complex structure J and a J-invariant positive
definite metric g. We shall identify vectors and covectors of V using the metric g. Let ω := g(J ·, ·)
be the Kähler form. Recall that the space K(V ) of Kähler curvature tensors of (V, g, J), defined
as those curvature tensors which annihilate all J-anti-invariant 2-forms on V , decomposes into a
g-orthogonal sum

K(V ) := c∗K(Sym1,1(V )) ⊕W(V ). (1)
Here c∗K : Sym1,1(V ) → K(V ) is the adjoint of the Ricci contraction

cK : K(V ) → Sym1,1(V ), cK(R)(v,w) := trace R(v, ·, w, ·), v, w ∈ V,

and has the following expression [Gau01]:

c∗K(S) =
1
2

[
S ∧ Id + (J ◦ S) ∧ J

2
+ ω ⊗ S + β ⊗ J

]
, (2)

where S ∈ Sym1,1(V ) is a symmetric J-invariant endomorphism of V , ‘Id’ is the identity endomor-
phism, β ∈ Λ1,1(V ) is the J-invariant 2-form on V , related to S by β(v,w) := g(SJv,w), and, for
two endomorphisms S and T of V , S ∧ T is the endomorphism of Λ2(V ) defined by the formula

(S ∧ T )(v ∧ w) := S(v) ∧ T (w) − S(w) ∧ T (v), v, w ∈ V.

According to the decomposition (1), a Kähler curvature tensor R ∈ K(V ) decomposes into the sum

R = c∗K(S) + W K ,

where W K ∈ W(V ) is its principal part (or the Bochner tensor of R) and S ∈ Sym1,1(V ) is a
modified Ricci tensor.

Consider now a Kähler manifold (M,g, J). The curvature Rg of the Kähler metric g is, at any
point p ∈ M , a Kähler curvature tensor of the tangent space (TpM,gp, Jp). The principal part of Rg is
called the Bochner tensor of (M,g, J) and is a section of the symmetric product Λ1,1(M)�Λ1,1(M).
The Kähler manifold (M,g, J) is Bochner-flat if its Bochner tensor vanishes.

2.2 Review of CR and Sasaki manifolds
Recall that an oriented (strongly pseudo-convex) CR manifold (N,H, I) has a codimension one
oriented subbundle H of the tangent bundle TN , called the contact bundle, and a bundle homo-
morphism I : H → H with I2 = −Id, such that, for every smooth section X,Y ∈ Γ(H),

748

https://doi.org/10.1112/S0010437X07003363 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003363


The Bochner-flat cone of a CR manifold

[IX , IY ] − [X,Y ] is also a section of H and the integrability condition

[IX , IY ] − [X,Y ] = I([IX , Y ] + [X, IY ]) (3)

is satisfied. Since N and H are oriented, the co-contact line bundle L := TN /H is also oriented,
hence trivialisable. A positive section µ of L defines a contact form θ := ηµ−1 on M , where η :
TN → L is the natural projection and µ−1 ∈ Γ(L∗) is the dual section of µ, i.e. the natural
contraction between µ and µ−1 is the function on N identically equal to one. The bilinear form
g(X,Y ) := ω(X, IY ) := 1

2 dθ(X, IY ) of the bundle H is independent, up to a positive multiplicative
function, of the choice of the contact form and is positive definite – the strongly pseudo-convexity
condition. The contact form θ determines a Reeb vector field T , uniquely defined by the conditions
θ(T ) = 1 and iT dθ = 0. Note that the Reeb vector field preserves the bundle H, i.e. [T,X] ∈ Γ(H)
when X ∈ Γ(H) and hence LT (I) is a well-defined endomorphism of H. We associate to θ a
Riemannian metric g on the manifold N , which on H is defined above and such that T is of norm
one and g-orthogonal to H. Finally, we need to recall the definition of the Tanaka connection [Tan75]
associated to θ. It is the unique linear connection ∇ on N with the following three properties: (i) it
preserves the bundle H; (ii) I, g and T are ∇-parallel; and (iii) the torsion T∇ of ∇ has the
expression

T∇(X,Y ) = 2ω(X,Y ),

T∇(T,X) = −1
2ILT (I)(X),

for every X,Y ∈ Γ(H). It turns out that, on H, ∇ is determined by a Koszul-type formula

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(X,Z)) − Z(g(X,Y )) + g([X,Y ]H , Z)

− g([X,Z]H , Y ) − g([Y,Z]H ,X),

where X,Y,Z ∈ Γ(H) and, for a vector field W of N , W H := W − θ(W )T is its g-orthogonal
projection on the bundle H. The metric g is called Sasaki if T is a Killing vector field for the metric
g or, equivalently, if LT (I) = 0. In this case, the curvature R∇ of the Tanaka connection on the
bundle H is an element of the tensor product Λ2(N)⊗Λ1,1(H) and its restriction to bivectors of H
belongs to the symmetric product Λ1,1(H)�Λ1,1(H) and is a Kähler curvature tensor of the complex
Riemannian vector bundle (H, g, I). Its Bochner part (called the Chern–Moser tensor [CM74, Dav04]
of the CR manifold (N,H, I)) is independent of the choice of the compatible Sasaki structure on
(N,H, I). A CR manifold with vanishing Chern–Moser tensor is called flat. The importance of the
Chern–Moser tensor comes from the fact that if the CR manifold is flat and of dimension bigger
than three, then it is locally isomorphic with a sphere with its standard CR structure [CM74, BS76].
On the other hand, if g is Sasaki, the complex structure I and the metric g of the bundle H descend
on the quotient N/T and determine a Kähler structure on this quotient. (In our conventions, the
quotient N/T denotes the space of leaves of the foliation generated by T in a sufficiently small open
subset of N , so that N/T is a manifold.) Moreover, the Bochner tensor of the Kähler manifold N/T
becomes identified with the Chern–Moser tensor of the CR manifold (N,H, I) (see [Web77, Dav04]).
Since any Kähler manifold can be locally written as a quotient of a Sasaki manifold under its Reeb
vector field, by means of a choice of a local primitive of the Kähler form, it follows that a Bochner-flat
Kähler manifold of complex dimension m � 2 is locally isomorphic with the quotient of a standard
CR sphere S2m+1 under the Reeb vector field of a compatible Sasaki structure.

2.3 The local type of Bochner-flat Kähler structures

The local geometry of Bochner-flat Kähler structures, of complex dimension m � 2, is of four
types [Bry01, Cal02, DG06]. This follows from the fact that the compatible Sasaki structures on
the CR sphere S2m+1 are determined by elements of the Lie algebra su(m + 1, 1), and that there

749

https://doi.org/10.1112/S0010437X07003363 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003363


L. David

are four types of conjugacy classes in this Lie algebra (elliptic, hyperbolic, one-step and two-step
parabolic). In order to explain this, it is convenient to identify S2m+1 with the hermitian sphere
Σ2m+1 of all complex null lines in a hermitian complex vector space W of signature (m + 1, 1),
with hermitian metric (·, ·), by fixing an orthonormal basis of W , i.e. a basis {e0, . . . , em+1} with
(e0, e0) = −1, (ej , ej) = 1, for j ∈ {1, . . . ,m + 1}, and (ei, ej) = 0 for i 
= j, and by associating to
a complex null line x of W its unique representative of the form e0 + u, where u ∈ S2m+1 belongs
to the unit sphere of the positive definite hermitian vector space Span{e1, . . . , em+1}. Let η be the
natural (line bundle valued) contact form of Σ2m+1:

η(X) := Im(X̂w,w), X ∈ TxΣ2m+1, 0 
= w ∈ x, x ∈ Σ2m+1,

where X̂ ∈ HomC(x,W ) is a representative of X ∈ HomC(x,W/x). A hermitian trace-free endo-
morphism A of W determines a Reeb vector field TA of a Sasaki structure on the open subset

Σ2m+1
A := {x ∈ Σ2m+1 : (Aw , w) > 0, w ∈ x, w 
= 0},

defined in the following way. At a point x ∈ Σ2m+1
A , TA

x ∈ HomC(x,W/x) associates to a non-zero
vector w ∈ x, the class of iAw in the quotient W/x. The contact form of TA is ηA := η/(Aw , w), i.e.

ηA(X) =
Im(X̂w,w)

(Aw , w)
, X ∈ TxΣ2m+1, 0 
= w ∈ x, x ∈ Σ2m+1

A .

Employing the notation of [DG06], we shall denote by MA the induced Kähler structure on the
quotient Σ2m+1

A /TA and by gA its Kähler metric.
We end this section with a simple lemma on hermitian operators which will play an important

role in our treatment. For completeness of the exposition, we include its proof.

Lemma 2. Let A : W → W be a hermitian operator on a complex vector space W with a hermitian
metric (·, ·) of signature (m + 1, 1). Suppose that A satisfies (Aw , w) = 0, for any null vector w
which belongs to a non-empty open subset D of W . Then A = λ Id, for λ ∈ R. If, moreover, A is
trace-free, then A = 0.

Proof. Let w = wt be a curve in D, with wt null for any t, w0 = w ∈ D and ẇ0 = X. Taking the
derivative at t = 0 of the equality (Aw t, wt) = 0 and using the fact that A is hermitian, we get
Re(Aw ,X) = 0. In particular, we deduce that (Aw ,X) = 0, for any null vector w ∈ D and any
X ∈ W , which is hermitian orthogonal to w. This implies that Aw = λw, where λ ∈ R depends
a priori on w. It follows that the map

W � u → Au ∧ u ∈ Λ2(W ) (4)

vanishes when u ∈ D is null. Being holomorphic, the map (4) must be identically zero. We deduce
that, for any u ∈ W , Au is a multiple of u which clearly implies the first claim. The second claim
is trivial.

2.4 The Bryant minimal and characteristic polynomials
The local type of a Bochner-flat Kähler manifold (M,g, J) is encoded into the Bryant minimal and
characteristic polynomials, which can be defined as follows. Let S be the modified Ricci operator
which satisfies c∗K(S) = Rg (where Rg is the curvature of g) and P (t) be the characteristic polynomial
of a new modified Ricci operator Θ, related to S by

Θ :=
1
4

(
S − traceR(S)

2(m + 2)
Id

)
, (5)

where m is the complex dimension of M . The Ricci operator Θ has been introduced in [Bry01]. It
will be considered as a complex linear operator on the complex vector bundle (TM , J). Its trace
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is called the modified scalar curvature of (M,g, J). Denote by ξ1, . . . , ξl the non-constant roots of
P and by Pn its non-constant part, defined by Pn(t) := (t − ξ1) · · · (t − ξl). The number l is called
the order of (M,g, J). On a dense open subset M0 of M , the eigenvalues ξj (for any j ∈ {1, . . . , l})
are simple, different from each other at any point and different, at any point, from any constant
eigenvalue of Θ; the functions ξ1, . . . , ξl are functionally independent on M0 and

|gradg(ξj)|2 = −4
pm(ξj)
P ′

n(ξj)
, j ∈ {1, . . . , l}, (6)

where pm is a monic polynomial of degree l + 2, with constant coefficients, independent of j, called
the Bryant minimal polynomial of (M,g, J). The Bryant characteristic polynomial pc of (M,g, J)
is by definition the product of pm with the constant part Pc := P/Pn of P .

Suppose now that (M,g, J) ∼= MA = Σ2m+1
A /TA, for a hermitian operator A of W . Denote by ã

the reduced adjoint operator of A, defined by

ã(t) = tl+2 + a1t
l+1 + · · · + al+2,

where

ak := Ak − σ1(qA)Ak−1 + · · · + (−1)kσk(qA)

and σk(qA) is the k-elementary symmetric function of the roots of the minimal polynomial qA of A.
The reduced adjoint operator ã satisfies (t Id − A)ã(t) = qA(t)Id, for any t ∈ R. The eigenspace of
Θ corresponding to a non-constant eigenvalue ξj is spanned by the vector field Lj which, viewed as
a section of H, is equal, at a point x ∈ Σ2m+1

A , to

Lj(w) = ã(ξj)w modw.

The non-constant part Pn(t) of the modified Ricci operator Θ of (M,g, J), viewed as a polynomial
with function coefficients defined on Σ2m+1

A , is equal, at a point x ∈ Σ2m+1
A , to

pA,x(t) :=
(ã(t)w,w)
(Aw , w)

, w ∈ x, w 
= 0.

The constant eigenvalues of Θ can also be described in terms of A: if λ is a constant eigenvalue of Θ
of multiplicity n, then it is a multiple eigenvalue of A, of multiplicity n+1, and the eigenspace of Θ,
at a point x ∈ Σ2m+1

A , corresponding to λ, can be identified with the intersection of the hermitian
orthogonal x⊥ ⊂ W with the eigenspace of A corresponding to λ (see [DG06]). The Bryant minimal
and characteristic polynomials pm and pc coincide with the minimal polynomial qA, respectively,
with the characteristic polynomial QA of A, (see [Cal02, DG06]). The modified scalar curvature of
MA, viewed as a function on Σ2m+1

A , is equal, at x ∈ Σ2m+1
A , to −(A2w,w)/(Aw , w), where w ∈ x

is non-zero.

The following lemma will be useful in our study of generalised Kähler cones and is an easy
consequence of the theory developed in [DG06]. For completeness of the exposition, we include its
proof.

Lemma 3. For any t ∈ R, x ∈ Σ2m+1
A and w ∈ x non-zero,

gA(dpA,x(t), dpA,x(t)) = 4
(

q′A(t)pA,x(t) − qA(t)p′A,x(t) − 2tp2
A,x(t) + p2

A,x(t)
(A2w,w)
(Aw , w)

)
.

Proof. Via the metric gA, the 1-form dpA(t) corresponds to the vector field Lt, which, viewed as a
section of H, is equal, at x ∈ Σ2m+1

A , to the endomorphism

Lt(w) := 2(ã(t)w − pA,x(t)Aw) modw.
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Its square norm is equal to

gA(Lt, Lt) = 4
(ã(t)w, ã(t)w) − 2pA,x(t)(ã(t)w,Aw ) + p2

A,x(t)(A
2w,w)

(Aw , w)

= 4
(

q′A(t)pA,x(t) − qA(t)p′A,x(t) − 2tp2
A,x(t) +

p2
A,x(t)(A

2w,w)
(Aw , w)

)
,

where we have used (Aã(t)w,w) = t(ã(t)w,w) (which follows from (t Id − A)ã(t) = qA(t)Id and
(w,w) = 0) and

(ã(t)w, ã(t)w)
(Aw , w)

= q′A(t)pA,x(t) − qA(t)p′A,x(t), (7)

which has been proved in [DG06].

3. Definition of generalised Kähler cones; the Bochner-flatness condition

Let (N,H, I) be an oriented CR manifold and {Tr}r∈J , with J ⊆ R
>0 a connected open interval,

a family of Reeb vector fields of Sasaki structures on (N,H, I), with contact forms {θ}r∈J . Let
ωr := 1

2 dθr ∈ Ω2(N) and gr := ωr(·, I·) be the corresponding (positive definite) metrics of the
contact bundle H. On the cone manifold N × J define the vector fields T , V , a complex structure
J and a 2-form ω as in the Introduction, and also a symmetric bilinear form g := ω(·, J ·).

Let M ⊂ N × J be the open subset where g(T, T ) is positive. Define a positive function f :
M → R

>0 by g(T, T ) = r2f . Note that the restriction fr := f(·, r) of f to Nr := M ∩ (N × {r}) is
positive. We introduce a new family of contact forms θ̃r = (1/fr)θr; for any r, the contact form θ̃r

is defined on Nr (viewed as an open subset of N).

Conventions of notation. For a function h : M → R, we shall denote by ḣ : M → R its derivative
with respect to r and by hr : Nr → R the restriction of h to a level set Nr.

Lemma 4. The following equalities hold:

f = 1 +
rθ̇r(Tr)

2
(8)

and
˙̃
θr = −2G

r
θ̃r, (9)

where

G : M → R, G :=
rḟ

2f
− f + 1.

Proof. Note that ω = 1
2(dr ∧ dJr + rddJr). It is straightforward to see that dJr = rθ, where

θ ∈ Ω1(N × J ) is defined by θ(Z) := θr(π∗Z), for a tangent vector Z ∈ T(p,r)(N × J ), where
π : N × J → N is the natural projection. At a tangent space T(p,r)(N × J ) = TpN × R,

dθ = dθr + dr ∧ θ̇r,

and then, restricted to the same tangent space,

ω = r

(
dr ∧

(
θr +

r

2
θ̇r

)
+

r

2
dθr

)
. (10)

It follows that

r2f = ω(V, T ) = r2

(
1 +

rθ̇r(Tr)
2

)
,
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which implies (8). To prove (9), we take the derivative with respect to r of the equality θ̃r = (1/fr)θr

and we use the fact that θ̇r = θ̇r(Tr)θr. We get

˙̃θr = − ḟr

fr
θ̃r +

1
fr

θ̇r =
(
− ḟr

fr
+ θ̇r(Tr)

)
θ̃r = −2G

r
θ̃r,

which proves our lemma.

Lemma 5. The pair (ω, J) defines a Kähler structure on M .

Proof. From relation (3), it is clear that the integrability tensor NJ of the almost complex struc-
ture J , applied to a pair of sections (X,Y ) of H, vanishes. On the other hand, NJ(X,V ), restricted
to a level set N × {r}, is equal to −LTr(I)(X), which is zero, because Tr is the Reeb vector field
of a Sasaki structure. It follows that J is integrable. From (10) it is easy to see that T is hermitian
orthogonal to H and that the restriction of g to H(p,r) ⊂ T(p,r)(N ×J ) coincides with r2gr, which is
positive definite. We deduce that g is positive definite on the subset M of N ×J where g(T, T ) > 0,
and that (M,ω, J) is a Kähler manifold (the 2-form ω being closed).

Definition 6. The Kähler manifold (M,ω, J) is a generalised Kähler cone over the CR manifold
(N,H, I). It is a restricted generalised Kähler cone if the function f is constant along the trajectories
of the vector field T .

Convention. For simplicity, in this paper we will consider only restricted generalised Kähler cones;
when we refer to a generalised Kähler cone, we will actually mean restricted generalised Kähler
cone; this is true also for the statement of Theorem 1.

Remark 1 (Main class of generalised Kähler cones). We shall be mainly concerned with generalised
Kähler cones over (open subsets) of hermitian CR spheres. Suppose that N ⊂ Σ2m+1 is an open
subset of the hermitian CR sphere of complex null lines in W = C

m+1,1. Then

θr =
η

(Brw,w)
, θ̃r =

η

(Arw,w)

for some hermitian trace-free operators Ar, Br of W . The condition T (f) = 0 is equivalent to
[Ar, Br] = 0 for any r, as the following lemma shows.

Lemma 7.

(i) The operators Ar and Br are related in the following way:

Ar = Br − r

2
Ḃr. (11)

(ii) The functions f and G have the following expression: for any (x, r) ∈ M ,

fr(x) =
(Arw,w)
(Brw,w)

, G(x, r) =
r(Ȧrw,w)
2(Arw,w)

, w ∈ x, w 
= 0.

(iii) The condition T (f) = 0 is equivalent to [Ar, Br] = 0 for any r.

Proof. Note that

θ̇r = −(Ḃrw,w)
(Brw,w)

θr and θ̇r(Tr) = −(Ḃrw,w)
(Brw,w)

.

It follows that

f = 1 +
rθ̇r(Tr)

2
= 1 − r

2
(Ḃrw,w)
(Brw,w)

=
(Brw − 1

2rḂrw,w)
(Brw,w)

. (12)

We deduce that

θ̃r =
1
fr

θr =
(Brw,w)

(Brw − 1
2rḂrw,w)

· η

(Brw,w)
=

η

(Brw − 1
2rḂrw,w)

. (13)
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Relation (11) follows from (13), θ̃r = η/(Arw,w) and Lemma 2. From (11) and (12) we get the
expression of f . On the other hand, from Lemma 4 and θ̃r = η/(Arw,w), we have

˙̃
θr = −2G

r
θ̃r = −(Ȧrw,w)

(Arw,w)
θ̃r,

which implies that G is of the required form. To prove the last statement, note that

Tr(fr) =
[(ArTrw,w) + (Arw, Trw)](Brw,w) − [(BrTrw,w) + (Brw, Trw)](Arw,w)

(Brw,w)2

=
i([Ar, Br]w,w)

(Brw,w)
,

since, at a point x ∈ N , Tr(x) ∈ Hom(x,W/x) is the homomorphism Trw = iBrw(mod w) and the
operators Ar and Br are hermitian. We conclude from Lemma 2.

Lemma 8. The Levi-Civita connection Dg of a generalised Kähler cone (M,ω, J) has the following
expression:

Dg
XY = ∇r

XY − ωr(X,Y )Tr − gr(X,Y )V,

Dg
V Y = fY +

Y (f)
2f

V − (JY )(f)
2f

T,

Dg
T Y = LT (Y ) + fJY +

Y (f)
2f

T +
(JY )(f)

2f
V,

Dg
XV = fX +

X(f)
2f

V − (JX )(f)
2f

T,

Dg
V V = −1

2v + (G + f)V,

Dg
T V = 1

2Jv + (G + 3f − 2)T.

Here X,Y ∈ Γ(H), the vector field Dg
XY is restricted to a level set Nr, ∇r is the Tanaka connection

of the contact form θr of the CR manifold (N,H, I) and v is a vector field on M which belongs, at
any point (p, r) ∈ M , to Hp ⊂ T(p,r)M and is determined by the condition:

gr(X, v(p,r)) = df(X), for all X ∈ Hp ⊂ T(p,r)M. (14)

Proof. The proof is a straightforward computation based on the Koszul formula. It uses the expres-
sion of the Tanaka connection on the contact bundle H, mentioned in § 2.

Lemma 9. The curvature Rg of a generalised Kähler cone (M,ω, J) has the following expression:

g(Rg
X,T Y,Z) = −Y (f)

2
ω(X,Z) − (JY )(f)

2
g(X,Z) +

Z(f)
2

ω(X,Y )

+
(JZ )(f)

2
g(X,Y ) − X(f)ω(Y,Z),

g(Rg
X1,X2

Y,Z) = g(R∇r

X1,X2
Y,Z) − f

r2
{g(X1, Y )g(X2, Z) − g(X2, Y )g(X1, Z)}

+
f

r2
{−ω(X1, Y )ω(X2, Z) + ω(X2, Y )ω(X1, Z) − 2ω(X1,X2)ω(Y,Z)},

g(Rg
X,T V, Y ) =

r2

2
(∇rdf)J,−(X, JY ) +

r2f

2

(
∇r

(
df

f

))J,+

(X, JY )

+ f(2 − G − 2f)ω(X,Y ),

g(Rg
T,V V, T ) = g(v, v) + r2f((G − 2)(8f − 2) + rĠ + 12f2),

g(Rg
T,V V,Z) = −r3

2
dḟ(JZ ) + r2(G − 1)df(JZ ),
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where X,X1,X2, Y, Z ∈ Γ(H), g(Rg
X1,X2

Y,Z) is restricted to a level set Nr, v is the vector field
defined by (14) and the superscripts J,+ (J,−) denote the J-invariant part (respectively the
J-anti-invariant part) of a bilinear form.

Proof. The proof is a long but straightforward computation.

Proposition 10. The generalised Kähler cone (M,ω, J) is Bochner-flat if and only if the CR
manifold (N,H, I) is flat and the following two conditions hold.

(i) The function G depends only on r.

(ii) For every r ∈ J , the contact form θ̃r = (1/fr)θr is the contact form of a Sasaki structure on
(Nr,H, I), which determines an Einstein Kähler structure on the quotient Nr/T̃r (where T̃r is
the Reeb vector field of θ̃r), with modified Ricci tensor

S̃r =
(

rĠ

2
− G + 2

)
Id.

Proof. Suppose first that (M,ω, J) is Bochner flat, i.e.

Rg = c∗K(S), (15)

for a tensor field S ∈ Sym1,1(M). Plugging into (15) the arguments (T, V, V, T ) and (T, V, V, Z), for
Z ∈ Γ(H), and using formula (2) for the adjoint of the Ricci contraction, we readily deduce that
S(T, T ) and S(Z, T ) are related to the curvature Rg as follows:

S(T, T ) = − 1
2r2f

g(Rg
T,V V, T ), S(Z, T ) = − 1

r2f
g(Rg

T,V V,Z). (16)

On the other hand, from Lemma 9 we know that

g(Rg
X,V Y,Z) =

Y (f)g(X,Z)
2

− Z(f)g(X,Y )
2

− (JY )(f)ω(X,Z)
2

+
(JZ )(f)ω(X,Y )

2
− (JX )(f)ω(Y,Z),

for every X,Y,Z ∈ Γ(H), and, since c∗K(S)(X,V, Y, Z) = g(Rg
X,V Y,Z), we readily get S(Z, T ) =

2(JZ )(f). Combining this with the second relation (16), we deduce that

− 1
r2f

g(Rg
T,V V,Z) = 2(JZ )(f),

which is equivalent, using the expression of g(Rg
T,V V,Z) provided by Lemma 9, to (JZ )(G) = 0. Since

Z ∈ Γ(H) is arbitrary, we obtain the first condition of the proposition (since X(G) = Y (G) = 0, for
X,Y ∈ Γ(H), also [X,Y ](G) = 0; recall now that vector fields of the form {X, [X,Y ],X, Y ∈ Γ(H)}
span the entire TN ). To obtain the second condition of the proposition, we notice that the expression
of g(Rg

X1,X2
Y,Z) found in Lemma 9, combined with (15), imply that the CR manifold (N,H, I) is

flat and that, on the bundle H restricted to a level set Nr,

S⊥ =
1
r2

(Sr − 2f Id), (17)

where S⊥ : H → H is induced by S followed by g-orthogonal projection and Sr ∈ End(H) is the
modified Ricci tensor of the Kähler curvature R∇r |H×H ∈ Λ1,1(H) � Λ1,1(H) of ∇r. Plugging into
(15) the argument (X,T, V, Y ) and using relation (17), we obtain

g(Rg
X,T V, Y ) = 1

4(S(JX , Y )g(V, V ) + ω(X,Y )S(V, V ))

=
f

4
g(Sr(JX ), Y ) − 1

4

(
2f2 +

g(Rg
T,V V, T )

2r2f

)
ω(X,Y ).
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Using the expression of g(Rg
X,T V, Y ) provided by Lemma 9 we deduce that

gr(SrX,Y ) = − 2
f
∇r(df)J,−(X,Y ) − 2∇r

(
df

f

)J,+

(X,Y )

+
(

4(2 − G) − 6f +
g(Rg

T,V V, T )

2f2r2

)
gr(X,Y ).

This relation clearly implies that ∇r(df)J,−|H×H = 0, which means that θ̃r = (1/fr)θr (for any r)
is the contact form of a Sasaki structure on (Nr,H, I) (see [GO98]). Moreover, the modified Ricci
tensor S̃r of the Sasaki structure determined by θ̃r is related to Sr in the following way [Dav04]:

1
f

gr(S̃r(X), Y ) = gr(Sr(X), Y ) + 2∇r

(
df

f

)J,+

(X,Y ) − gr(v, v)
2f2

gr(X,Y ). (18)

We deduce, using the previous expression of gr(Sr(X), Y ), that

1
f

gr(S̃r(X), Y ) +
(

gr(v, v)
2f2

+ 4(G − 2) + 6f − g(Rg
T,V V, T )

2r2f2

)
gr(X,Y ) = 0.

Using again Lemma 9 for the expression of g(Rg
T,V V, T ) we obtain the second condition of the

proposition. Conversely, it is easy to check that the flatness of (N,H, I) and the two conditions of
the proposition ensure the Bochner-flatness of (M,ω, J).

The main result of this section is the following.

Theorem 11. Let (M,g, J) be a Bochner-flat generalised Kähler cone of complex dimension m+1 �
3, defined by a family of Sasaki Reeb vector fields {Tr} over a CR manifold (N,H, I). Then (N,H, I)
is locally isomorphic to the standard CR sphere Σ2m+1 of complex null lines in a complex hermitian
vector space W of signature (m + 1, 1), and {Tr} is defined by one of the following families of
hermitian operators Br of W .

(i) Br = r2(B−µ(r2)A). Here the real function µ satisfies µ′ > 0 and is a solution of the differential
equation

µ′ = 1
2µ2 + d, (19)

where d ∈ R is an arbitrary real number. The operator A is hermitian semi-simple, with a
positive definite eigenspace, of dimension m + 1, which corresponds to the eigen-
value 1/(2(m + 2)) and a one-dimensional timelike eigenspace, which corresponds to the
eigenvalue −(m + 1)/(2(m + 2)).

(ii) Br = r2(B + µ(r2)A), where µ satisfies (19) and µ′ < 0. The operator A is hermitian
semi-simple, with an eigenspace of signature (m, 1), which corresponds to the eigenvalue
−1/(2(m + 2)), and a one-dimensional spacelike eigenspace, which corresponds to the eigen-
value (m + 1)/(2(m + 2)).

(iii) Br = r2(B − r2A), where A is one-step parabolic, with all eigenvalues equal to zero.

(iv) Br = r2(B − (eλr2
/λ)A), where λ ∈ R \ {0} and A is one-step parabolic with all eigenvalues

equal to zero.

In all these cases, B is any hermitian, trace-free operator of W which commutes with A (see Remark 2
following the proof, below).

Proof. Since (N,H, I) is flat (see Proposition 10) and of dimension bigger than three, we can assume,
restricting N if necessary, that (N,H, I) is an open subset of the hermitian CR sphere Σ2m+1 of
complex null lines in a complex hermitian vector space W of signature (m + 1, 1) (see [BS76]). As
explained in Lemma 7, the two families of contact forms {θr}r∈J and {θ̃r}r∈J are generated by two
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families of hermitian trace-free endomorphisms {Br}r∈J and {Ar}r∈J of W respectively, such that,
for any r, the operators Ar and Br commute. From Lemma 4 we know that ˙̃θr = −(2Gr/r)θ̃r. Since
G depends only on r, we get

θ̃r = e
−∫ r

r0
(2Gq/q) dq

θ̃r0

and we infer that the modified Ricci tensor S̃r of θ̃r has the expression

S̃r = e
∫ r

r0
(2Gq/q) dq

S̃r0.

The second condition of Proposition 10 is equivalent with(
rĠ

2
− G + 2

)
Id = e

∫ r
r0

(2Gs/s) ds
S̃r0

and implies that (
rĠ

2
− G + 2

)′
=

2G
r

(
rĠ

2
− G + 2

)
. (20)

Equation (20) can be solved as follows. Define a real function µ by

µ(t) :=
G(

√
t) − 2
t

. (21)

We shall write (20) in terms of µ. For this, we first take the derivative of r2µ(r2) = G(r) − 2 and
we get:

Ġ(r) = 2rµ(r2) + 2r3µ′(r2).
It easily follows that

rĠ

2
− G + 2 = r4µ′(r2). (22)

Equation (20) becomes µ′′ = µ′µ. Since J is connected, µ satisfies (19), for a constant d ∈ R. We
have the following three possibilities.

(i) µ′ > 0. From Lemma 7 we deduce that

(Ȧrw,w) =
2
r
G(r)(Arw,w) =

2
r
(r2µ(r2) + 2)(Arw,w).

Since
∫

rµ(r2) dr = 1
2 ln(µ′(r2)) when µ′ > 0 we get

(Arw,w) = K(w)r4µ′(r2),

where K = K(w) depends only on w. Equivalently,

Ar = µ′(r2)r4A, (23)

where A ∈ End(W ) is hermitian, trace-free, satisfies (Aw , w) > 0, for w ∈ x non-zero, when
(x, r) ∈ M . Moreover, (22) together with the second condition of Proposition 10 imply that the
modified Ricci tensor SA of the Kähler–Einstein structure MA is the identity endomorphism,
from where we deduce that A is as in the statement of the theorem (see [DG06]). On the other
hand, from Lemma 7, Br must satisfy (11), with Ar = µ′(r2)r4A. It follows that

Br = r2(B − µ(r2)A),

where B ∈ End(W ) is hermitian and trace-free.
(ii) µ′ < 0. Then

∫
rµ(r2) dr = 1

2 ln(−µ′(r2)). A similar argument shows that

Ar = −r4µ′(r2)A

Br = r2(B + µ(r2)A),
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but in this case the Bochner-flat Kähler structure MA has the modified Ricci operator SA =
−Id, which implies that A is as in the statement of the theorem (see [DG06]).

(iii) It remains to consider the case when the function µ is constant. Then µ(t) = λ for λ ∈ R,
G(x, r) = λr2 + 2 and

(Ȧrw,w) =
2G
r

(Arw,w) =
2(λr2 + 2)

r
(Arw,w).

We distinguish two subcases: (i) λ = 0; (ii) λ 
= 0. In subcase (i) we obtain

Ar = r4A, Br = r2(B − r2A),

and in subcase (ii), we obtain

Ar = r4eλr2
A, Br = r2

(
B − eλr2

λ
A

)
.

Since 1
2rĠ − G + 2 = 0, the Kähler structure MA is flat and hence the endomorphism A is

one-step parabolic, with all eigenvalues zero (see [DG06]).

In all cases described above, the generalised Kähler cone condition T (f) = 0 becomes [A,B] = 0
(see Lemma 7).

Remark 2. The condition [A,B] = 0 of Theorem 11 determines the operator B as follows.
(i) In case (i) of Theorem 11, B preserves, up to a multiplicative constant, a timelike eigenvector

v (unique, up to a non-zero multiplicative constant) of A. On the hermitian orthogonal v⊥, the her-
mitian metric (·, ·) of W is positive definite, A : v⊥ → v⊥ is a multiple of the identity endomorphism
and B : v⊥ → v⊥, being hermitian, is diagonalisable. It follows that A and B are simultaneously
diagonalisable.

(ii) In case (ii) of Theorem 11, B preserves, up to a multiplicative constant, a spacelike eigenvector
v (unique, up to a non-zero multiplicative constant) of A, which corresponds to the eigenvalue
(m + 1)/(2(m + 2)). On the hermitian orthogonal v⊥, the hermitian metric (·, ·) has signature
(m, 1), A is a multiple of the identity endomorphism and B : v⊥ → v⊥ can be elliptic, hyperbolic,
one- or two-step parabolic.

(iii) Consider now cases (iii) and (iv) of Theorem 11. Note that A = 0 on any positive definite
eigenspace of B (since [A,B] = 0, A preserves such an eigenspace, say W1, of B; because the
hermitian metric (·, ·) is positive definite on W1 and A is hermitian, A is diagonalisable on W1; this
forces it to be zero, because A does not have non-zero eigenvalues). Let us denote by W1, . . . ,Ws the
positive definite eigenspaces of B and by W0 the hermitian orthogonal of the direct sum

⊕s
j=1 Wj.

The eigenspaces Wj (for j ∈ {1, . . . , s}) correspond to eigenvalues, say βj , of B, which can be any
real numbers. It remains to study the restriction B0 of B to W0. We notice first that B0 cannot be
hyperbolic: if it was hyperbolic, then B would have two complex non-real eigenvalues, say δ and δ̄,
with one-dimensional eigenspaces, generated by two null independent vectors v1 and v2 respectively.
However, since [A,B] = 0, BAv1 = δAv1 and BAv2 = δ̄Av2, which imply that Av1 = Av2 = 0
(because A has no non-zero eigenvalues). But if we take an orthonormal basis {e0, . . . , en} of W0

in which

A =




−1 1 0 · · · 0
−1 1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0


 ,

(which is possible since A : W0 → W0 is one-step parabolic with all eigenvalues equal to zero) the
conditions v1, v2 null and Av1 = Av2 = 0 would imply that v1 and v2 are multiples of e0 + e1.
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Table 1. Local type of Bochner-flat generalised Kähler cones.

µ′ > 0 µ′ = 0

d > 0 (all) hyperbolic —
d = 0 (all) one-step parabolic λ = 0; (all) two-step parabolic
d < 0 (all) elliptic λ = ±√−2d, (all) one-, two-step parabolic, elliptic

In particular they would be dependent, which is a contradiction. We conclude that B0 can be el-
liptic or one- or two-step parabolic. Therefore, B0 = γI + N , for an endomorphism N of W0 which
commutes with A and which satisfies N3 = 0, and for γ ∈ R which is different from all βj. The
endomorphism N⊥ of Ŵ0 := Span{e2, . . . , en} obtained from N by restriction and orthogonal pro-
jection is hermitian on Ŵ0. Because the metric (·, ·) is positive definite on Ŵ0, N⊥ is diagonalisable
and hence there is a basis {e′2, . . . , e′n} of Ŵ0, such that N⊥ is diagonal in this basis. If we consider
now the basis B := {e0, e1, e

′
2, . . . , e

′
n} of W0, it is straightforward to see that [A,N ] = 0 and N

hermitian imply that

N =




γ0 α µ2 µ3 · · · µn

−α γ1 µ2 µ3 · · · µn

−µ̄2 µ̄2 γ2 0 · · · 0
−µ̄3 µ̄3 0 γ3 · · · 0

...
...

...
...

. . .
...

−µ̄n µ̄n 0 0 · · · γn




in the basis B. Moreover, N3 = 0 if and only if γ0 = −γ1 = −α and γk = 0 for any k ∈ {2, . . . , n}
and N2 = 0 if and only if γ0 = −γ1 = −α, γk = µk = 0, for any k ∈ {2, . . . , n}. Since B is trace-free,
the real constants βj and γ must satisfy (n + 1)γ +

∑s
j=1 njβj = 0, where nj is the dimension of

Wj (and n + 1 is the dimension of W0).

4. The local geometry of Bochner-flat generalised Kähler cones

Without further explanations, we shall continue to employ the notation of the previous section. The
aim of this section is to prove our main Theorem 1. We will do this by showing that all local types
of Bochner-flat Kähler manifolds (elliptic, hyperbolic, one- and two-step parabolic) are covered by
the Bochner-flat generalised Kähler cones which belong to cases (i), (iii) and (iv) of Theorem 11.
Therefore, for our purpose – to prove Theorem 1 – it is not necessary to go into the study of the local
type of the Bochner-flat generalised Kähler cones which belong to the second case of Theorem 11.
Formally, cases (i) and (ii) of Theorem 11 are similar. However, with respect to the first case, the
second case is more difficult to analyse, due to the fact that there is no restriction on the operator B,
except that it should be hermitian, trace-free and commute with A; in particular, B is not necessarily
diagonalisable, as it is in the first case (see Remark 2). We summarise the results we shall obtain
in this section in Table 1.

4.1 The case of Theorem 11(i)
In this subsection we analyse the first column of the above table.

Proposition 12. Let (M,g, J) be a Bochner-flat generalised Kähler cone which belongs to case (i)
of Theorem 11. Then (M,g, J) is:

(i) of hyperbolic type, if d > 0;
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(ii) of elliptic type, if d < 0;
(iii) of one-step parabolic type, if d = 0.

Conversely, any Bochner-flat Kähler manifold which is of elliptic, hyperbolic or one-step parabolic
type can be locally realised as a generalised Kähler cone, which belongs to case (i) of Theorem 11.

Proof. In case (i) of Theorem 11,

M = {(x, r) ∈ Σ2m+1 × R
>0 : (Bw , w) > 1

2µ(r2)(Aw , w), (Aw , w) > 0, ∀w ∈ x,w 
= 0}.
From Remark 2, there is an orthonormal basis B = {e0, e1, . . . , em+1} of W such that both operators
A and B are diagonal in this basis:

B = diag(−k, k1, . . . , km+1),

A =
1

2(m + 2)
diag(−m − 1, 1, . . . , 1).

Here kj ∈ R, for any j ∈ {1, . . . ,m + 1}, and k = k1 + · · · + km+1. We shall identify Σ2m+1 with
the unit sphere S2m+1 in Span{e1, . . . , em+1} and S2m+1 × R

>0 with C
m+1 \ {0}, by means of the

diffeomorphism

h : S2m+1 × R
>0 → C

m+1 \ {0}, f(z1, . . . , zm+1, r) := (rz 1, . . . , rzm+1).

Read on the image

h(M) =
{

(z1, . . . , zm+1) ∈ C
m+1 \ {0},

m+1∑
j=1

(k + kj − 1
2µ(r2))|zj |2 > 0

}
,

the complex structure J , at a point z ∈ h(M), satisfies

J(V ) = r2
m+1∑
j=1

(kj + k − 1
2µ(r2))

(
xj

∂

∂yj
− yj

∂

∂xj

)
,

J|z⊥ = i,

and the Kähler form ω is equal to 1
4ddJr2. Here r2 = |z1|2 + · · ·+ |zm+1|2 and zj = xj + iyj for any

j ∈ {1, . . . ,m + 1}. For simplicity, we restrict the Kähler structure (ω, J) to the subset

D := {z ∈ C
m+1 \ {0}, µ(r2) < 2(kj + k),∀ j ∈ 1, 2, . . . ,m + 1} (24)

of h(M). We shall consider separately the three cases: d > 0, d < 0 and d = 0.

(i) Suppose that d = β2/2, with β > 0. Then µ(t) = βtg(βt/2). It can be checked that the map

F (z1, . . . , zm+1) := (w1 = f1(r2)z1, . . . , wm+1 = fm+1(r2)zm+1), (25)

where

fj(t) =
(

β√
2

)1/2 e(kj+k)t/2

t1/2µ′(t)1/4
, (26)

is an isomorphism between the Kähler manifolds (D, 1
4ddJr2, J) and (F (D), 1

4ddJ0x, J0). Here
J0 is the standard complex structure of C

m+1 and the positive function x = x(w1, . . . , wm+1)
is defined by the implicit equation

m+1∑
j=1

|wj |2
f2

j (x)
= x. (27)

Let y = y(w1, . . . , wm+1) be related to x by the formula

x =
4
β

arctg[(1 + y)1/2]
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and notice that
e(kj+k)x

µ̇(x)1/2
=

√
2|y|

β(2 + y)
e2ljarctg[(1+y)1/2],

where lj = (2/β)(kj + k), for j ∈ {1, . . . ,m + 1}. For simplicity, we restrict to the set, say
D′ ⊂ F (D), where y > 0. On this set, (1

4ddJ0x, J0) coincides with the Kähler structure
( 1

β ddJ0arctg[(1 + y)1/2], J0), where y is defined by the implicit equation

m+1∑
j=1

|wj |2
e2ljarctg[(1+y)1/2]

=
y

2 + y
. (28)

The Kähler structure ((1/β)ddJ0arctg[(1 + y)1/2], J0) is of hyperbolic type (communicated to
the author by Paul Gauduchon), isomorphic with MC , where C is a hyperbolic hermitian
operator of C

m+2,1 with characteristic and minimal polynomials

QC =
((

t +
2(m + 2)k
β(m + 3)

)2

+ 1
) m+1∏

j=1

(
t − 2

β

(
kj +

k

m + 3

))
,

qC =
((

t +
2(m + 2)k
β(m + 3)

)2

+ 1
) s∏

i=1

(
t − 2

β

(
ki +

k

m + 3

))
.

Here i ∈ {1, . . . , s} parametrises the distinct values of {k1, . . . , km+1}. This proves our first
claim.

(ii) Next, suppose that d := −β2/2, where β > 0. Then

µ(t) =
β(1 + etβ+p)

1 − etβ+p
,

where p ∈ R. By means of the function (25) with

fj(t) =
β1/221/4e

1
2
(kj+k)(t+p/β)+p

t1/2µ′(t)1/4
, j ∈ {1, . . . ,m + 1}, (29)

the Kähler manifolds (D,ω, J) and (F (D), ω0 := 1
4ddJ0x, J0) are isomorphic, where x =

x(w1, . . . , wm+1) is defined by the implicit equation (27), with functions fj defined in (29).
Define a new function y = y(w1, . . . , wm+1) by

y = eβx − e−p.

For simplicity, we restrict to the subset of F (D), say D′, where y > 0. On D′, the function y
satisfies the implicit equation

m+1∑
j=1

|wj |2
epy(epy + 1)βj

= 1,

with βj := (1/β)(kj + k − β/2). In terms of y,

ω0 =
1
4β

ddJ0 log(epy + 1).

It follows that (ω0, J0) is of elliptic type on D′ (see [DG06, § 2.2]) and is isomorphic with the
Kähler structure MC , with C a semi-simple hermitian operator of C

m+2,1, with eigenvalues

−β

2
− (m + 2)k

m + 3
, k1 +

k

m + 3
, . . . , km+1 +

k

m + 3
,

β

2
− (m + 2)k

m + 3
.

Our second claim follows.
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(iii) Finally, suppose that d = 0. Then µ(t) = −2/(t + q), for q ∈ R. For simplicity, we assume that
q � 0. The function (25), with

fj(t) =
e(kj+k)t/2(t + q)1/2

t1/2
,

defines an isomorphism between the Kähler manifolds (D,ω, J) and (F (D), ω0 := 1
4ddJ0x, J0)

where x = x(w1, . . . , wm+1) is a positive function defined implicitly by the equation

m+1∑
j=1

|wj |2
e(kj+k)x(x + q)

= 1.

Note that the function y := x + q > 0 satisfies

m+1∑
j=1

|wj |2
e(kj+k)(y−q)

= y. (30)

Moreover, ω0 = 1
4ddJ0y. The Kähler structure (1

4ddJ0y, J0) is of one-step parabolic type
(see [DG06, § 3.1]). It is isomorphic to the Kähler structure MC , where C is a one-step parabolic
hermitian operator of C

m+2,1, with characteristic and minimal polynomials

QC(t) =
(

t +
(m + 2)k
m + 3

)2 m+1∏
j=1

(
t − kj − k

m + 3

)
,

qC(t) =
(

t +
(m + 2)k
m + 3

)2 s∏
i=1,ki �=−k

(
t − ki − k

m + 3

)
.

As before, i ∈ {1, . . . , s} parametrises the distinct values of {k1, . . . , km+1}. Our third claim
follows.

The last statement of the proposition follows by an examination of the minimal and characteristic
polynomials of the operators C we found in each of the cases (i), (ii) and (iii) above.

4.2 The cases of Theorem 11(iii) and (iv)

In this section we prove the following proposition.

Proposition 13.

(i) Let (M,g, J) be a Bochner-flat generalised Kähler cone, which belongs to case (iii) of Theo-
rem 11. Then (M,g, J) is of two-step parabolic type.

(ii) Let (M,g, J) be a Bochner-flat generalised Kähler cone, which belongs to case (iv) of Theo-
rem 11. Then (M,g, J) is of two-step parabolic type, except when µj = 0 for any j ∈ {2, . . . , n}.
In this case it is of one-step parabolic type if α 
= 0 and of elliptic type if α = 0.

(iii) Any two-step parabolic Bochner-flat Kähler structure can be locally realised as a Bochner-flat
generalised Kähler cone which belongs to case (iii) of Theorem 11, and also as a Bochner-flat
generalised Kähler cone which belongs to case (iv) of Theorem 11.

We divide the proof of Proposition 13 into several lemmas and propositions. Let (M,ω, J) be a
Bochner-flat generalised Kähler cone, which belongs to case (iii) or (iv) of Theorem 11. We continue
to preserve the notation of Theorem 11 and Remark 2.
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Proposition 14. The Bryant modified Ricci operator Θ of (M,g, J) has the following expression:

Θ(Lj) =
(

ηj − c

m + 3

)
Lj − qr(ξj)

r4(ηj − γ)
V, j ∈ {1, . . . , l},

Θ(vk) =
(

λk

r2
− c

m + 3

)
vk, k ∈ {1, . . . ,m − l},

Θ(V ) =
f

r4

l∑
j=1

Lj

p′r(ξj)(ηj − γ)
−

(
f

r2
− (m + 2)c

m + 3

)
V.

Here ξ1, . . . , ξl (respectively, λ1, . . . , λm−l) are the non-constant (respectively, constant) eigenval-
ues of the Bryant modified Ricci operator Θr of MBr , L1, . . . , Ll are vector fields on M which,
at a point (x, r) ∈ M , belong to Hx = HomC(x,W/x) and are the homomorphisms Lj(w) =
b̃r(ξj)w(mod w), v1, . . . , vm−l are eigenvectors of Θ which correspond to the eigenvalues λ1, . . . , λm−l,

pr(t) =
∏l

j=1(t − ξj) is the non-constant part of the characteristic polynomial of Θr, η1 :=
ξ1/r

2, . . . , ηl := ξl/r
2, qr is the minimal polynomial of Br and c = γ − λ.

Proof. Recall that Θ is related to the modified Ricci tensor S from the proof of Proposition 10 by

Θ =
1
4

(
S − traceR(S)

2(m + 3)
Id

)
.

We need to determine S(Lj), S(vk), S(V ) and traceR(S). From the proof of Proposition 10 we know
that, for any X ∈ H,

S(X) =
1
r2

(SrX − 2fX ) +
2(JX )(f)

r2f
T − 2X(f)

r2f
V. (31)

It is easy to check the following equalities:

df(Lj) =
2fqr(ξj)

r2(ηj − γ)
, df(JLj) = 0, df(vk) = 0, df(Jvk) = 0, (32)

which imply, using Θr(Lj) = ξjLj, Θr(vk) = λkvk and relation (5) applied to Θr, that

S(Lj) =
2
r2

(
2ξj − (B2

rw,w)
(Brw,w)

− f

)
Lj − 4qr(ξj)

r4(ηj − γ)
V,

S(vk) =
2
r2

(
2λk − (B2

r w,w)
(Brw,w)

− f

)
vk.

To evaluate S(V ), we write it as a sum of S⊥(V ), the g-orthogonal projection of S(V ) on H,
and (S(V, V )/r2f)V. It is easy to check, using the fact that S is hermitian, relation (6) and Lj =
1
2p′r(ξj)gradgr

(ξj) (see [DG06, Theorem 2]), that

S⊥(V ) =
4f
r4

l∑
j=1

Lj

p′r(ξj)(ηj − γ)
. (33)

To evaluate S(V, V ) = S(T, T ), we use the first equality of (16) and the expression of g(Rg
T,V V, T )

provided by Lemma 9. Notice that the vector field v defined in Lemma 8 has the following expression:
at a point (x, r) ∈ M , v(x,r) ∈ Hx = Hom(x,W/x) is equal to

v(x,r)(w) = 2(Arw − fr(x)Brw) modw,

and so

gr(v(x,r), v(x,r)) = 4fr(x)2
(

(B2
r w,w)

(Brw,w)
− 2r2γ

)
, (34)
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where w ∈ x is non-zero. It follows that

S(V, V ) = −2f
(

(B2
rw,w)

(Brw,w)
− 2r2γ

)
− 4λr2f − 6f2. (35)

Relation (33), together with (35), determine S(V ). It remains to calculate traceR(S). Using (31)
and (35), we have

traceR(S) =
1
r2

(traceR(Sr) − 4mf ) +
2

r2f
S(V, V )

= − 4
r2

(
(m + 3)

(
(B2

r w,w)
(Brw,w)

+ f

)
− 2r2c

)
.

Our claim follows now easily, combining the expressions of S(Lj), S(vk), S(V ) and traceR(S)
determined above.

We introduce a new family of hermitian operators B̂r := (1/r2)Br = B+δ(r)A, with δ(r) := −r2

when λ = 0 (equivalently, when (M,ω, J) belongs to case (iii) of Theorem 11) and δ(r) = −eλr2
/λ

when λ 
= 0 (equivalently, when (M,ω, J) belongs to case (iv) of Theorem 11). Let q̂, respectively
Q̂, be the minimal and characteristic polynomials of B̂r, equal to

q̂(t) = (t − γ)3
s∏

j=1

(t − βj), Q̂ := (t − γ)n+1
s∏

j=1

(t − βj)nj ,

if there is µj 
= 0 and to

q̂(t) = (t − γ)2
s∏

j=1

(t − βj), Q̂(t) = (t − γ)n+1
s∏

j=1

(t − βj)nj ,

otherwise. Let p̂r(t) :=
∏l

j=1(t − ηj) be the non-constant part of the characteristic polynomial of
the Bryant modified Ricci operator Θ̂r of the Kähler structure MB̂r

. It will be considered as a
polynomial with function coefficients defined on Σ2m+1

B̂r
. We shall denote by p̂r,x its value at a null

line x ∈ Σ2m+1

B̂r
, which is a polynomial with constant coefficients.

Proposition 15. Let q̂1 be the constant polynomial equal to the quotient of q̂ by (t−γ)2. Then the
characteristic polynomial P (t) of the modified Ricci operator Θ of (M,g, J) is equal to the product

Q̂(t + c/(m + 3))
q̂(t + c/(m + 3))

P1(t),

where

P1(t) :=
(

t − (m + 2)c
m + 3

)
p̂r

(
t +

c

m + 3

)
+

f

r2
q̂1

(
t +

c

m + 3

)
. (36)

Proof. Using Proposition 14, together with the fact that the constant part of the characteristic
polynomial of the modified Ricci operator ΘA of a Bochner-flat Kähler structure MA is equal to
the quotient of the characteristic polynomial by the minimal polynomial of A (see [DG06, § 1.5]), it
is easy to see that

P (t) =
Q̂(t + c/(m + 3))
q̂(t + c/(m + 3))

P1(t),
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where

P1(t) =
(

t − (m + 2)c
m + 3

+
f

r2

)
p̂r

(
t +

c

m + 3

)

+
f

r8

l∑
j=1

qr(ξj)
(ηj − γ)2p′r(ξj)

∏
i�=j

(
t − ηi +

c

m + 3

)
.

We shall evaluate the expression

E(t) :=
f

r8

l∑
j=1

qr(ξj)
(ηj − γ)2p′r(ξj)

∏
i�=j

(
t − ηi +

c

m + 3

)
.

For this, let gr, ĝr be the Bochner-flat Kähler metrics of MBr , respectively MB̂r
(viewed as metrics

on H). Then, from relation (10), ĝr = r2gr = g on H. Using (6), we get

−4
qr(ξj)
p′r(ξj)

= gr(gradgr
(ξj), gradgr

(ξj)) = r6ĝr(gradĝr
(ηj), gradĝr

(ηj)) = −4r6 q̂(ηj)
p̂′r(ηj)

,

which implies that

E(t) =
f

r2

l∑
j=1

q̂1(ηj)
p̂′r(ηj)

∏
i�=j

(
t − ηi +

c

m + 3

)
.

Note that E1(t) := (r2/f)E(t) is a polynomial of degree l − 1 which satisfies

E1

(
ηj − c

m + 3

)
=

q̂1(ηj)
p̂′r(ηj)

∏
i�=j

(ηj − ηi) = q̂1(ηj), j ∈ {1, . . . , l}.

Since q̂1 is a monic polynomial of degree l and E1 is of degree l − 1, we deduce that q̂1(t) =
E1(t − c/(m + 3)) + p̂r(t), which implies that

l∑
j=1

q̂1(ηj)
p̂′r(ηj)

∏
i�=j

(
t − ηi +

c

m + 3

)
= q̂1

(
t +

c

m + 3

)
− p̂r

(
t +

c

m + 3

)
. (37)

Our claim follows.

The constant roots of the polynomial P1 (which are also constant eigenvalues of Θ) will be
determined in Proposition 17. For the proof of this proposition we need the following additional
lemma.

Lemma 16. The following equality holds:

d

dr
p̂r(t) =

2f
r

(p̂r(t) − q̂1(t)).

Proof. We take the derivative with respect to r of the equality

((ηj Id − B − δA)−1w,w) = 0

(which follows from p̂r(ηj) = 0) and we obtain

((ηj Id − B̂r)−1(η̇j Id − δ̇A)(ηj Id − B̂r)−1w,w) = 0. (38)

On the other hand, since AB = γA, it is easy to see that

(ηj Id − B̂r)−1A(ηj Id − B̂r)−1 =
A

(ηj − γ)2
. (39)
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Applying (7) to A := B̂r and using the fact that ηj Id − B̂r is invertible, we get

((ηj Id − B̂r)−2w,w) = − p̂′r(ηj)
q̂(ηj)

(B̂rw,w). (40)

Combining (38), (39) and (40), and using the fact that δ(r) = −eλr2
/λ when λ 
= 0 and δ(r) = −r2

when λ = 0, we deduce the expressions of the derivatives η̇j as follows:

η̇j =
2f
r

q̂1(ηj)
p̂′r(ηj)

. (41)

Since

d

dr
p̂r(t) = −

l∑
j=1

η̇j

∏
i�=j

(t − ηi)

we get, using (37), our claim.

Proposition 17. The following statements hold:

(i) Suppose that q̂1(c) 
= 0. Then the polynomial P1 defined in (36) does not have constant roots,
except when λ 
= 0 and α = µj = 0 for any j. In this case,

t :=
(m + 2)c
m + 3

+ λ

is the unique constant root of P1 and is simple.

(ii) Suppose that q̂1(c) = 0. Then

t :=
(m + 2)c
m + 3

is a simple root of P1. The polynomial P1 has other constant roots if and only if λ 
= 0 and
α = µj = 0 for any j. In this case, there is only one additional constant root of P1, namely

t := λ +
(m + 2)c
m + 3

,

which is simple.

Proof. We first consider the case when q̂1(c) 
= 0. We claim that P1 has no multiple roots. Suppose,
on the contrary, that t is a multiple (necessarily constant, because the non-constant eigenvalues of
the Bryant modified Ricci operator are always simple) root of P1. Since q̂1(c) 
= 0, t cannot be equal
to (m + 2)c/(m + 3) and so

q̂1

(
t +

c

m + 3

)

= 0

(because p̂r has no constant roots). The equalities P1(t) = P ′
1(t) = 0 imply that

t1p̂
′
r

(
t +

c

m + 3

)
+ t2p̂r

(
t +

c

m + 3

)
= 0, (42)

where

t1 := t − (m + 2)c
m + 3

∈ R \ {0} and t2 := −(m + 2)c
m + 3

−
(

t − (m + 2)c
m + 3

)
q̂′1(t + c/(m + 3))
q̂′1(t + c/(m + 3))

∈ R.

But (42) cannot hold: if it did, it would imply that I, B̂r, . . . , B̂
l+1
r were dependent, which contradicts

the fact that the minimal polynomial of B̂r has degree l + 2. We conclude that P1 cannot have
multiple roots. We will now show that the only possible constant root of P1 is λ+(m+2)c/(m+3)
and it is a root if and only if λ 
= 0 and α = µj = 0 for any j. For this, let t be a constant root
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of P1. Taking the derivative with respect to r of the equality P1(t) = 0 and using Lemma 16, we get(
t − (m + 2)c

m + 3
− λ

)
q̂1

(
t +

c

m + 3

)
= 0,

from where we deduce that t = λ + (m + 2)c/(m + 3), since

q̂1

(
t +

c

m + 3

)

= 0.

Moreover, P1(t) = 0 if and only if

λp̂r(γ) +
f

r2
q̂1(γ) = 0. (43)

Equality (43) forces λ 
= 0 (if λ = 0, then, from (43), q̂1(γ) = 0; also, c = γ; recall however that
we are under the hypothesis q̂1(c) 
= 0; we obtain a contradiction). Therefore, λ 
= 0 and then
Ar = r4eλr2

A. Relation (43) is equivalent with

λ( ˜̂
br(γ)w,w) + q̂1(γ)eλr2

(Aw , w) = 0,

for any w ∈ W null, where ˜̂
br denotes the reduced adjoint operator of B̂r. With the notation of

Remark 2, ˜̂
br(γ), as well as A, act trivially on the subspaces Wj (for j � 1) of W (here and below the

reader is referred to [DG06, Lemma 3], which describes the action of the reduced adjoint operator
of a k-step parabolic hermitian operator when applied to the parabolic eigenvalue). It follows that
(43) is equivalent with

λ
˜̂
br(γ) + q̂1(γ)eλr2

A = 0. (44)
We claim that equality (44) holds if and only if α = µj = 0 for any j (and λ 
= 0). Notice first

that if (44) holds then q̂1(γ) 
= 0 (since ˜̂
br(γ) 
= 0), which implies that B̂r is one-step parabolic. We

deduce that µj = 0 for any j. With the notation of Remark 2, ˜̂
br(γ), as well as A, act trivially on

Ŵ0; on Span{e0, e1}, ˜̂
br(γ) acts by

λ

(
α − eλr2

λ

) s∏
j=1

(γ − βj)A.

Relation (44) is equivalent to

(αλ − eλr2
)

s∏
j=1

(γ − βj) + q̂1(γ)eλr2
= 0;

since q̂1(γ) =
∏s

j=1(γ − βj) and λ 
= 0, it reduces to α = 0. Since P1 does not have multiple roots,

λ +
(m + 2)c
m + 3

is the (unique) simple root of P1.
Now we consider the case when q̂1(c) = 0. Clearly, (m+2)c/(m+3) is a root in this case. Define

the polynomial q̂2(t) := q̂1(t)/(t − c) and let t be a constant root of

p̂r

(
t +

c

m + 3

)
+

f

r2
q̂2

(
t +

c

m + 3

)
= 0. (45)

Taking the derivative with respect to r of (45) and using Lemma 16, we get(
t − (m + 2)c

m + 3
− λ

)
q̂2

(
t +

c

m + 3

)
= 0.
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This implies that

t = λ +
(m + 2)c
m + 3

,

because

q̂2

(
t +

c

m + 3

)

= 0

(because p̂r has no constant roots). As before, t is a root of (45) if and only if

˜̂
br(γ) + q̂2(γ)eλr2

A = 0. (46)

Notice first that if (46) holds, then q̂2(γ) 
= 0. Next, we prove that if (46) holds, then B̂r is one-step
parabolic. The argument is the following. Suppose, on the contrary, that (46) holds and that B̂r is
two-step parabolic; then λ = 0; otherwise, since (t − γ) divides q̂1 (B̂r being two-step parabolic),

q̂2(γ) = 0, which is impossible. On the other hand, ˜̂
br(γ) acts as

∑n
k=2 |µk|2

∏s
j=1(γ − βj)A on

Span{e0, e1}, when B̂r is two-step parabolic; also q̂2(γ) =
∏s

j=1(γ − βj), when λ = 0; from (46) it
follows that ( n∑

k=2

|µk|2 + 1
) s∏

j=1

(γ − βj)A = 0

on Span{e0, e1}, which cannot hold. We have proved that if λ+ (m + 2)c/(m + 3) is a root, then B̂r

is one-step parabolic. Moreover, in this case λ 
= 0 (if λ = 0 then c = γ and since q̂1(c) = 0, then
q̂1(γ) = 0 which is absurd because (t − γ)3 does not divide the minimal polynomial q̂ of B̂r when
B̂r is one-step parabolic). Finally, when B̂r is one-step parabolic and λ 
= 0, relation (46) becomes(

α − eλr2

λ

) s∏
j=1

(γ − βj) + q̂2(γ)eλr2
= 0,

which holds if and only if α = 0, because

q̂2(γ) =
1

γ − c
q̂1(γ) =

1
λ

q̂1(γ) =
1
λ

s∏
j=1

(γ − βj).

We have proved that P1 has an additional constant root, besides (m + 2)c/(m + 3), if and only if
B̂r is one-step parabolic (i.e. µj = 0 for any j), λ 
= 0 and α = 0. The additional constant root is

λ +
(m + 2)c
m + 3

.

It is easy to see that it is simple.

In Proposition 19 we shall determine the Bryant minimal and characteristic polynomials of
(M,ω, J). For the proof of this proposition we need the following additional lemma.

Lemma 18. For any t ∈ R, (x, r) ∈ M and w ∈ x non-zero,

g(x,r)(d
H p̂r(t), dH p̂r(t)) = 4

(
q̂′(t)p̂r,x(t) − q̂(t)p̂′r,x(t) − 2tp̂2

r,x(t) + p̂2
r,x(t)

(B2
rw,w)

r2(Brw,w)

)
,

g(x,r)

(
dH

(
f

r2

)
, dH

(
f

r2

))
=

4f2

r6

(
(B2

rw,w)
(Brw,w)

− 2r2γ

)
,

g(x,r)

(
dH

(
f

r2

)
, dH p̂r(t)

)
=

4f
r2

(
(t − γ)q̂1(t) − (t + γ)p̂r,x(t) +

p̂r,x(t)(B2
r w,w)

r2(Brw,w)

)
.
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Proof. The first equality follows from Lemma 3, applied to B̂r. To prove the second equality, we
remark that the 1-form dH(f/r2) corresponds to the vector field (1/r4)v by means of the metric g.
Therefore,

g

(
dH

(
f

r2

)
, dH

(
f

r2

))
=

1
r6

gr(v, v).

The second equality of the lemma follows from (34). To prove the third equality we notice that

g

(
dH

(
f

r2

)
, dH p̂r(t)

)
=

L̂t(f)
r2

,

where L̂t is the vector field on M which, at a point (x, r) ∈ M , belongs to Hx = HomC(x,W/x)
and is the endomorphism

(L̂t)(x,r)(w) = 2(˜̂br(t)w − p̂r(t)B̂rw) modw, w ∈ x.

This is true since L̂t corresponds to the 1-form dH p̂r(t) by means of the metric g (which coincides
with ĝr on the bundle H, restricted to a level set Nr). It is straightforward to check that

(ArL̂tw,w) = 2((t − γ)q̂1(t) − γp̂r,x(t))(Arw,w),

(BrL̂tw,w) = 2p̂r,x(t)
(

t − (B2
rw,w)

r2(Brw,w)

)
(Brw,w),

so that

L̂t(f)(x,r) = 4f
(

(t − γ)q̂1(t) − (t + γ)p̂r,x(t) +
p̂r,x(t)(B2

r w,w)
r2(Brw,w)

)
,

which proves the third equality.

Proposition 13 is now an easy consequence of the following proposition.

Proposition 19. The Bryant characteristic polynomial of (M,g, J) is equal to

pc(t) =
(

t − (m + 2)c
m + 3

)(
t +

c

m + 3
− γ

)n+1 s∏
j=1

(
t +

c

m + 3
− βi

)nj

.

The Bryant minimal polynomial pm of (M,g, J) has the following expression:

(i) if there is µk 
= 0 and c is different from βj (for any j) and γ, then

pm(t) =
(

t − (m + 2)c
m + 3

)(
t +

c

m + 3
− γ

)3 s∏
j=1

(
t +

c

m + 3
− βj

)
;

(ii) if there is µk 
= 0 and c is equal to βj0 (for a certain j0) or to γ, then

pm(t) =
(

t +
c

m + 3
− γ

)3 s∏
j=1

(
t +

c

m + 3
− βj

)
;

(iii) if all µk = 0 and c is different from βj (for any j), then

pm(t) =
(

t − (m + 2)c
m + 3

)(
t +

c

m + 3
− γ

)2 s∏
j=1

(
t +

c

m + 3
− βj

)
,

except when λ 
= 0 and α = 0, in which case

pm(t) =
(

t − (m + 2)c
m + 3

)(
t +

c

m + 3
− γ

) s∏
j=1

(
t +

c

m + 3
− βj

)
;
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(iv) if all µk = 0 and c is equal to βj0 (for a certain j0), then

pm(t) =
(

t +
c

m + 3
− γ

)2 s∏
j=1

(
t +

c

m + 3
− βj

)
,

except when α = 0 (and λ 
= 0), when

pm(t) =
(

t +
c

m + 3
− γ

) s∏
j=1

(
t +

c

m + 3
− βj

)
.

Proof. Let t be a non-constant root of the polynomial P1. Then(
t − (m + 2)c

m + 3

)
p̂r

(
t +

c

m + 3

)
= − f

r2
q̂1

(
t +

c

m + 3

)
,(

t − (m + 2)c
m + 3

)2

p̂′r

(
t +

c

m + 3

)
=

(
t − (m + 2)c

m + 3

)
P ′

1(t) +
f

r2
q̂1

(
t +

c

m + 3

)

− f

r2

(
t − (m + 2)c

m + 3

)
q̂′1

(
t +

c

m + 3

)
.

Using these relations and Lemma 18, we can calculate the square norm of the covector (dHP1)(t)
as follows:

g((dHP1)(t), (dHP1)(t)) = −4q̂
(

t +
c

m + 3

)(
t − (m + 2)c

m + 3

)
P ′

1(t)

− 4f
r2

(
t − (m + 2)c

m + 3

)
q̂′

(
t +

c

m + 3

)
q̂1

(
t +

c

m + 3

)

− 4f
r2

q̂

(
t +

c

m + 3

)
q̂1

(
t +

c

m + 3

)

+
4f
r2

(
t − (m + 2)c

m + 3

)
q̂

(
t +

c

m + 3

)
q̂′1

(
t +

c

m + 3

)

+
8f
r2

(
t − (m + 2)c

m + 3

)(
t +

c

m + 3
− γ

)
q̂2
1

(
t +

c

m + 3

)
.

Since q̂′(t)q̂1(t) − q̂(t)q̂′1(t) = 2(t − γ)q̂2
1(t), the above expression reduces to

g((dHP1)(t), (dHP1)(t)) = −4q̂
(

t +
c

m + 3

)(
t − (m + 2)c

m + 3

)
P ′

1(t)

− 4f
r2

q̂2
1

(
t +

c

m + 3

)(
t − γ +

c

m + 3

)2

.

On the other hand, Lemma 16 together with the definition of P1 imply that(
d

dr
P1

)
(t) = −2f

r
q̂1

(
t +

c

m + 3

)(
t − (m + 2)c

(m + 3)
− λ

)
.

Since g(dr, dr) = 1/f , we obtain

g((dP1)(t), (dP1)(t)) = g((dHP1)(t), (dHP1)(t)) +
(

d

dr
P1(t)

)2

g(dr, dr)

= −4q̂
(

t +
c

m + 3

)(
t − (m + 2)c

m + 3

)
P ′

1(t).

On the other hand, since P ′
1(t) dt + d(P1(t)) = 0, we get

g(dt, dt) =
g((dP1)(t), (dP1)(t))

P ′
1(t)2

. (47)
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We distinguish three cases: (i) P1 has no constant roots; (ii) P1 has a unique constant root, which
is simple and equal to t1 = λ + (m + 2)c/(m + 3); and (iii) P1 has two constant roots, t1 and
t2 = (m + 2)c/(m + 3), which are simple and distinct (see Proposition 17). In all cases, the Bryant
characteristic polynomial of (M,ω, J) is

pc(t) =
(

t − (m + 2)c
m + 3

)
Q̂

(
t +

c

m + 3

)
.

In case (i), the Bryant minimal polynomial of (M,g, J) is

pm(t) = q̂

(
t +

c

m + 3

)(
t − (m + 2)c

m + 3

)
.

In case (ii) it is

pm(t) = (t − t1)−1

(
t − (m + 2)c

m + 3

)
q̂

(
t +

c

m + 3

)
and in case (iii) it is

pm(t) = (t − t1)−1(t − t2)−1

(
t − (m + 2)c

m + 3

)
q̂

(
t +

c

m + 3

)
.

The conclusion follows.

5. Examples

We end the paper by considering some important classes of Bochner-flat Kähler manifolds and by
showing how they can be realised locally as generalised Kähler cones.

(i) Bryant Bochner-flat Kähler structures. Let N = S2m+1 ⊂ C
m+1 with its standard CR

structure and (k1, . . . , km+1) a system of non-negative real numbers. Define, for every r > 0, the
vector field

Tr(z) :=
m+1∑
j=1

(1 + kjr
2)

(
xj

∂

∂yj
− yj

∂

∂xj

)
,

which is the Reeb vector field of a Sasaki structure on S2m+1 ⊂ C
m+1. Here z = (z1, . . . , zm+1)

belongs to S2m+1, zj = xj + iyj for any j ∈ {1, . . . ,m+1} and r2 = |z1|2 + · · ·+ |zm+1|2. The family
of Sasaki Reeb vector fields {Tr, r > 0} defines a Bochner-flat generalised Kähler cone on C

m+1\{0},
which belongs to the first case of Theorem 11; the solution of equation (19) is µ(t) = −2/t and the
hermitian operator B is semi-simple, with eigenvalues

k′
j = kj − 1

m + 2

m+1∑
i=1

ki, for j ∈ {1, . . . ,m + 1}.

This Bochner-flat Kähler structure was discovered in [Bry01] and further studied in [DG06]; it can
be extended as a complete Bochner-flat Kähler structure on C

m+1.

(ii) Bochner-flat Kähler–Einstein structures. Let (M,g, J) be a Bochner-flat generalised Kähler
cone. With the notation of Theorem 11, suppose that B = eA, for e ∈ R. If (M,g, J) belongs to
cases (i) and (ii) of Theorem 11, then it is Kähler–Einstein if and only if e2 + 2d = 0; moreover, the
Bryant modified Ricci operator of (M,ω, J) is

Θ =
e

m + 3
Id
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in case (i) and

Θ = − e

m + 3
Id

in case (ii). If (M,g, J) belongs to the case (iii) of Theorem 11 and B = eA then it is never Einstein;
if it belongs to case (iv) of Theorem 11 then it is Kähler–Einstein if and only if e = 0 (and λ < 0);
the Bryant modified Ricci operator is

Θ =
λ

m + 3
Id

in this case.

(iii) Bochner-flat generalised Kähler cones of order one. If B = eA but (M,g, J) is not Einstein,
then it must have order one. The Bryant minimal and characteristic polynomials have the following
expressions. If (M,g, J) belongs to case (i), respectively case (ii) of Theorem 11, then

pc(t) =
(

t ∓ e

m + 3

)m+1((
t ∓ e

m + 3

)2

± e

(
t ∓ e

m + 3

)
+

e2 + 2d
4

)
,

pm(t) =
(

t ∓ e

m + 3

)((
t ∓ e

m + 3

)2

± e

(
t ∓ e

m + 3

)
+

e2 + 2d
4

)
.

Moreover, (M,g, J) is of hyperbolic type when d > 0, of one-step parabolic type when d = 0 and of
elliptic type when d < 0. If (M,J, g) belongs to case (iii) and case (iv) of Theorem 11, then

pc(t) =
(

t +
(m + 2)λ

m + 3

)(
t − λ

m + 3

)m+2

,

pm(t) =
(

t +
(m + 2)λ

m + 3

)(
t − λ

m + 3

)2

.

(Recall that λ = 0 in case (iii) and λ 
= 0 in case (iv).) When (M,ω, J) belongs to case (iii), it
is one-step parabolic; when it belongs to case (iv), it is two-step parabolic. Bochner-flat Kähler
structures of order one have been studied in [ACG06]. As shown in [ACG06, DG06], they fibre over
a Kähler manifold with constant holomorphic sectional curvature (in our formalism, the fibration
is M → Nr/T̃r).

(iv) Weighted projective spaces as generalised Kähler cones. Let P
m+1
a be a weighted projective

space, of weights (a1, . . . , am+1), where aj are positive integers. As shown in [Bry01, DG06], P
m+1
a

has a canonical Bochner-flat Kähler structure, of semi-simple type, isomorphic with MC , where C
is a hermitian semi-simple operator of C

m+2,1, with eigenvalues −∑m+2
j=1 λj, λ1, . . . , λm+2, where λj

are related to the weights aj by

λj = aj − 1
m + 3

m+2∑
i=1

ai,

for any j ∈ {1, . . . ,m + 2}. As a Bochner-flat generalised Kähler cone, P
m+1
a belongs to case (i)

of Theorem 11; µ is any solution of equation (19), with d = 2a2
m+2/(m + 3)2, and the hermitian

operator B is semi-simple, with eigenvalues

−
∑m+1

j=1 aj

m + 2
, a1 −

∑m+1
j=1 aj

m + 2
, . . . , am+1 −

∑m+1
j=1 aj

m + 2
.

(v) Tachibana and Liu Bochner-flat generalised Kähler cones. Consider a Bochner-flat generalised
Kähler cone structure (g, J) which belongs to case (i) of Theorem 11. With the notation of § 4,
assume that k1 = · · · = km+1 := k̄. On the set D ⊂ C

m+1 defined by (24), the Kähler structure
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(g, J) has a Kähler potential x which depends only on r2 := |z1|2 + · · · + |zm+1|2. As a function of
r2 = t, x satisfies the implicit equation

eax(t)µ̇(x(t))−1/2 = t, (48)

where a := (m + 2)k̄. In general, a Kähler structure which is defined on an open subset of the
standard C

m and has a global Kähler potential, say h, which depends only on r2 is Bochner-flat if
and only if h, as a function of r2 = t, satisfies a differential equation of the form [TL70]

ḧ(t) = λ1tḣ
3(t) + λ2ḣ

2(t), (49)

where λ1, λ2 ∈ R. It can be easily verified that, if x satisfies (48), then it also satisfies (49), with
λ1 := a2 + d/2 and λ2 := −2a.
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