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Abstract

We give a simple method to approximate multidimensional exponentially tempered stable
processes and show that the approximating process converges in the Skorokhod topology
to the tempered process. The approximation is based on the generation of a random angle
and a random variable with a lower-dimensional Lévy measure. We then show that if
an arbitrarily small normal random variable is added, the marginal densities converge
uniformly at an almost linear rate, providing a critical tool to assess the performance of
existing particle tracking codes.
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1. Introduction

Being able to approximate stable and tempered stable processes is important for investigation
and simulation purposes. A stable or tempered stable process is a process whose increments
are independent stable or tempered stable random vectors. An exponentially tempered stable
random vectorXρ is obtained from a stable random vectorX by exponentially cooling its jump
size (or Lévy measure); the general class of tempered stable vectors was introduced in [15].
Tempered stable laws are used in physics as a model for turbulent velocity fluctuations [11],
[14], as well as in finance [2], [3] and hydrology [13], [16] as a model of transient anomalous
diffusion [1]. As the random variables are infinitely divisible, they can be approximated
using LePage’s method, whereby their Lévy–Khintchine integral representation is split into
a compound Poissonian part (with tempered Pareto jumps) and an approximately normal part
[7]. For general processes with operator scaling, this is also nicely exhibited in [8]. In the case
of a stable random vector this involves adding a random number of random vectors comprised of
one-dimensional Pareto jumps multiplied by a random direction drawn according to the mixing
measureM . In Zhang et al. [17] the authors compared this approach to just drawing a random
direction multiplied by a one-dimensional skewed stable variable, which can also easily be
generated [6]. As they are in the same domain of attraction of an operator stable [12], both
approaches work well. However, in the case of tempered stable vectors, they are in the domain
of attraction of the multivariate normal and, hence, another argument is needed. Furthermore,
the rate of convergence was not explored; we address these issues in this paper.

In this paper we explore approximations to a stochastic process with stationary, independent
increments for which we are given a coordinate transform T : �θ×�r → R

d for some measure
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168 B. BAEUMER AND M. KOVÁCS

spaces�θ and�r which decomposes the Lévy measure φ of the stochastic process into lower-
dimensional Lévy measures; that is, assume that we have a probability measure M on �θ and,
for each θ ∈ �θ , there is a measure φθ on �r such that, with 1A being the indicator function
of a set A, ∫

1A(x)φ(dx) =
∫
�θ×�r

1A(T (θ, r))φ(dT (θ, r))

=
∫
�θ

∫
�r

1A(T (θ, r))φθ (dr)M(dθ)

for any measurable set A and the induced degenerate measure on R
d via

φ̃θ (A) :=
∫
�r

1A(T (θ, r))φθ (dr)

is also Lévy. Note that for most processes appearing in applications there is a canonical
decomposition.

We show that, for τ → 0, the processes

Sτ (t) =
�t/τ�∑
j=1

X
j

�j
(τ )

converge to the original stochastic process in the Skorokhod topology, where the increments
X
j

�j
(τ ) are distributed according to the infinitely divisible distributions with Lévy measure

τ φ̃�j and the �j are random vectors distributed according to M . Here �t/τ� denotes the
integer part of t/τ . In the case that �r ⊂ R is a set of scale factors (radii), �θ ⊂ R

d is
a (d − 1)-dimensional hypersurface (directions) and T (θ, r) = θr , the increments take the
simpler form X

j

�j
(τ ) = �jr�j , where r�j is a random variable with Lévy measure τφ�j and

�j is a random direction picked according to M .
In particular, if �θ = {θ : ‖θ‖ = 1}, �r = R, and if φθ is the Lévy measure of a one-

dimensional tempered stable, this provides a method to approximate multidimensional tempered
stable processes, extending the one-dimensional method to obtain tempered stable laws as
random walk limits developed recently by Chakrabarty and Meerschaert [5].

We then investigate the rate of convergence in the exponentially tempered stable case with
a single α [15] and show that the densities at a fixed time t converge in the L2-multiplier norm
at a rate of C(1 + log2 n)/n. We further show that, given a small random initial perturbation,
the marginal densities of the processes converge uniformly in x and t at an almost linear rate.
This is important as it provides a performance measure/benchmark for existing particle tracking
codes [16], where this approximation method was used to estimate the density of the tempered
stable model (without knowing how accurate the density approximation was), comparing it to
a numerical simulation of particle transport in a random fracture network.

Furthermore, we also show that if the Lévy measure can be decomposed into finitely many
tempered stable measures (e.g. of different αs) then, for each step, randomly choosing which
tempered α-stable to simulate also converges at an almost linear rate.

2. The general result

Let X(t) be a stochastic process in R
d with stationary, independent increments. Then X(t)

has a unique Lévy–Khintchine representation,

E[exp(−i〈k,X(t)〉)] = exp(tψ(k)),
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and log-characteristic function,

ψ(k) = i〈k, v〉 − 1

2
〈k,Qk〉 +

∫
Rd

(
e−i〈k,x〉 − 1 + i〈k, x〉

1 + ‖x‖2

)
φ(dx)

for some drift vector v, covariance matrix Q, and measure φ satisfying

∫ ‖x‖2

1 + ‖x‖2 φ(dx) < ∞.

The notation 〈x, y〉 denotes the R
d inner product. Such a measure is called a Lévy measure.

Definition 1. Assume that, for a Lévy measure φ, there exist measure spaces �θ and �r , and
a measurable map T : �θ ×�r → R

d such that
∫

1A(x)φ(dx) =
∫
�θ

∫
�r

1A(T (θ, r))φθ (dr)M(dθ)

for any measurable set A, and assume that the induced degenerate measure φ̃θ defined via
φ̃θ (A) = ∫

�r
1A(T (θ, r))φθ (dr) is Lévy. We then call (φθ ,M) a Lévy decomposition of φ and

we call φ̃θ the projected Lévy measure in the direction of θ .

Let � be an �θ -valued random variable with Pr{� ∈ A} = M(A). Let Xθ(τ) be a random
variable with characteristic function

E[exp(−i〈k,Xθ (τ )〉)] = exp(τψθ (k))

and

ψθ(k) = i〈k, v〉 − 1

2
〈k,Qk〉 +

∫
Rd

(
e−i〈k,x〉 − 1 + i〈k, x〉

1 + ‖x‖2

)
φ̃θ (dx).

Clearly, ψ(k) = ∫
�θ
ψθ (k)M(dθ). Let Xjθ (τ ) and �j, j ∈ N, τ > 0, be random variables

on the same probability space distributed as Xθ(τ) and �, respectively, all independent, and
define the approximate process

Sτ (t) =
�t/τ�∑
j=1

X
j

�j
(τ ).

We are ready to state the first theorem.

Theorem 1. Let X be a stochastic process in R
d with stationary, independent increments and

a Lévy measure with Lévy decomposition (φθ ,M). If
∫
�θ

| exp(τ |ψθ(k)|)M(dθ) < ∞

for some τ > 0 and all k ∈ R
d , then Sτ → X in the Skorokhod topology as τ → 0+.

Proof. By design, Sτ has independent increments. According to [9, Corollary VII.4.43]
all we have to show is that the characteristic function of Sτ (t) converges to the characteristic
function exp(tψ(k)) of X(t) uniformly on compact intervals in t for all k ∈ R

d .
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170 B. BAEUMER AND M. KOVÁCS

Conditioning on �, the characteristic function of Sτ (t) is given by

E[e−i〈k,Sτ (t)〉] =
(∫

�θ

exp(τψθ (k))M(dθ)

)�t/τ�
.

Using the facts that an − bn = (a − b)
∑n−1
j=0 a

jbn−j−1 and | exp(τψ(k))| ≤ 1, we see that

| exp(tψ(k))− E[e−i〈k,Sτ (t)〉]|
= | exp(tψ(k))− exp(τψ(k))�t/τ� + exp(τψ(k))�t/τ� − E[e−i〈k,Sτ (t)〉]|
≤

∣∣∣∣ exp(tψ(k))− exp

(
τ

⌊
t

τ

⌋
ψ(k)

)∣∣∣∣
+

⌊
t

τ

⌋∣∣∣∣ exp(τψ(k))−
∫
�θ

exp(τψθ (k))M(dθ)

∣∣∣∣. (1)

Using Taylor’s expansion, the last term may be bounded as⌊
t

τ

⌋∣∣∣∣ exp(τψ(k))−
∫
�θ

exp(τψθ (k))M(dθ)

∣∣∣∣
=

⌊
t

τ

⌋∣∣∣∣
∞∑
j=2

(τψ(k))j

j ! −
∫
�θ

∞∑
j=2

(τψθ (k))
j

j ! M(dθ)

∣∣∣∣

≤ τ 2
⌊
t

τ

⌋
|ψ(k)|2 exp(τ |ψ(k)|)+ τ 2

⌊
t

τ

⌋ ∫
�θ

|ψθ(k)|2 exp(τ |ψθ(k)|)M(dθ). (2)

It follows from our assumption on ψθ that the integral is bounded for fixed k ∈ R
d and small

enough τ , and, hence, (2) converges to 0 uniformly in t on compact sets. Since the first term in
(1) converges to 0 uniformly on compacta as well, the proof is complete.

Example 1. Let X(t) be an operator stable process. Using the Jurek coordinate system [10],
the log-characteristic function can be written as

ψ(k) =
∫

‖θ‖=1

∫ ∞

0

(
e−i〈k,rEθ〉 − 1 + i〈k, rEθ〉

1 + ‖rEθ‖2

)
c

r2 drM(dθ)

for some scaling matrix E with eigenvalues whose real part is larger than 1
2 . By Theorem 1,

this process can be approximated by generating steps via randomly (according toM) choosing
a direction � and generating a random variable with log-characteristic function

τψ�(k) = τ

∫ ∞

0

(
e−i〈k,rE�〉 − 1 + i〈k, rE�〉

1 + ‖rE�‖2

)
c

r2 dr.

Example 2. Let X(t) be a tempered operator stable process with uniform scaling, i.e. its log-
characteristic function can be written (see [4]) as

ψ(k) =
∫

‖θ‖=1

∫ ∞

0
(e−i〈k,θ〉r − 1 + i〈k, θ〉r)e−rρ(θ)

rα+1 drM(dθ)

= c

∫
‖θ‖=1

[(〈ik, θ〉 + ρ(θ))α − ρ(θ)α − α〈ik, θ〉ρ(θ)α−1]M(dθ)

for some 1 < α < 2, c > 0, and exponential taper ρ, that is, a bounded measurable function
ρ : Sd−1 → R

+, where Sd−1 = {θ ∈ R
d : ‖θ‖ = 1}. By Theorem 1, this process can
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be approximated by generating steps via randomly choosing a direction � (according to M)
and generating a one-dimensional exponentially tempered stable random variable Y� with
tempering coefficient ρ(�) and time scale τ (see [1] for an efficient algorithm to generate
tempered stable variables with given time scale and tempering coefficient), and letting X� =
�Y�.

3. Rate of convergence for tempered stable processes

In the case of most tempered stable processes we can go further and actually provide a rate
at which the densities of the processes converge. We are going to show that the characteristic
functions converge uniformly at a rate of o(log2 n/n), which translates into an L2-multiplier
convergence of the densities or uniform convergence if an arbitrarily small normal random
variable is added to the process.

Definition 2. Let ρ(θ) ≥ 0 be a bounded measurable function on Sd−1, 1 < α < 2, and a > 0.
Let

Aθ : k → a(i〈k, θ〉 + ρ(θ))α − aρ(θ)α − αaρ(θ)α−1i〈k, θ〉
be the tempered fractional derivative symbol in the direction θ . If ρ(θ) = 0 then we call
Aθ : k → a〈ik, θ〉α the fractional derivative symbol in the direction of θ .

We call ρ the taper and the extended real-valued function

FC : θ → lim
ε→0+

(
essup‖θ‖=1ρ(θ)+ ε

ρ(θ)+ ε

)2−α

the normalized fractional content of the taper at θ .
For a probability measureM on Sd−1, define the (tempered) fractional derivative symbol to

be

A : k →
∫

‖θ‖=1
Aθ(k)M(dθ).

We say that a tempered fractional derivative symbol is full if

λM = min‖η‖=1

∫
‖θ‖=1

〈η, θ〉2M(dθ) > 0.

It is easy to show that λM is the smallest eigenvalue of the covariance matrix of M viewed as
a measure on R

d , and is 0 if and only if M is supported on a subspace.

Our main theorem is as follows.

Theorem 2. Let A be a full, tempered fractional derivative symbol, and assume that FC ∈
L2(Sd−1,M(dθ)). Then there exists a C ≥ 0 such that

∣∣∣∣
(∫

‖θ‖=1
etAθ (k)/nM(dθ)

)n
− etA(k)

∣∣∣∣ ≤ C
1 + log2 n

n
(3)

for all k ∈ R
d , n ∈ N, and t ≥ 0.

Proof. See Section 4.
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Let ψ ∈ L∞(Rd), and let S(Rd) denote the space of Schwartz functions. We call ψ an
Lp-Fourier multiplier, 1 ≤ p < ∞, if the map

S(Rn) � f → Tψf := F −1(ψF (f ))

extends to a bounded linear operator on Lp(Rd), where the Fourier transform of f is denoted
by F (f )(k) = ∫

Rd
e−i〈k,x〉f (x) dx. It is well known that, for a bounded Borel measure µ on

R
d , its Fourier transform µ̂(k) = ∫

Rd
e−i〈k,x〉µ(dx) is an Lp-Fourier multiplier and

Tµ̂f = µ ∗ f.
The Fourier multiplier p-norm of µ is defined as

‖µ‖Mp(Rd )
:= sup

‖f ‖
Lp(Rd )

=1
‖µ ∗ f ‖Lp(Rd ) = ‖Tµ̂‖B(Lp(Rd )),

where ‘∗’ denotes the convolution and ‖ · ‖B(Lp(Rd )) denotes the operator norm on Lp(Rd).
Let µt and νt be probability measures with Fourier transforms

µ̂t (k) =
∫

‖θ‖=1
etAθ (k)M(dθ)

and

ν̂t (k) = exp

(
t

∫
‖θ‖=1

Aθ(k)M(dθ)

)
,

and let µn∗ denote the nth convolution power of a measure µ.

Corollary 1. Let A be a full, tempered fractional derivative symbol, and assume that FC ∈
L2(Sd−1). Then, for all ε > 0, there exists a C ≥ 0 such that

‖µn∗t/n − νt‖M2(Rd )
≤ C

1 + log2 n

n

for all n ∈ N and t ≥ 0.

Proof. Since, for a bounded Borel measure µ, we have ‖µ‖M2(Rd )
= supk∈Rd |µ̂(k)|, the

statement follows from Theorem 2.

The next corollary translates L2-multiplier convergence into uniform convergence in the
presence of a small perturbation δN(0, 1), where N(0, 1) is the multivariate standard normal
random variable.

Corollary 2. Let X be a tempered stable process with characteristic function

E[e−i〈k,X(t)〉] = exp(tA(k)),

where A is a full, tempered fractional derivative symbol with FC ∈ L2(Sd−1). For j ∈ N,
τ > 0, and ‖θ‖ = 1, let �j and Yj,θ (τ ) be random variables on the same probability space,
all independent, with �j distributed as Pr{�j ∈ �} = M(�) and the distribution of Yj,θ
satisfying

E[e−i〈k,Yj,θ (τ )〉] = exp(τAθ (k)).

Then, for all δ > 0, there exists a C > 0 such that the marginal densities of the approximate
process δN(0, 1)+ ∑�t/τ�

j=1 �jYj,�j (τ ) converge uniformly in x ∈ R
d and t ≥ 0 at a rate of

Cτ(1 + log2(1/τ)) to the marginal densities of δN(0, 1)+X(t) as τ → 0+.
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Proof. See Section 4.

The next theorem is important when it is used in conjunction with Corollary 1, as it allows
the mixing of operators with different αs or tempered and untempered (ρ ≡ 0) operators.

Theorem 3. LetAj ∈ C(Rd), j = 1, . . . , m, be sectorial, i.e. assume that there is a c > 0 such
that Re(Aj (k)) ≤ −c|Aj(k)| for k ∈ R

d and all j = 1, . . . , m, and letµt and νt be probability
measures with Fourier transforms µ̂t (k) = ∑

λj etAj (k) and ν̂t (k) = exp(t
∑
λjAj (k)). Then,

for each collection of 0 < λj < 1 with
∑
λj = 1, there exists a C > 0 such that

‖µn∗t/n − νt‖M2(Rd )
≤ C

1 + log2 n

n

for all n ∈ N and t ≥ 0.

Proof. As in the proof of Corollary 1, we use the fact that

‖µn∗t/n − νt‖M2(Rd )
=

∥∥∥∥
(∑

λj etAj /n
)n

− exp

(
t
∑

λjAj

)∥∥∥∥
L∞(Rd )

. (4)

Without loss of generality, assume that 0 < λ1 ≤ λj , which implies that λ1 ≤ 1/m. We divide
the proof into two cases.

Case 1. Assume that k ∈ R
d is such that

∑
λj

∣∣∣∣ tnAj (k)
∣∣∣∣ ≤ 2m log n

cλ1n
.

Then t |Aj(k)|/n ≤ 2m log n/(λ2
1cn) and, by the binomial formula,∣∣∣∣

(∑
λj etAj (k)/n

)n
− exp

(
t
∑

λjAj (k)

)∣∣∣∣
≤ n

∣∣∣∣
(∑

λj etAj (k)/n
)

− exp

(∑
λj
t

n
Aj (k)

)∣∣∣∣
≤ n

(∑
λj

∣∣∣∣ tnAj (k)
∣∣∣∣
2

et |Aj (k)|/n +
∣∣∣∣
∑

λj
t

n
Aj (k)

∣∣∣∣
2

exp

(∑
λj
t

n
|Aj(k)|

))

≤ nC

(
log n

n

)2

= C log2 n

n
.

Case 2. Assume that k ∈ R
d is such that

∑
λj

∣∣∣∣ tnAj (k)
∣∣∣∣ ≥ 2m log n

cλ1n
.

Then there exists j1 such that λj1 |tAj1(k)/n| ≥ 2 log n/(cλ1n) and, hence,∣∣∣∣
∑

λj etAj (k)/n
∣∣∣∣ ≤ λj1 e−c|tAj1 (k)/n| + (1 − λj1)

≤ λj1 e−2c log n/cλ1n + (1 − λj1)

= λj1 e−2 log n/λ1n + (1 − λj1).
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It can be seen by differentiating with respect to x that if 0 ≤ x ≤ ln 2 then λe−x + (1 − λ) ≤
e−λx/2 and, hence, as λ1 ≤ λj1 ,

λj1 e−2 log n/λn + (1 − λj1) ≤ e− log n/n.

Hence, ∣∣∣∣
(∑

λj etAj (k)/n
)n

− exp

(
t
∑

λjAj (k)

)∣∣∣∣ ≤ e− log n + e−2m log n/λ1 ≤ C

n
.

By cases 1 and 2, there exists a C such that
∥∥∥∥
(∑

λj etAj /n
)n

− exp

(
t
∑

λjAj

)∥∥∥∥
L∞(Rd )

≤ C(1 + log2 n)

n
, n ∈ N, t ≥ 0,

which completes the proof in view of (4).

The next corollary allows us to approximate each etAj /n with its polar approximation.

Corollary 3. Let Aj = ∫
‖θ‖=1Aj,θMj (dθ), j = 1, . . . , m, be tempered fractional derivative

operators each satisfying the conditions of Theorem 2, and letµt and νt be probability measures
with Fourier transforms µ̂t (k) = ∑

λj
∫
‖θ‖=1 etAj,θ (k)Mj (dθ) and ν̂t (k) = exp(t

∑
λjAj (k)).

Then, for each collection of 0 < λj < 1 with
∑
λj = 1, there exists a C > 0 such that

‖µn∗t/n − νt‖M2(Rd )
≤ C

1 + log2 n

n

for all n ∈ N and t ≥ 0.

Proof. The proof follows by a straightforward combination of the proofs of Theorems 2
and 3 using the case in which

∑
λj

∫
‖θ‖=1

∣∣∣∣ tnAj,θ (k)
∣∣∣∣Mj(dθ) ≤ 2m

λ1

log n

c̃n

or not, with c̃ = cSc3, where λ1, cS , and c3 are respectively the smallest of the λi , the constants
in property 1 of Proposition 1 below, and the constants c from Proposition 2 below.

We complete this section with an example highlighting the intended usage of Corollaries 1,
2, and 3.

Example 3. Consider a process on R
2 that hasψ(k) = (1/2π)

∫ 2π
0 Aθ(k) dθ as its log-charact-

eristic function, where

Aθ(k) =

⎧⎪⎨
⎪⎩
(〈ik, �θ〉 + sin(θ))1.6 − sin1.6(θ)− (1.6) sin0.6(θ)〈ik, �θ〉, 0 ≤ θ ≤ π,

〈ik, �θ〉1.2, π < θ < 3π/2,

(2π − θ)〈ik, �θ〉1.8, 3π/2 < θ < 2π,

and �θ = (cos θ, sin θ). In order to apply Corollary 3, let λ1 = 1
2 , λ2 = λ3 = 1

4 ,

M1(dx) = 1

π
I[0,π ](x) dx, M2(dx) = 2

π
I[π,3π/2](x) dx,

and M3(dx) = 8

π2 I[3π/2,2π ](x)(2π − x) dx.
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So we can rewrite ψ(k) as

ψ(k) = λ1

∫ 2π

0
Aθ(k)M1(dθ)+ λ2

∫ 2π

0
Aθ(k)M2(dθ)+ λ3

∫ 2π

0

π

4
〈ik, �θ〉1.8M3(dθ).

By the developed theory, the process can be faithfully approximated by generating increments
with step size τ , where each increment is generated by first generating a uniformly distributed

random variable �̃ over [0, 2π ], letting � = �̃ for �̃ < 3π/2 and � = 2π −
√
π2 − �̃π/2

otherwise, and then generating a one-dimensional random variable X� with characteristic
function

E[exp(−ikX�)] = exp(τ Ã�(k)),

where

Ãθ (k) =

⎧⎪⎪⎨
⎪⎪⎩
(ik + sin(θ))1.6 − sin1.6(θ)− (1.6) sin0.6(θ)ik, 0 ≤ θ ≤ π,

(ik)1.2, π < θ < 3π/2,
π

4
(ik)1.8, 3π/2 < θ < 2π.

The one-dimensional variables can be generated (or approximated) using the methods in [1]
and [6]. The increment is then given by X� ��. In Figure 1 we plot a sample path over the time
intervals t < 1, t < 100, and t < 1000, generated with τ = 1/1000. In Figure 2 we plot the
log density estimate at time t = 1 taken from 1 000 000 sample paths generated with τ = 1

64 .
In Table 1 we show the absolute error decreasing between estimates for different τ . As the error
from one simulation to the next with τ = 1

64 is of the order of the error between simulations
with decreased τ , we stopped at τ = 1

64 .

t = 1 t = 100 t = 1000

x

0.0

0.2

0.4

0.6

–0.2

–0.4

y

0.0–0.2–0.4
x

15100
x
0–20–40

0

10

20

–10

y y
0

–50

50

–100

5 20 40

Figure 1: A simulated sample path of Example 3, generated with τ = 0.001. Note that relatively large
upward jumps are present in the small and medium scales virtually disappear in the larger scale on the

right as the probability of jumps larger than x is less than exp(−x sin(θ)) for 0 < θ < π .
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t = 1 t = 100 t = 1000

0

100

–100

0 100–100

0

50

–50

0

5

–5
0 50–500 5–5

Figure 2: The estimated log densities of Example 3, generated with 1 000 000 sample paths and a small
Gaussian smoothing. Level sets depict a decrease by 1.5 (in log space), starting innermost with −3, −7.5,

and −9 respectively.

Table 1: Absolute error in Monte Carlo density estimates of 1 000 000 sample paths to t = 1 for different
time steps. At τ = 1

64 the error is between different realisations.

τ 1 1
2

1
4

1
8

1
16

1
32

1
64

sup |fτ − f1/64| 0.107 0.072 0.045 0.020 0.008 0.004 0.003

4. Proofs of Theorem 2 and Corollary 2

Proposition 1. LetA be a tempered fractional derivative symbol. Letu = 〈k, θ〉, where k ∈ R
d

and θ ∈ Sd−1. Then the following properties hold.

1. There exists a constant cS > 0 such that

Re(Aθ (k)) ≤ −cS |Aθ(k)|
for all k and θ , i.e. Aθ and A are sectorial.

2. There exist constants cL, cU > 0 such that

cL min

{
u2

ρ(θ)2−α , |u|α
}

≤ |Aθ(k)| ≤ cU min

{
u2

ρ(θ)2−α , |u|α
}

for all k and θ with ρ(θ) > 0; if ρ(θ) = 0, cL|u|α ≤ |Aθ(k)| ≤ cU |u|α .

Proof. Note that without loss of generality we can set ρ(θ) = a = 1 as the general case
follows by replacing u (or, equivalently, k) with u/ρ(θ) and multiplying Aθ by aρ(θ)α . As

(iu+ 1)α − 1 − αiu = (iu)α + o(|u|α)
as u → ∞ and, by the Taylor expansion,

(iu+ 1)α − 1 − αiu = −α(α − 1)

2
u2 + o(u2)

as u → 0, the inequalities follow once we establish that | Re(Aθ )| and | Im(Aθ )| with ρ(θ) = 1
are continuous, increasing functions of |u|.
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First we show that Re((iu + 1)α − 1) is decreasing for u > 0; it is clearly continuous and
differentiable. To that end, let φ = arctan u. Then |iu+ 1| = secφ and

f (φ) = Re((i tan φ + 1)α − 1) = cosαφ secα φ − 1. (5)

Its derivative is given by

d

dφ
f (φ) = −α sin(αφ) secα(φ)+ cos(αφ)α secα−1(φ) sec(φ) tan(φ)

= −α secα+1(φ)(sin(αφ) cos(φ)− cos(αφ) sin(φ))

= −α secα+1(φ) sin(αφ − φ)

< 0 (6)

for φ > 0 and positive for φ < 0. Hence, f is decreasing for positive φ or u and increasing for
negative u, and since f (0) = 0, |f | is increasing for increasing |φ| or |u|.

Similarly, we show that Im((iu+ 1)α − αiu) is increasing. Again, let φ = arctan u and

f (φ) = Im((i tan φ + 1)α − αi tan φ) = sin αφ secα φ − α tan φ.

Then

d

dφ
f (φ) = α cos(αφ) secα(φ)+ sin(αφ)α secα−1(φ) sec(φ) tan(φ)− α sec2(φ)

= α secα+1(φ)(cos(αφ) cos(φ)+ sin(αφ) sin(φ))− α sec2 φ

= α secα+1(φ) cos(αφ − φ)− α sec2(φ)

= sec2(φ)(α secα−1(φ) cos((α − 1)φ)− α). (7)

At φ = 0, we have df (φ)/dφ = 0. The last factor in (7) is similar to (5) and its derivative,
given by

−α(α − 1) secα(φ) sin((α − 2)φ) > 0

for φ > 0 and negative for φ < 0, is computed similarly to (6). Hence, df (φ)/dφ > 0 for all
φ �= 0, and since f (0) = 0, |f | is increasing for increasing |u|.
Lemma 1. Let FC ∈ L1(Sd−1,M(dθ)) and ε > 0. Then there exists a constant c > 0 such
that ∫

‖θ‖=1
|Aθ(k)|M(dθ) ≥ ε

implies that if ρmax := essup‖θ‖=1ρ
2−α(θ) > 0,

min

{
‖k‖2 ‖FC‖1

ρmax
, ‖k‖α

}
> cε;

otherwise, ‖k‖α > cε.
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Proof. Assume that ρmax > 0. As FC ∈ L1(Sd−1), the set for which ρ(θ) = 0 is a null set.
By Proposition 1,

∫
‖θ‖=1

|Aθ(k)|M(dθ) ≤ cU

∫
‖θ‖=1

min

{∣∣∣∣ 〈k, θ〉2

ρ(θ)2−α

∣∣∣∣, |〈k, θ〉|α
}
M(dθ)

≤ cU min

{∫
‖θ‖=1

∣∣∣∣ 〈k, θ〉2

ρ(θ)2−α

∣∣∣∣M(dθ),
∫

‖θ‖=1
|〈k, θ〉|αM(dθ)

}

≤ cU min

{
‖k‖2 ‖FC‖1

ρmax
, ‖k‖α

}
.

Hence

min

{
‖k‖2 ‖FC‖1

ρmax
, ‖k‖α

}
≥ ε

cU
.

In the case where ρmax = 0, |Aθ(k)| = a|〈k, θ〉|α . Similarly, we then obtain ‖k‖α ≥ ε/cU .

Lemma 2. There exists a c > 0 such that if ρmax := essup‖θ‖=1ρ(θ)
2−α > 0 then

|Aθ(k)| ≥ cmin

{‖k‖2

ρmax
, ‖k‖α

} 〈k, θ〉2

‖k‖2 ;

otherwise, |Aθ(k)| ≥ c‖k‖α−2〈k, θ〉2.

Proof. If ρ(θ) = 0 then |Aθ(k)| = a|〈k, θ〉|α ≥ a‖k‖α〈k, θ〉2/‖k‖2. If ρ(θ) > 0, by
Proposition 1 we have

|Aθ(k)| ≥ cL min

{∣∣∣∣ 〈k, θ〉2

ρ(θ)2−α

∣∣∣∣, |〈k, θ〉|α
}

≥ cL min

{ |〈k, θ〉|2
ρmax

, ‖k‖α
∣∣∣∣
〈
k

‖k‖ , θ
〉∣∣∣∣
α}

≥ cL min

{‖k‖2

ρmax

〈
k

‖k‖ , θ
〉2

, ‖k‖α
〈
k

‖k‖ , θ
〉2}

= cL min

{‖k‖2

ρmax
, ‖k‖α

} 〈k, θ〉2

‖k‖2 .

Lemma 3. Let M be a probability measure on [0, 1]. Then, for µ ≥ 0,

∫ 1

0
e−µuM(du) ≤ exp

(
−min(µ, 1)

2

∫ 1

0
uM(du)

)
.

Proof. Clearly, for u ∈ [0, 1], e−µu ≤ 1 − (1 − e−µ)u. Hence,

∫ 1

0
e−µuM(du) ≤ 1 − (1 − e−µ)

∫ 1

0
uM(du) ≤ exp

(
−(1 − e−µ)

∫ 1

0
uM(du)

)
.

The assertion follows from the fact that, for 0 ≤ µ ≤ 1, 1 − e−µ ≥ µ/2 and, for µ > 1,
1 − e−µ ≥ 1

2 .
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Proposition 2. Let A be a full, tempered fractional derivative symbol. Assume that FC ∈
L1(Sd−1,M(dθ)). Then there exist 0 < c ≤ 1 and d > 0 such that, for all ε, t > 0 and n ∈ N,∫

‖θ‖=1

t

n
|Aθ(k)|M(dθ) ≥ ε

implies that ∫
‖θ‖=1

e−t |Aθ (k)|/nM(dθ) ≤ e− min{cε,d}.

Proof. Combining Lemma 1 and Lemma 2, there exist cL, cU > 0 such that

|Aθ(k)| ≥ cL min

{‖k‖2

ρmax
, ‖k‖α

} 〈k, θ〉2

‖k‖2

≥ n

t

εcL

cU
min

{
1

‖FC‖1
, 1

} 〈k, θ〉2

‖k‖2

= n

t

εcL

cU‖FC‖1

〈k, θ〉2

‖k‖2 . (8)

Define a measure Mk on [0, 1] via

Mk(�) = M

({
θ : 〈k, θ〉2

‖k‖2 ∈ �
})

for each measurable � ⊂ [0, 1]. Then, by Lemma 3 and inequality (8), there exists 0 < c ≤ 1
such that ∫

‖θ‖=1
e−t |Aθ (k)|/nM(dθ) ≤

∫
‖θ‖=1

exp

(
− t

n

n

t

εcL

cU‖FC‖1

〈k, θ〉2

‖k‖2

)
M(dθ)

≤
∫ 1

0
exp

(
− εcL

cU‖FC‖1
u

)
Mk(du)

≤ exp

(
−1

2
min

{
εcL

cU‖FC‖1
, 1

} ∫ 1

0
uMk(du)

)

≤ exp

(
−1

2
min

{
εcL

cU‖FC‖1
, 1

}
λM

)

≤ e− min{cε,d}.

Lemma 4. LetA be a full, tempered fractional derivative symbol. Then there exists a constant
c > 0 such that, for all ε > 0, ∫

‖θ‖=1
|Aθ(k)|M(dθ) ≤ ε

implies that
|Aθ(k)| < cεFC(θ).

Proof. By Lemma 2, if ρmax := essup‖θ‖=1ρ(θ)
2−α > 0 then

|Aθ(k)| ≥ cL min

{‖k‖2

ρmax
, ‖k‖α

} 〈k, θ〉2

‖k‖2 ,

https://doi.org/10.1239/jap/1331216840 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216840


180 B. BAEUMER AND M. KOVÁCS

and, hence,

ε ≥
∫

‖θ‖=1
|Aθ(k)|M(dθ) ≥ cL min

{‖k‖2

ρmax
, ‖k‖α

}
λM.

Therefore, either ‖k‖2 ≤ ερmax/λMcL or ‖k‖α ≤ ε/λMcL. If ρmax = 0, we clearly also have
‖k‖α ≤ ε/λMcL. In the case where ‖k‖2 ≤ ερmax/λMcL, this implies that

|Aθ(k)| ≤ cU min

{∣∣∣∣ 〈k, θ〉2

ρ(θ)2−α

∣∣∣∣, |〈k, θ〉|α
}

≤ cU

λMcL
FC(θ)ε;

in the case where ‖k‖α ≤ ε/λMcL, this implies that

|Aθ(k)| ≤ cU min

{∣∣∣∣ 〈k, θ〉2

ρ(θ)2−α

∣∣∣∣, |〈k, θ〉|α
}

≤ cU

λMcL
ε.

As FC(θ) ≥ 1, the lemma is proven.

Proposition 3. Let A be a full, tempered fractional derivative symbol, and assume that FC ∈
L2(Sd−1,M(dθ)). Then there exists a constant c > 0 such that, for all 0 < ε ≤ 1 and all
n, t > 0,

t

n

∫
‖θ‖=1

|Aθ(k)|M(dθ) ≤ ε

implies that ∣∣∣∣
∫

‖θ‖=1
etAθ (k)/nM(dθ)− etA(k)/n

∣∣∣∣ ≤ cε2.

Proof. Note that, by Lemma 4, there exists a constant c = cU/cLλM such that

t

n
|Aθ(k)| ≤ cεFC(θ).

Then, using the facts that A(k) = ∫
‖θ‖=1Aθ(k)M(dθ) and M is a probability measure,∣∣∣∣etA(k)/n −

∫
‖θ‖=1

etAθ (k)/nM(dθ)

∣∣∣∣
=

∣∣∣∣
∫

‖θ‖=1

∫ 1

0

(
t

n
A(k)− t

n
Aθ (k)

)
exp

(
s
t

n
A(k)+ (1 − s)

t

n
Aθ (k)

)
dsM(dθ)

∣∣∣∣
=

∣∣∣∣
∫

‖θ‖=1

[
s

(
t

n
A(k)− t

n
Aθ (k)

)
exp

(
t

n
(sA(k)+ (1 − s)Aθ (k))

)∣∣∣∣
s=1

s=0

−
∫ 1

0
s

(
t

n
A(k)− t

n
Aθ (k)

)2

exp

(
s
t

n
A(k)+ (1 − s)

t

n
Aθ (k)

)
ds

]
M(dθ)

∣∣∣∣
=

∣∣∣∣
∫

‖θ‖=1

∫ 1

0
s

(
t

n
A(k)− t

n
Aθ (k)

)2

exp

(
s
t

n
A(k)+ (1 − s)

t

n
Aθ (k)

)
dsM(dθ)

∣∣∣∣
≤ 1

2

∫
‖θ‖=1

∣∣∣∣ tnA(k)− t

n
Aθ (k)

∣∣∣∣
2

M(dθ)

≤ 1

2

∫
‖θ‖=1

∣∣∣∣ tnAθ (k)
∣∣∣∣
2

M(dθ)+ 3

2
ε2

≤ c2ε2

2

∫
‖θ‖=1

|FC(θ)|2M(dθ)+ 3

2
ε2. (9)
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Proof of Theorem 2. We divide the proof into two cases. First let

t

n

∫
‖θ‖=1

|Aθ(k)|M(dθ) > log n

c̃n
,

where c̃ = cSc3. Here cS denotes the constant in property 1 of Proposition 1 and c3 ≤ 1 is the
constant c from Proposition 2. Then, by property 1 of Proposition 1,

∣∣∣∣ exp

(
t

∫
‖θ‖=1

Aθ(k)M(dθ)

)∣∣∣∣ ≤ e−ncS log n/c̃n = 1

n1/c3
.

Furthermore, by Proposition 2 we also have

∣∣∣∣
(∫

‖θ‖=1
etAθ (k)/nM(dθ)

)n∣∣∣∣ ≤ e−cSnmin{c3 log n/c̃n,d}.

Hence, there exists a C > 0 such that

∣∣∣∣
(∫

‖θ‖=1
etA(k)/n

)n
− etA(k)

∣∣∣∣ ≤ C

n
.

In the case
t

n

∫
‖θ‖=1

|Aθ(k)|M(dθ) ≤ log n

c̃n
,

first note that, for |a|, |b| ≤ 1,

|an − bn| = |a − b|
n−1∑
j=0

|ajbn−1−j | ≤ n|a − b|.

By Proposition 3, there exists a c > 0 such that

∣∣∣∣
(∫

‖θ‖=1
etAθ (k)/nM(dθ)

)n
− (etA(k)/n)n

∣∣∣∣ ≤ n

∣∣∣∣
∫

‖θ‖=1
etAθ (k)/nM(dθ)− etA(k)/n

∣∣∣∣
≤ nc

(
log n

c̃n

)2

= C
log2 n

n
. (10)

By combining the two cases, it follows that there exists a C > 0 such that (3) holds.

Proof of Corollary 2. Uniform convergence of the densities follows from the L1-conver-
gence of the characteristic function since ‖f ‖∞ ≤ ‖f̂ ‖1/(2π)d , where

f̂ : k →
∫

ei〈k,x〉f (x) dx.
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Hence, we need to estimate

∥∥∥∥e−δ‖·‖2/2
(

etA(·) −
(∫

‖θ‖=1
eτAθ (·)M(dθ)

)�t/τ�)∥∥∥∥
L1(Rd )

≤ ‖e−δ‖·‖2/2(etA(·) − eτ�t/τ�A(·))‖L1(Rd )

+
∥∥∥∥e−δ‖·‖2/2

(
eτ�t/τ�A(·) −

(∫
‖θ‖=1

eτAθ (·)M(dθ)
)�t/τ�)∥∥∥∥

L1(Rd )

= I1 + I2.

Using the fact that ReA(k) ≤ 0, we obtain

I1 ≤ ‖e−δ‖·‖2/2|1 − eτA(·)|‖L1(Rd ).

Comparing real and imaginary parts we easily see that there exists a c > 0 such that

|1 − eτA(k)| ≤ cτ(1 + |A(k)|),
and, hence, there exists a C such that I1 ≤ Cτ .

In order to estimate I2, note that, by Proposition 1, there exists a cU such that

max‖θ‖=1
|Aθ(k)| ≤ cU‖k‖α

for all k ∈ R
d . We divide the estimate into two parts.

Firstly, consider t ≤ 1. Then using the same technique as in (9) and (10), we see that

∣∣∣∣eτ�t/τ�A(k) −
(∫

‖θ‖=1
eτAθ (k)M(dθ)

)�t/τ�∣∣∣∣ ≤ 1

2

⌊
t

τ

⌋
τ 2

∫
‖θ‖=1

|Aθ(k)− A(k)|2M(dθ)

≤ Cτ‖k‖2α,

where the last inequality follows from Proposition 1. Hence, for t ≤ 1,

I2 ≤ Cτ‖‖ · ‖2αe−δ‖·‖2/2‖L1(Rd ).

For t ≥ 1, apply Theorem 2 with n = �t/τ� to obtain

∣∣∣∣eτ�t/τ�A(k) −
(∫

‖θ‖=1
eτAθ (k)M(dθ)

)�t/τ�∣∣∣∣ ≤ C1
1 + log2�t/τ�

�t/τ�
≤ Cτ

(
1 + log2

(
1

τ

))
,

and, hence, in this case

I2 ≤ Cτ

(
1 + log2

(
1

τ

))
‖e−δ‖·‖2/2‖L1(Rd ).

Thus, the marginal densities converge independently of t at the prescribed rate.
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