Gerard Gómez and Jaume Llibre
Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.

ABSTRACT. We study the cantorian structure of the successive intersections of the invariant manifolds of infinity (parabolic orbits) with a certain surface of section. The first of these intersections is computed numerically. The structure of the set of orbits of capture or escape after n binary collisions is given.

1. FORMULATION OF THE PROBLEM. EQUATIONS OF MOTION.

Two bodies (called primaries) of point masses m_{1} and m_{2} are moving in an elliptic collision orbit under the influence of their mutual gravitational attraction and a third body of mass $\mathrm{m}_{3} \approx 0$ (attracted by the previous two but not influencing their motion) moves in the line defined by the two primaries. The collinear restricted three body problem is to describe the motion of this third body.

We select units of length, time and mass such that the length of the major axis of the collision elliptic orbit equals 2 , the period is 2π and $m_{1}=m, m_{2}=1-m$ with $m \in(0,1)$. Units are taken in such a way that the gravitation constant equals 1 . We take the center of masses at the origin.

Let $-x_{1}, x_{2}\left(x_{i} \geqslant 0\right)$ be the coordinates of m_{1}, m_{2}, respectively. Then the motion of the Ewo primaries is given by

$$
\begin{align*}
& x_{1}=(1-m)(1-\cos E) \tag{1}\\
& x_{2}=m(1-\cos E)
\end{align*}
$$

with $t=E-\sin E$. The parameter E is the so called eccentric anomaly and the origin of time is taken at a collision between m_{1} and m_{2}. We remark that t, E are defined modulus 2π and from now on this will be understood without explicit mention each time that t or E appears.

Let $x \geqslant 0$ be the coordinate of the third body. We assume $x \geqslant x_{2}$ (see Figure 1): The equation of motion of the third body is:

$$
\begin{equation*}
d^{2} x / d t^{2}=(1-m) /\left(x-x_{2}\right)^{2}-m /\left(x+x_{1}\right)^{2} \tag{2}
\end{equation*}
$$

with x_{1}, x_{2} given by (1).
We have a singularity in (2) when $x=x_{2}$. Furthermore, if $x_{2}=0$ we obtain a triple collision because $x_{1}=0$, too. If $x_{2}>0$ we encounter a binary collision between m_{2} and m_{3}. A change of variables will regularize such last collision as usual. In what follows we will not consider triple collision orbits.

Let $h_{123}=\dot{x}^{2} / 2-(1-m) /\left(x-x_{2}\right)-m /\left(x+x_{1}\right)$ be the energy per unit
mass of the third body, and $h_{23}=\left(\dot{x}-\dot{x}_{2}\right)^{2} / 2-(1-m) /\left(x-x_{2}\right)$ the energy associated with the binary $\mathrm{m}_{2}, \mathrm{~m}_{3}$. We relate the motion close to collision m_{2}, m_{3} with the motion of the third body near infinity. As h_{123} does not have a finite limit when $x-x_{2} \rightarrow 0$ and h_{23} is not suitable when $x \rightarrow \infty$, we define $h=\left(x^{r}-x_{2}^{r}\right) h 123 / x^{r}+x_{2}^{r} h_{23} / x^{r^{2}}$ with $r \geqslant 1$. Using the behaviour of bodies near collision (Siegel-Moser, pp30), we see that h is well defined along solutions of (2) (if and only if $r \geqslant 1$) and that $h \rightarrow h_{23}$ if $x-x_{2} \rightarrow 0$, and $h \rightarrow h_{123}$ if $x \rightarrow \infty$.

We scale the time in order to regularize binary collisions m_{1}, m_{2} and m_{2}, m_{3} introducing the s variable (Stiefel-Scheifele, pp20)

$$
d t=\left(x-x_{2}\right)(1-\cos E) d s
$$

Then (2) becomes
$\frac{d x}{d s}=\left\{\frac{x_{2}^{r} \dot{x}_{2}}{x^{r}}+\left[\left(\frac{x_{2}^{r} \dot{x}_{2}}{x^{r}}\right)^{2}+2\left(\frac{x^{r}-x_{2}^{r}}{x^{r}} \frac{m}{x+x_{1}}+\frac{1-m}{x-x_{2}}+h-\frac{x_{2}^{r} \dot{x}_{2}^{2}}{2 x^{r}}\right)\right]^{1 / 2}\right\} \frac{d t}{d s}$,
$\frac{d h}{d s}=\frac{x^{r}-x_{2}^{r}}{x^{r}} \frac{d h_{123}}{d s}+\frac{x_{2}^{r}}{x^{r}} \frac{d h_{23}}{d s}+\left(h_{23}-h_{123}\right) \frac{d}{d s}\left(\frac{x_{2}^{r}}{x^{r}}\right)$
$\frac{d t}{d s}=\left(x-x_{2}\right)(1-\cos E)$,
where

$$
\begin{aligned}
& d h_{123} / d s=\left(m \dot{x}_{1} /\left(x+x_{1}\right)^{2}-(1-m) \dot{x}_{2} /\left(x-x_{2}\right)^{2}\right) \cdot d t / d s \\
& d h_{23} / d s=\left(\dot{x}-\dot{x}_{2}\right)\left(-m /\left(x+x_{1}\right)^{2}-\ddot{x}_{2}\right) \cdot d t / d s \\
& d / d s\left(x_{2} / x\right)^{r}=r x_{2}^{r-1}\left(\dot{x}_{2} x-x_{2} \dot{x}\right) / x^{r+1} \cdot d t / d s \\
& h_{23}-h_{123}=-\dot{x} \dot{x}_{2}+\dot{x}_{2}^{2} / 2+m /\left(x+x_{1}\right) \\
& \dot{x}_{1}=(1-m) \sin E /(1-\cos E) \\
& \dot{x}_{2}=m \sin E /(1-\cos E)
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{x}_{1}=-(1-m) /(1-\cos E)^{2} \\
& \ddot{x}_{2}=-m /(1-\cos E)^{2} .
\end{aligned}
$$

We remark that $x \geqslant 1$ is enough to make $d x / d s$ and $\left(x^{r}-x_{2}^{r}\right) x^{-r} d h_{123} / d s$ regular, but values $r \geqslant 2$ and $r \geqslant 3$ are necessary for $x_{2}^{r} x^{-r} d h_{23} / d s$ and $\left(h_{23}-h_{123}\right) d / d s\left(x_{2} / x\right)^{r}$, respectively. From now on we take $r=3$.

From (3) it follows that the motion of m_{3} is determined by four initial conditions

$$
s=s_{0},\left(x-x_{2}\right)\left(s_{0}\right)=0, h\left(s_{0}\right)=h_{0}, t\left(s_{0}\right)=t_{0}
$$

Note that every orbit of m_{3} has at least one collision m_{2}, m_{3}.
Due to the autonomous character of the equations the value of s_{0} is irrelevant. Let us take $s_{0}=0$. Then $h(0)=h_{0}, t(0)=t_{0}$, or equivalently $\mathrm{E}(0)=\mathrm{E}_{0}$, are enough to determine the motion if we assume that bodies m_{2}, m_{3} are at collision. Then we have:

LEMMA 1 (see Proposition 2.1 of Llibre-Simó,1980a). Orbits of the third body excluding triple collision are determined by points of a cylinder K excluding one generatrix (see Figure 2).

Figure 1.

Figure 2.

We remark that more than one point can give the same orbit. The generatrix $E_{0}=0$ which is related to triple collision is excluded.

We define a mapping in a subset D_{1} of $K, f: D_{1} \longrightarrow K$ in the following way: Given a point $\left(\mathrm{h}_{0}, \mathrm{E}_{0}\right) \epsilon \mathrm{K}$ and ${ }^{1} \mathrm{~S}_{0}=0$ let ${ }^{1}$ us consider the orbit defined by $\left(h_{0}, E_{0}\right)$. We have that $\left(x-x_{2}\right)\left(s_{0}\right)=0$. Let s_{1} be the next zero of $x-x_{2}$ for increasing values of s, if it exists. Then, if $h\left(s_{1}\right)=h_{1}$ and $E\left(s_{1}\right)=E_{1}$, we define $f\left(h_{0}, E_{0}\right)=\left(h_{1}, E_{1}\right)$. We call f the Poincaré map of the collinear restricted three body problem associated with K.

The set D_{1} is associated with the orbits of m_{3} which collide again with m_{2}. We caIl D_{1} the set of elliptic orbits for increasing time. It is clear that D_{1} is open. Now we study the complementary of D_{1}. If f is not defined on the point $\left(h_{0}, E_{0}\right)$ as $\ddot{x}(t)<0$ for all $t>t_{0}$, the function $\dot{x}(t)$ is monotonically decreasing. There exist $\lim \dot{x}(t)=\dot{x}(+\infty) \geqslant 0$ and $t \rightarrow \infty$
$\lim x(t)=+\infty$. We say $\left(h_{0}, E_{0}\right)$ is hyperbolic (parabolic) for $t \rightarrow+\infty$ if $t \rightarrow \infty$
$\dot{x}(+\infty)>0(\dot{x}(+\infty)=0)$. The set of hyperbolic (parabolic) initial conditions for $t \rightarrow+\infty$ in K will be called $H_{1}\left(P_{1}\right)$. The set H_{1} is open. We call D_{-1} the subset of K where f^{-1} is defined, we have $D_{-1}=f\left(D_{1}\right) \cdot D_{-1}$ is called the set of elliptic orbits for decreasing time. We define $H_{-1}\left(P_{-1}\right)$ as hyperbolic (parabolic) orbits for $t \rightarrow-\infty$ in a natural way.

We remark that equation (2) is invariant with respect to the symme$\operatorname{try}(x, \dot{x}, t) \rightarrow(x,-\dot{x},-t)$. This symmetry on K is given by $S\left(h_{0}, E_{0}\right)=$ $\left(h_{0}, 2 \pi-E_{0}\right)$. Then we have $f^{-1}=S^{-1} \circ f \circ S$ and hence $D_{-1}=S\left(D_{1}\right), P_{-1}=$ $S\left(P_{1}\right), H_{-1}=S\left(H_{1}\right)$.
2. THE INTEGRABLE CASE $m=0$.

The system (2) for $m=0$ reduces to a rectilinear two body problem. The energy $h=h_{123}=h_{23}=\dot{x}^{2} / 2-1 / x$ is constant for each orbit and the solutions such that for a given E_{0} verify $\left(x-x_{2}\right)\left(E_{0}\right)=0$, are associated with elliptic, parabolic, hyperbolic collision orbits according as the energy h is negative, zero or positive.

Furthermore the cylinder K is divided by the circle $h_{0}=0$ (parabolic orbits) in two regions: elliptic orbits ($h_{0}<0$) and hyperbolic ones ${ }^{\left(h_{0}>0\right)}$.

Now the Poincare map f is given by:
with

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{~h}_{0}, \mathrm{E}_{0}\right)=\left(\mathrm{h}_{1}, \mathrm{E}_{1}\right) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& h_{1}=h_{0} \\
& E_{1}=E_{0}+E\left(2 \pi\left(-2 h_{0}\right)^{-3 / 2}\right)
\end{aligned}
$$

where $E(t)$ is the solution of the equation $t=E-\sin E$. It is clear that f is defined only for values of $h_{0}<0$. Therefore, the domain of definition D_{1} is a semi-cylinder and $D_{1}=D_{-1}=f\left(D_{1}\right)$. Here D_{1} is the circle $h_{0}=0$ of K and $P_{1}=P_{-1}$, of course the semi-cylinder $h_{0}>0$ is $H_{1}=H_{-1}$.

We look at D_{1} as an annulus of radius $h_{0} \in(-\infty, 0)$. Then the Poincare map on D_{1} is a twist map, which means that the concentric circles $\mathrm{h}_{0}=$ constant <0 are rotated by an angle $E\left(2 \pi\left(-2 h_{0}\right)^{-3 / 2}\right)$ which tends increasing to ∞ as h_{0} approaches 0 . Thus the image of any radius is a curve spiralling infinitely about the origin as it approaches $h_{0}=0$.

3. THE NONINTEGRABLE CASE $m>0$

In order to study P_{1} and P_{-1} when $m>0$ we need to consider the flow in the neighborhood of ∞^{1}. Following McGehee we introduce the variables

$$
x=2 / q^{2}, \quad \dot{x}=-p, \quad d t=\left(4 / q^{3}\right) d w
$$

with $0<q<\infty$. Then (2) becomes

$$
\begin{align*}
& d q / d w=p \\
& d p / d w=\left[(1-m) /\left(1-q^{2} x_{2} / 2\right)^{2}+m /\left(1+q^{2} x_{1} / 2\right)^{2}\right] q \tag{5}\\
& d t / d w=4 / q^{3}
\end{align*}
$$

In (McGehee) it was proved that in the infinity there is an hyperbolic periodic orbit whose invariant manifolds are P_{1} (stable) and P_{-1} (unstable).

The symmetry of the problem in these new coordinates is given by $(q, p, t, w) \longrightarrow(q,-p,-t,-w)$. Then if the manifold P_{-1} has the expression $\mathrm{q}=\mathrm{F}(\mathrm{p}, \mathrm{t})$, the P_{1} is $\mathrm{q}=\mathrm{F}(-\mathrm{p},-\mathrm{t})$. In (Llibre-Simo, 1980a) it has been shown that $F^{\prime}(p, t)$ is 2π-periodic in t and is not analytic in t but in E. Moreover

$$
\begin{equation*}
F(p, t)=\sum_{n \geqslant 0} a_{n}(t) p^{n} \tag{6}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{0}=a_{2}=a_{3}=a_{4}=a_{6}=0, \\
& a_{1}=1, \\
& a_{5}=-5 m(1-m) / 16, \tag{7}\\
& a_{7}=35 m(1-m)(1-2 m) / 128, \\
& a_{8}=-3 m(1-m)\left(-5 t / 2+\int_{0}^{t}(1-\cos E)^{3} d E\right),
\end{align*}
$$

Using the above results we have:
LEMMA 2 (see Proposition 3.2 of Llibre-Simb, 1980a). If $m>0$ is sufficiently small the set P_{1} of parabolic initial conditions for $t \rightarrow+\infty$ in k is a simple closed curve (if we add the generatrix $\mathrm{E}_{\mathrm{O}}=0$ to K) which divides K in two components D_{1} and H_{1}.

The geometry of the curves P_{1} and P_{-1} will be studied numerically in the next section.
LEMMA 3. If $m>0$ is sufficiently small, let $\gamma=\left\{\left(h_{0}, E_{0}\right): h_{0}=h_{0}(s)\right.$, $\left.\mathrm{E}_{0}=\mathrm{E}_{0}(\mathrm{~s}), \mathrm{s} \in[0,1]\right\}$ be an arc having in P_{1} the point belonging to $s=0$. We suppose that at this point γ and P_{1} are not tangent. Then $f(\gamma)=\left\{\left(h_{1}, E_{1}\right): h_{1}=h_{1}(s), E_{1}=E_{1}(s), s \in[0,1]\right\}$ approaches P_{-1} spiraling, i.e. $E_{1}(s) \rightarrow \infty$ when $s \rightarrow 0$.

The proof of this lemma is obtained taking into account that near the periodic orbit at infinity the equations of motion are approximately the same as in the Sitnikov problem (see Moser).
LEMMA 4 (see Theorem 4.1 of Llibre-Simb,1980a). If $m>0$ is small enough then $P_{1} \neq P_{-1}$ and they intersect at a non-tangential homoclinic point P on $\mathrm{E}_{0}=\pi$.

Using this fact the Bernoulli shift can be embedded as a subsystem of the Poincare map f in a neighborhood of the homoclinic point p (for more details see Llibre-Simठ,1980a).
4. NUMERICAL STUDY OF P_{1} and P_{-1}

In this section we shall describe the geometry of the curve P_{-1} for values of $m \in(0,1)$, see Figures 3,4 and 5 .

Since $P_{1}=S\left(P_{-1}\right), S\left(h_{0}, E_{0}\right)=\left(h_{0}, 2 \pi-E_{0}\right)$ and the curve P_{-1} is increasing in E_{1}, we have that $P_{1} \cap_{P_{-1}}$ reduces to an unique point, the homoclinic point p of Lemma 4. Moreover, we compute the angle β of the intersection of P_{1} and P_{-1} at p. These values together with the value of the energy at the intersection point are given in Table I.

In Figures 6 and 7 we have plotted the angle β in front of the mass ratio m. As it is clear from Figure 7 this angle varies linearly with m, if m is sufficiently small. This is due to the analytical dependence of the angle β with respect m. The coefficient of m in the development of β in power series of m was computed analytically in Llibre-Simo,1980a. Its numerical value is $\tan \beta=1.19 \ldots \mathrm{~m}+\mathrm{O}\left(\mathrm{m}^{2}\right)$.

In short we have numerical evidence of the following:
CONJECTURE. For all value of $m \in(0,1)$ the intersection of P_{1} with P_{-1} reduces to an unique transversal homoclinic point.

In order to compute P_{-1}, for the different values of m, we start

Figure 3.

Figure 4.

Figure 5.

m	E_{0}	$\beta / 2$
.0001	$-2.9450 \cdot 10^{-5}$	$5.97 \cdot 10^{-5}$
.0002	$-5.8903 \cdot 10^{-5}$	$1.19 \cdot 10^{-4}$
.0003	$-8.8331 \cdot 10^{-5}$	$1.77 \cdot 10^{-4}$
.0004	$-1.1771 \cdot 10^{-4}$	$2.39 \cdot 10^{-4}$
.0005	$-1.4717 \cdot 10^{-4}$	$2.98 \cdot 10^{-4}$
.001	$-2.9500 \cdot 10^{-4}$	$5.67 \cdot 10^{-4}$
.005	$-1.4767 \cdot 10^{-3}$	$2.87 \cdot 10^{-3}$
.01	$-2.9570 \cdot 10^{-3}$	$5.67 .10^{-3}$
.05	$-1.5021 \cdot 10^{-2}$	$2.89 \cdot 10^{-2}$
.1	$-3.0661 \cdot 10^{-2}$	$5.64 \cdot 10^{-2}$
.2	$-6.3891 \cdot 10^{-2}$	0.1106
.3	$-9.9873 .10^{-2}$	0.1673
.4	-0.1388	0.2202
.5	-0.1812	0.2700
.6	-0.2276	0.3176
.7	-0.2787	0.3616
.8	-0.3364	0.4022
.9	-0.4040	0.4380

Table I.

Figure 6.

Figure 7.
with initial conditions on the manifold of infinity given by (6) and (7) retaining terms up to the seventh order in p and taking a starting value of $p=0.01$.

At the beginning, we integrate the differential system (5) until the singularity due to the binary collision m_{2}, m_{3} makes regularization necessary. At that point we change the set of variables (q, p, t, w) to another one ($\left.u, h_{23}, t, s\right)$ which is obtained by applying a Levi-Civita transformation to the system $\mathrm{m}_{2}, \mathrm{~m}_{3}$. The differential equations in this new set of variables are

$$
\begin{aligned}
& \frac{d^{2} u}{d s^{2}}=\frac{h^{23}}{2} u-\frac{m u^{3}}{2\left(u^{2}+1-\cos E\right)^{2}}+\frac{m u^{3}}{(1-\cos E)^{2}}, \\
& \frac{d h_{23}}{d s}=-2 u \frac{d u}{d s}\left[\frac{m}{\left(u^{2}+1-\cos E\right)^{2}}-\frac{m}{(1-\cos E)^{2}}\right],
\end{aligned}
$$

$$
\frac{d t}{d s}=u^{2}
$$

The integration is, done with a Runge-Kutta-Fehlberg, Rk78, routine with local error of $10^{-13}, 10^{-15}$.

5. FINAL EVOLUTIONS

We call final evolutions of the collinear restricted three body problem the behavior of the infinitesimal body when time tends to $\pm \infty$. There are eight types of final evolutions. Parabolic (hyperbolic) evolutions, P or $P_{-}\left(H\right.$ or H_{-}) in which the infinitesimal body reaches infinity with zero (positive) velocity as time tends to $+\infty$ or $-\infty$, respectively. Lagrange evolutions L or $L_{\text {_ }}$ in which the orbit of the infinitesimal body remains bounded as time tends to $+\infty$ or $-\infty$, respectively. Finally, oscillatory evolutions OS are characterized by the fact $\lim \sup x(t)=+\infty$ and \lim inf $x(t)<+\infty$. Similarly, we have oscillatory $t \rightarrow+\infty \quad t \rightarrow+\infty$ evolutions OS_.

When we consider the two final evolutions associated to one orbit, there are sixteen possibilities. For example, $H \cap P$ means that as $t \rightarrow-\infty$ the evolution is of hyperbolic type and as $t \rightarrow+{ }^{-}$it is parabolic.

In (Llibre-Simo, 1980a)it is shown that in a neighborhood of the homoclinic point p there are points with associated orbits of all the possible sixteen types of final evolutions.
f^{n} We shall say that a point $q \in K$ gives rise to a parabolic orbit for $f^{n}\left(f^{-n}\right)$, and we shall say that this orbit is of type $P_{n}\left(P n^{\prime}\right)$ if it goes parabolically to infinity when $t \rightarrow+\infty(-\infty)$ after $n_{n}-1^{n}$ binary collisions $\mathrm{m}_{2}, \mathrm{~m}_{3}$. In a similar way we shall define hyperbolic orbits for $f^{n}\left(f^{-n}\right)$ and we shall denote them by $H_{n}\left(H_{-n}\right)$. We define the set
$C_{n}\left(C_{-n}\right)$ as those points $x \in K$ such that $f^{n}(x)\left(f^{-n}(x)\right)$ is a point of triple collision, i.e. a point of K on the generatrix $E=0$.

As it follows from Section 2, all the final evolutions for $m=0$ are given in Table II. In order to study all the kinds of final evolutions for $\mathrm{m}>0$ we consider the successive intersections of the invariant manifolds of the infinity, formed by the orbits of P_{1} and P_{-1} with the surface of section $x-x_{2}=0$.

Let γ be an arc contained in D_{1} and having an ending point on P_{1}, see Figure 8. By using Lemma 3, the domain of definition of f^{2} restricted to γ is obtained taking out of γ infinite closed intervals I_{i} such that $f\left(I_{i}\right) \not \subset D_{1}$ (see Figures 8 and 9). It is clear that these intervals accumulate at P_{1}^{1}. According with our notation we shall call $D_{n}\left(D_{-n}\right)$ the domain

Figure 8.

Figure 9.
of definition of $f^{n}\left(f^{-n}\right)$, recall that $D=S\left(D_{n}\right)$. By continuity the domain D_{2} is D_{1} minus an infinite set of bands B_{1}, B_{2}, \ldots which cut the arc γ at the closed intervals I_{1}, I_{2}, \ldots, respectively. These bands are the antiimage by f of $D_{-1}-D_{1}$.

Each one of these bands has two boundary curves. The points of the one that is closer to P_{1} correspond to points of C_{2} and the other one correspond to points of P_{2}. The interior of a band is formed by points of H_{2}. By using the symmetry S we obtain the sets $\mathrm{D}_{-2}, \mathrm{C}_{-2}, \mathrm{P}_{-2}$ and H_{-2}.

Again, to obtain the domain of definition D_{3} of f^{3} on γ, we must exclude not only

$$
\cup_{i=1} I_{i}
$$

but

$$
\bigcup_{i=1}^{\cup} \quad \bigcup_{=1}^{\infty} I_{i j}
$$

where each $I_{i j}$ is a closed interval. The intervals $I_{i j}$ as varying j accumulate to the interval I_{i} as it is shown in Figure j ${ }^{i j}$. By continuity the domain D_{3} is D_{2} minus an infinite set of bands $B_{11}, B_{12}, \ldots, B_{1}, B_{21}$, $\mathrm{B}_{22}, \ldots, \mathrm{~B}_{2}, \mathrm{~B}_{31}, \mathrm{~B}_{32}, \ldots$ which intersect the arc γ at the closed intervals $I_{11}, I_{12}, \ldots, I_{1}, I_{21}, I_{22}, \ldots, I_{2}, I_{31}, I_{32}, \ldots$ It is clear that ${ }_{n \geqslant 0}^{\cap} D_{n}$ is a cantorian set.

In short, we have Table II for $\mathrm{m}>0$.
Remark. In (Serra) it has been proved: (1) that for $m=0$ the set of initial conditions on K which give rise to triple collision orbits is dense in the set of bounded orbits, (2) for any $\delta>0$ there exists a $m_{0}>0$ such that if the mass parameter $m \in\left[0, m_{0}\right]$, the set of bounded orbits which are not contained in the closure of the set of triple collision orbits has Lebesgue measure less than δ.

The set of orbits with final evolution of type	is homeonorphic to	
	$\mathrm{m}=0$	$m \in(0,1)$
$\mathrm{P} \pm 1$	open interval	
$\mathrm{P}_{ \pm n}, \mathrm{n} \geqslant 2$	empty	countable unjon of disjoint open intervals
$\mathrm{H}_{ \pm 1}$	open 2-dimensional set	
$\mathrm{H}_{ \pm n}, \mathrm{n} \geqslant 2$	empty	countable union of disjoint open 2-dimensional sets
$\mathrm{P}_{-1} \cap^{P_{+1}}$	open interval	the point p
$\widetilde{P}_{-n} \mathrm{CP}_{+m} \mathrm{~m}^{\prime}+\mathrm{m} \geqslant 3$	empty	countable set of points
$\begin{gathered} \mathrm{P}_{-\mathrm{n}} \cap_{H_{+m}} \text { or } H_{-n} \cap P_{+m} \\ \text { with } n, m \geqslant 1 \end{gathered}$		countable union of disjoint open intervals
$\mathrm{H}_{-1} \mathrm{n}^{+}+1$	open 2-dimensional set	
$\mathrm{H}_{-\mathrm{n}} \cap^{+}{ }_{+m}, \mathrm{n}+\mathrm{m} \geqslant 3$	empty	countable union of disjoint open 2-dimensional sets
$\mathrm{C}_{-1} \cap \mathrm{P}_{+1}$ or $\mathrm{P}_{-1} \cap \mathrm{C}_{+1}$	one point	
$\begin{gathered} c_{-n} \cap P_{+m} \text { or } P_{-n} \cap c_{+m} \\ \text { with } n+m \geqslant 3 \end{gathered}$	empty	countable set of points
$\mathrm{C}_{-1} \cap^{\mathrm{H}}+1$ or $\mathrm{H}_{-1} \mathrm{nc}_{+1}$	open interval	
$\begin{gathered} \mathrm{C}_{-\mathrm{n}} \cap_{\mathrm{H}_{+\mathrm{m}}} \text { or } \mathrm{H}_{-n} \cap \mathrm{c}_{+\mathrm{m}} \\ \text { with } \mathrm{n}+\mathrm{m} \geqslant 3 \end{gathered}$	empty	countable union of disjoint open intervals

Table II.

REFERENCES

Llibre, J. and Simठ, C. (1980a), J. Differential Equations 37,p.444.
Llibre, J. and Simb, C. (1980b), Math. Ann. 248, p. 153.
Llibxe, J. and Simó, C. (1980c), Publicacions Mat. Universitat Autonoma de Barcelona 18, p.49.

McGehee, R. (1973), J. Differential Equations 14, p.70.
Moser, J.K. (1973), "Stable and random motions in dynamical systems", Princeton Univ. Press, Princeton, N.J.

Serra, R. (1981), to appear in "Actas del IV Congreso de Ecuaciones Diferenciales y Aplicaciones", Sevilla.

Siegel, C.L. and Moser, J.K. (1971), "Lectures on Celestial Mechanics", Springer-Verlag, Berlin/New York.

Stiefel, E.L. and Scheifele, G. (1971), "Linear and regular Celestial Mechanics", Springer-Verlag, Berlin/New York.

