Canad. Math. Bull. Vol. 23 (4), 1980

PERIODIC AND NIL POLYNOMIALS IN RINGS

BY

BERNARDO FELZENSZWALB AND ANTONINO GIAMBRUNO

Let R be an associative ring and $f(x_1, \ldots, x_d)$ a polynomial in noncommuting variables. We say that f is periodic or nil in R if for all $r_1, \ldots, r_d \in$ R we have that $f(r_1, \ldots, r_d)$ is periodic, respectively nilpotent (recall that $a \in R$ is periodic if for some integer n(a) > 1, $a^{n(a)} = a$).

In [2, Theorem 3.12] it was proved that if R is a primitive ring and f a homogeneous polynomial periodic in R, then R is finite dimensional over its center F; moreover if f is not a polynomial identity of R, then F is algebraic over a finite field and $R \cong F_n$ with $n \le \deg(f)$. In this note we shall prove that in case f is multilinear then f is a central polynomial for R and, so, $n \le \frac{1}{2}[\deg(f)+2]$. It will follow that if R is any ring in which f is a multilinear periodic polynomial, then R satisfies a polynomial identity of degree $\le 2 \deg(f)$; moreover f is central in R/N, where N is the nil radical of R.

We shall also remark that if R is a ring with no non-zero nil right ideals and f is a multilinear polynomial which is nil in R then f vanishes in R. This result is known when R is a semisimple ring or R is a ring with no non-zero nil ideals which either satisfies a polynomial identity or is an algebra over an uncountable field (see [3]).

In what follows all rings will be algebras over C, a commutative ring with 1. We assume that $f(x_1, \ldots, x_d)$ is a multilinear polynomial in d noncommuting variables x_1, \ldots, x_d with coefficients in C. Moreover if c(f) denotes the ideal generated by the coefficients of f, we assume that $c(f)r \neq 0$ for all $0 \neq r \in R$.

1. Let R be a ring and R_n the ring of $n \times n$ matrices over R. By adjoining a unit element if necessary, and considering the elements of R as scalar matrices, we can write every matrix of R_n as $\sum a_{ij}e_{ij}$, where the $a_{ij} \in R$ and the e_{ij} (i, j = 1, ..., n) are the usual matrix units.

Given a sequence $u = (A_1, \ldots, A_d)$ of matrices from R_n , the value of u is defined to be $|u| = A_1 A_1 \cdots A_d$. If σ is a permutation of $\{1, \ldots, d\}$, we write $u^{\sigma} = (A_{\sigma(1)}, \ldots, A_{\sigma(d)})$. A sequence of the form $u = (a_1 e_{i_1 j_1}, a_2 e_{i_2 j_2}, \ldots, a_d e_{i_d j_d})$, where the $a_i \in R$, is called simple. A simple sequence u is called even if for some σ , $|u^{\sigma}| = b e_{ii} \neq 0$, and odd if for some σ , $|u^{\sigma}| = b e_{ij} \neq 0$ where $i \neq j$. By [3, Lemma 1] these terms are well defined.

The first author was supported by CNPq (Brazil) at the University of Palermo.

473

Received by the editors March 5, 1979.

[December

We begin with the following

LEMMA 1. Let R be a ring and $f(x_1, \ldots, x_d)$ a multilinear polynomial. If f vanishes for all odd substitutions from R_n , then $f(u) \in R$ for all substitutions from R_n .

Proof. Let $u = (A_1, \ldots, A_d)$ be a sequence of matrices from R_n . Since f is multilinear and vanishes for all odd substitutions we can write $f(u) = \sum f(u^{(r)})$ where the $u^{(r)}$ are simple even sequences. By [3, Lemma 2] the $f(u^{(r)})$ are diagonal matrices; hence f(u) is diagonal, say $f(u) = \sum b_i e_{ii}$.

Now, for $j \neq 1$, let φ be the automorphism of R_n given by $A \rightarrow (1+e_{1j})A(1-e_{1j})$. If u^{φ} is the image of the sequence u under φ , we have, as before, that $f(u^{\varphi})$ is diagonal. But

$$f(u^{\varphi}) = f(u)^{\varphi} = (\sum b_i e_{ii})^{\varphi} = (1 + e_{1j}) \sum b_i e_{ii} (1 - e_{1j}) = \sum b_i e_{ii} + (b_j - b_1) e_{1j}$$

Thus we must have $(b_j - b_1)e_{1j} = 0$; that is, $b_j = b_1$. As j varies between 2 and n, we get the desired conclusion.

An immediate consequence is the following

COROLLARY. Let R be a ring and $f(x_1, \ldots, x_d)$ a multilinear polynomial. If f is periodic in R_n , then $f(u) \in R$ for all substitutions from R_n . Moreover if n > 1 then f vanishes in R_{n-1} .

Proof. Suppose f is periodic in R_n and let u be an odd sequence in R_n . By [3, Lemma 2], $f(u) = be_{ij}$ for some $b \in R$, $i \neq j$. Thus, since f(u) is both nilpotent and periodic, f(u) must be zero. By Lemma 1, f(u) is in R. Now, if n > 1, considering $R_{n-1} \subset R_n$, we get that f vanishes in R_{n-1} .

Thus we now have the

THEOREM 1. Let R be a primitive ring and $f(x_1, \ldots, x_d)$ a multilinear polynomial which is periodic in R. Then f is central in R. If f is not a polynomial identity of R, then $R \cong F_n$ where F is a field algebraic over a finite field and $n \leq \frac{1}{2}[\deg(f)+2]$.

Proof. Suppose f is not a polynomial identity. By [2, Theorem 3.12] $R \cong F_n$ where F is a field algebraic over a finite field. Thus, by the above Corollary, f is central in F_n and, so, $n \le \frac{1}{2} [\deg(f) + 2]$.

We finish the periodic case with

THEOREM 2. Let R be a ring and $f(x_1, \ldots, x_d)$ a multilinear polynomial which is periodic in R. Then

(1) R satisfies a polynomial identity of degree $\leq 2 \deg(f)$

(2) the ideal generated in R by the elements $f(r_1, \ldots, r_d)r_{d+1} - r_{d+1}f(r_1, \ldots, r_d)$, $r_i \in R$, is nil.

Proof. Let J be the Jacobson radical of R. Since f is periodic, it vanishes in J. Since R/J is a subdirect product of primitive rings, applying Theorem 1 we also get that f is central in R/J. Thus for all r_1, \ldots, r_{2d} in R,

$$f(f(r_1,\ldots,r_d)r_{d+1}-r_{d+1}f(r_1,\ldots,r_d),r_{d+2},\ldots,r_{2d})=0,$$

and (1) follows.

If N is the nil radical of R, R/N is a subdirect product of prime rings R_{α} satisfying a polynomial identity. Since a prime ring satisfying a polynomial identity is an order in a finite dimensional central simple algebra, we can apply Theorem 1 to these algebras, getting that f is central in R/N.

2. We treat now multilinear nil polynomials

THEOREM 3. Let R be a ring with no non-zero nil right ideals and let $f(x_1, \ldots, x_d)$ be a multilinear polynomial nil in R. Then f is a polynomial identity for R.

Proof. Suppose f is not an identity for R. Let r_1, \ldots, r_d in R be such that $f(r_1, \ldots, r_d) \neq 0$, and let k be minimal such that $f(r_1, \ldots, r_d)^k = 0$. Then $a = f(r_1, \ldots, r_d)^{k-1} \neq 0$ is such that $a^2 = 0$. By the proof of Lemma 6 in [1], aR satisfies a polynomial identity. Now, since $a \neq 0$ and R is semiprime there exists a prime ideal P with $a \notin P$. Then $\overline{R} = R/P$ is a prime ring with a non-zero right ideal, \overline{aR} , satisfying a polynomial identity. Hence \overline{R} satisfies a generalized polynomial identity; by a theorem of Martindale [4], the central closure of \overline{R} is a primitive ring with non-zero socle. By [5, Corollary 1 of Lemma 6], either \overline{R} satisfies a polynomial identity (PI) or for every integer $n \ge 1$, \overline{R} contains a subring $\overline{R}^{(n)}$ which is prime PI and does not satisfy any identity of degree < 2n. By a repeated application of [3, Theorem 7], the second possibility cannot occur and f vanishes in \overline{R} . Since $a = f(r_1, \ldots, r_d)^{k-1} \notin P$ we get a contradiction.

Combining the above result with [3, Theorem 4], we have the

COROLLARY. Let R be a ring with no non-zero nil right ideals. If $f(x_1, \ldots, x_d)$ is a multilinear polynomial nil in R_n , then f vanishes in R_n .

REFERENCES

3. U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), 97-103.

1980]

^{1.} B. Felzenszwalb and A. Giambruno, Centralizers and multilinear polynomials in non-commutative rings, J. London Math. Soc. (2), 19 (1979), 417-428.

^{2.} I. N. Herstein, C. Procesi and M. Schacher, Algebraic valued functions on noncommutative rings, J. Algebra, **36** (1975), 128-150.

B. FELZENSZWALB AND A. GIAMBRUNO

4. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 186-194.

5. M. Smith, Rings with an integral element whose centralizer satisfies a polynomial identity, Duke Math. J., **42** (1975), 137-149.

Instituto de Matematica Universidade Federal do Rio de Janeiro C.P. 1835 ZC-00 20.000 Rio de Janeiro, R. J. Brazil

Istituto di Matematica Università di Palermo Via Archirafi 34 90100 Palermo, Italy

476