PERIODIC AND NIL POLYNOMIALS IN RINGS

BY
BERNARDO FELZENSZWALB AND ANTONINO GIAMBRUNO

Let R be an associative ring and $f\left(x_{1}, \ldots, x_{d}\right)$ a polynomial in noncommuting variables. We say that f is periodic or nil in R if for all $r_{1}, \ldots, r_{d} \in$ R we have that $f\left(r_{1}, \ldots, r_{d}\right)$ is periodic, respectively nilpotent (recall that $a \in R$ is periodic if for some integer $\left.n(a)>1, a^{n(a)}=a\right)$.

In [2, Theorem 3.12] it was proved that if R is a primitive ring and f a homogeneous polynomial periodic in R, then R is finite dimensional over its center F; moreover if f is not a polynomial identity of R, then F is algebraic over a finite field and $R \cong F_{n}$ with $n \leq \operatorname{deg}(f)$. In this note we shall prove that in case f is multilinear then f is a central polynomial for R and, so, $n \leq$ $\frac{1}{2}[\operatorname{deg}(f)+2]$. It will follow that if R is any ring in which f is a multilinear periodic polynomial, then R satisfies a polynomial identity of degree \leq $2 \operatorname{deg}(f)$; moreover f is central in R / N, where N is the nil radical of R.

We shall also remark that if R is a ring with no non-zero nil right ideals and f is a multilinear polynomial which is nil in R then f vanishes in R. This result is known when R is a semisimple ring or R is a ring with no non-zero nil ideals which either satisfies a polynomial identity or is an algebra over an uncountable field (see [3]).

In what follows all rings will be algebras over C, a commutative ring with 1. We assume that $f\left(x_{1}, \ldots, x_{d}\right)$ is a multilinear polynomial in d noncommuting variables x_{1}, \ldots, x_{d} with coefficients in C. Moreover if $c(f)$ denotes the ideal generated by the coefficients of f, we assume that $c(f) r \neq 0$ for all $0 \neq r \in R$.

1. Let R be a ring and R_{n} the ring of $n \times n$ matrices over R. By adjoining a unit element if necessary, and considering the elements of R as scalar matrices, we can write every matrix of R_{n} as $\sum a_{i j} e_{i j}$, where the $a_{i j} \in R$ and the $e_{i j}$ $(i, j=1, \ldots, n)$ are the usual matrix units.

Given a sequence $u=\left(A_{1}, \ldots, A_{d}\right)$ of matrices from R_{n}, the value of u is defined to be $|u|=A_{1} A_{1} \cdots A_{d}$. If σ is a permutation of $\{1, \ldots, d\}$, we write $u^{\sigma}=\left(A_{\sigma(1)}, \ldots, A_{\sigma(d)}\right)$. A sequence of the form $u=\left(a_{1} e_{i, 11}, a_{2} e_{i, 2 j_{2}}, \ldots, a_{d} e_{i d j_{d}}\right)$, where the $a_{i} \in R$, is called simple. A simple sequence u is called even if for some $\sigma,\left|u^{\sigma}\right|=b e_{i i} \neq 0$, and odd if for some $\sigma,\left|u^{\sigma}\right|=b e_{i j} \neq 0$ where $i \neq j$. By [3, Lemma 1] these terms are well defined.

[^0]We begin with the following
Lemma 1. Let R be a ring and $f\left(x_{1}, \ldots, x_{d}\right)$ a multilinear polynomial. If f vanishes for all odd substitutions from R_{n}, then $f(u) \in R$ for all substitutions from R_{n}.

Proof. Let $u=\left(A_{1}, \ldots, A_{d}\right)$ be a sequence of matrices from R_{n}. Since f is multilinear and vanishes for all odd substitutions we can write $f(u)=\sum f\left(u^{(r)}\right)$ where the $u^{(r)}$ are simple even sequences. By [3, Lemma 2] the $f\left(u^{(r)}\right)$ are diagonal matrices; hence $f(u)$ is diagonal, say $f(u)=\sum b_{i} e_{i i}$.

Now, for $j \neq 1$, let φ be the automorphism of R_{n} given by $A \rightarrow$ $\left(1+e_{1 j}\right) A\left(1-e_{1 j}\right)$. If u^{φ} is the image of the sequence u under φ, we have, as before, that $f\left(u^{\varphi}\right)$ is diagonal. But

$$
f\left(u^{\varphi}\right)=f(u)^{\varphi}=\left(\sum b_{i} e_{i i}\right)^{\varphi}=\left(1+e_{1 j}\right) \sum b_{i} e_{i i}\left(1-e_{1 j}\right)=\sum b_{i} e_{i i}+\left(b_{j}-b_{1}\right) e_{1 j} .
$$

Thus we must have $\left(b_{j}-b_{1}\right) e_{1 j}=0$; that is, $b_{j}=b_{1}$. As j varies between 2 and n, we get the desired conclusion.

An immediate consequence is the following
Corollary. Let R be a ring and $f\left(x_{1}, \ldots, x_{d}\right)$ a multilinear polynomial. If f is periodic in R_{n}, then $f(u) \in R$ for all substitutions from R_{n}. Moreover if $n>1$ then f vanishes in R_{n-1}.

Proof. Suppose f is periodic in R_{n} and let u be an odd sequence in R_{n}. By [3, Lemma 2], $f(u)=b e_{i j}$ for some $b \in R, i \neq j$. Thus, since $f(u)$ is both nilpotent and periodic, $f(u)$ must be zero. By Lemma $1, f(u)$ is in R. Now, if $n>1$, considering $R_{n-1} \subset R_{n}$, we get that f vanishes in R_{n-1}.

Thus we now have the
Theorem 1. Let R be a primitive ring and $f\left(x_{1}, \ldots, x_{d}\right)$ a multilinear polynomial which is periodic in R. Then f is central in R. If f is not a polynomial identity of R, then $R \cong F_{n}$ where F is a field algebraic over a finite field and $n \leq \frac{1}{2}[\operatorname{deg}(f)+2]$.

Proof. Suppose f is not a polynomial identity. By [2, Theorem 3.12] $R \cong F_{n}$ where F is a field algebraic over a finite field. Thus, by the above Corollary, f is central in F_{n} and, so, $n \leq \frac{1}{2}[\operatorname{deg}(f)+2]$.

We finish the periodic case with
Theorem 2. Let R be a ring and $f\left(x_{1}, \ldots, x_{d}\right)$ a multilinear polynomial which is periodic in R. Then
(1) R satisfies a polynomial identity of degree $\leq 2 \operatorname{deg}(f)$
(2) the ideal generated in R by the elements $f\left(r_{1}, \ldots, r_{d}\right) r_{d+1}-r_{d+1} f\left(r_{1}, \ldots, r_{d}\right)$, $r_{i} \in R$, is nil.

Proof. Let J be the Jacobson radical of R. Since f is periodic, it vanishes in J. Since R / J is a subdirect product of primitive rings, applying Theorem 1 we also get that f is central in R / J. Thus for all $r_{1}, \ldots, r_{2 d}$ in R,

$$
f\left(f\left(r_{1}, \ldots, r_{d}\right) r_{d+1}-r_{d+1} f\left(r_{1}, \ldots, r_{d}\right), r_{d+2}, \ldots, r_{2 d}\right)=0
$$

and (1) follows.
If N is the nil radical of $R, R / N$ is a subdirect product of prime rings R_{α} satisfying a polynomial identity. Since a prime ring satisfying a polynomial identity is an order in a finite dimensional central simple algebra, we can apply Theorem 1 to these algebras, getting that f is central in R / N.
2. We treat now multilinear nil polynomials

Theorem 3. Let R be a ring with no non-zero nil right ideals and let $f\left(x_{1}, \ldots, x_{d}\right)$ be a multilinear polynomial nil in R. Then f is a polynomial identity for R.

Proof. Suppose f is not an identity for R. Let r_{1}, \ldots, r_{d} in R be such that $f\left(r_{1}, \ldots, r_{d}\right) \neq 0$, and let k be minimal such that $f\left(r_{1}, \ldots, r_{d}\right)^{k}=0$. Then $a=$ $f\left(r_{1}, \ldots, r_{d}\right)^{k-1} \neq 0$ is such that $a^{2}=0$. By the proof of Lemma 6 in [1], $a R$ satisfies a polynomial identity. Now, since $a \neq 0$ and R is semiprime there exists a prime ideal P with $a \notin P$. Then $\bar{R}=R / P$ is a prime ring with a non-zero right ideal, $\overline{a R}$, satisfying a polynomial identity. Hence \bar{R} satisfies a generalized polynomial identity; by a theorem of Martindale [4], the central closure of \bar{R} is a primitive ring with non-zero socle. By [5, Corollary 1 of Lemma 6], either \bar{R} satisfies a polynomial identity (PI) or for every integer $n \geq 1, \bar{R}$ contains a subring $\bar{R}^{(n)}$ which is prime PI and does not satisfy any identity of degree $<2 n$. By a repeated application of [3, Theorem 7], the second possibility cannot occur and f vanishes in \bar{R}. Since $a=f\left(r_{1}, \ldots r_{d}\right)^{k-1} \notin P$ we get a contradiction.

Combining the above result with [3, Theorem 4], we have the
Corollary. Let R be a ring with no non-zero nil right ideals. If $f\left(x_{1}, \ldots, x_{d}\right)$ is a multilinear polynomial nil in R_{n}, then f vanishes in R_{n}.

References

[^1]4. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 186-194.
5. M. Smith, Rings with an integral element whose centralizer satisfies a polynomial identity, Duke Math. J., 42 (1975), 137-149.

Instituto de Matematica
Universidade Federal do Rio de Janeiro
C.P. 1835 ZC-00
20.000 Rio de Janeiro, R. J. Brazil
Istituto di Matematica
Università di Palermo
Via Archirafi 34
90100 Palermo, Italy

[^0]: Received by the editors March 5, 1979.
 The first author was supported by CNPq (Brazil) at the University of Palermo.

[^1]: 1. B. Felzenszwalb and A. Giambruno, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. (2), 19 (1979), 417-428.
 2. I. N. Herstein, C. Procesi and M. Schacher, Algebraic valued functions on noncommutative rings, J. Algebra, 36 (1975), 128-150.
 3. U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), 97-103.
