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Local spectral equidistribution for

Siegel modular forms and applications

Emmanuel Kowalski, Abhishek Saha and Jacob Tsimerman

Abstract

We study the distribution, in the space of Satake parameters, of local components of
Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting
which allows us to apply results concerning Bessel models and a variant of Petersson’s
formula. We obtain for this family a quantitative local equidistribution result, and derive
a number of consequences. In particular, we show that the computation of the density
of low-lying zeros of the spinor L-functions (for restricted test functions) gives global
evidence for a well-known conjecture of Böcherer concerning the arithmetic nature of
Fourier coefficients of Siegel cusp forms.

1. Introduction

1.1 Motivation

The motivation behind this paper lies in attempts to understand what is a correct definition of
a family of cusp forms, either on GL(n) or on some other reductive algebraic group. The basic
philosophy (or strategy) underlying our work is the following form of local–global principle:
given a ‘family’ Π of cusp forms, for any finite place v, the local components πv of the elements
π ∈Π (which are represented as restricted tensor products π =⊗πv over all places) should be
well behaved and, more specifically, under averaging over finite subsets of the family, (πv) should
become equidistributed with respect to a suitable measure µv. Readers already familiar with work
on families of Dirichlet characters, classical modular forms on GL(2), or families of L-functions
of abelian varieties will recognize that this principle is implicit in much of these works, through
the orthogonality relations for Dirichlet characters, the trace formula (or the Petersson formula),
and the ‘vertical’ Sato–Tate laws over finite fields. The expected outcome is that, for instance,
averages over the family of values of L-functions L(s0, π) at some point s0, at least on the right of
the critical line, should be directly related to the Euler product corresponding to local averages
computed using µv. (For a general informal survey of this point of view, see [Kow11].)

One of our goals is to give an example where this strategy can be implemented in the
case of holomorphic cusp forms on GSp(4) (that is, Siegel modular forms), and to derive some
applications of it. In particular, we will prove the following theorem (unfamiliar notation will be
explained later).
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Theorem 1.1. For k > 2, let S∗k be a Hecke basis of the space of Siegel cusp forms on Sp(4, Z),
and let S[k be the set of those F ∈ S∗k which are not Saito–Kurokawa lifts. For F ∈ S∗k, let

F (Z) =
∑
T>0

a(F, T )e(Tr(TZ))

be its Fourier expansion, where T runs over symmetric positive-definite semi-integral matrices,
and let

ωFk =
√
π(4π)3−2kΓ

(
k − 3

2

)
Γ(k − 2)

|a(F, 1)|2

4〈F, F 〉
. (1.1.1)

Let L(F, s) denote the finite part of the spin L-function of F , an Euler product of degree
four over primes with local factors of the form

Lp(F, s) = (1− app−s)−1(1− bpp−s)−1(1− a−1
p p−s)−1(1− b−1

p p−s)−1, ap, bp ∈ (C×)2.

Then, for any s ∈ C such that Re(s)> 1, we have

lim
k→+∞

∑
F∈S[2k

ωF2kL(F, s) = ζ

(
s+

1
2

)
L

(
χ4, s+

1
2

)
, (1.1.2)

where ζ(s) denotes the Riemann zeta function and L(χ4, s) is the L-function associated to the
unique Dirichlet character of conductor 4. For s 6= 3/2, one can replace S[2k with S∗2k.

More generally, for all primes p there exist measures µp on (C×)2, which are in fact supported
on (S1)2, with the following property: for any irreducible r-dimensional representation ρ of
GSp(4, C), let L(F, ρ, s) denote the associated Langlands L-function, an Euler product of degree
r > 1 over primes with local factors of the form

Lp(F, ρ, s) =
r∏
i=1

(1−Qi(ap, bp)p−s)−1, ap, bp ∈ (C×)2,

where Qi(x, y) is a polynomial in x, y, x−1, and y−1. Then, for any s ∈ C such that Re(s)> s0,
with s0 depending on ρ, we have

lim
k→+∞

∑
F∈S∗2k

ωF2kL(F, ρ, s) =
∏
p

∫ r∏
i=1

(1−Qi(a, b)p−s)−1 dµp(a, b), (1.1.3)

where the right-hand side converges absolutely.

The weight ωFk which is introduced in this theorem is natural because of our main tool,
which is a (rather sophisticated) extension of the classical Petersson formula to the case of
Siegel modular forms of genus 2; see Propositions 3.3 and 3.6. In fact, we can work with more
general weights ωFk,d,Λ (as defined in the next section) which involve averages of a(F, T ) over
positive-definite T with a fixed discriminant.

The quantitative local equidistribution leads naturally to a result on the distribution of
low-lying zeros.

Theorem 1.2 (Low-lying zeros). Let ϕ : R→ R be an even Schwartz function such that the
Fourier transform

ϕ̂(t) =
∫

R
ϕ(x)e−2iπxt dx
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Local equidistribution for Siegel modular forms

has compact support contained in [−α, α], where α < 4/15. For F ∈ S∗2k, assume the Riemann
hypothesis: the zeros of L(F, s) in the critical strip 0< Re(s)< 1 are of the form

ρ= 1
2 + iγ

with γ ∈ R. Define

Dϕ(F ) =
∑
ρ

ϕ

(
γ

π
log k

)
,

where ρ ranges over the zeros of L(F, s) on the critical line, counted with multiplicity.

Then we have

lim
k→+∞

∑
F∈S∗2k

ωF2kDϕ(F ) =
∫

R
ϕ(x) dσSp(x), (1.1.4)

where σSp is the ‘symplectic symmetry’ measure given by

dσSp = dx− δ0

2
, δ0 Dirac mass at 0.

This result raises interesting questions concerning the notion of ‘family’ of cusp forms,
especially from the point of view of the notion of symmetry type that has arisen from the works
of Katz–Sarnak [KS99]. Indeed, the limit measure above is the one that arises from symplectic
symmetry types, that is, from the distribution of eigenvalues close to 1 of symplectic matrices of
large size, when renormalized to have averaged spacing equal to 1. In general, it is expected that
some cusp forms will exhibit this symmetry when some kind of infinite symplectic group occurs
as ‘monodromy group’ for the family, in a way that generalizes the Chebotarev and Deligne
equidistribution theorems.

We do not believe that this is the case here, and rather expect that the limit measure in the
theorem is due in part to the presence of the weight ωF2k used in the averages involved. Precisely,
we expect that the correct symmetry type, without weight, is orthogonal, in the sense that for
ϕ with support in ]−1, 1[, we should have1

1
|S∗2k|

∑
F∈S∗2k

Dϕ(F )−→
∫

R
ϕ(x) dσO(x), (1.1.5)

where dσO(x) = dx+ δ0/2 is the corresponding measure for eigenvalues close to 1 of orthogonal
matrices.

Intuitively, this should be related to the fact that the point 1/2 is a critical special value, in
the sense of Deligne, for the spin L-functions of cusp forms F ∈ S∗k (whereas 1/2 is not for real
quadratic characters for example, which are the typical example where symplectic symmetry is
expected), similar to the special role of the eigenvalue 1 for orthogonal matrices, but not for
symplectic ones.

Now the natural question is why should the weight ωF2k have such an effect? (This is especially
true because it may look, at first, just like an analogue of the weight involving the Petersson
norm of classical modular forms which has been used very frequently without exhibiting any

1 We do not try to predict whether odd or even orthogonal symmetry should occur; these could be distinguished
by computing the 2-level density for test functions with restricted support as done in [Mil04] for classical modular
forms (one can also attempt to study the low-lying zeros for test functions with support larger than ]−1, 1[, as
done in [ILS00], but that is much harder and probably out of reach of current techniques in this case).
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such behavior, for example in the works of Iwaniec, Luo and Sarnak [ILS00] and Dueñez–
Miller [DM06].)

The point is that this weight ωFk itself contains arithmetic information related to central
L-values of the Siegel cusp forms. Indeed, we will see in § 5.4 that Theorem 1.2 can be
interpreted convincingly, assuming an orthogonal symmetry as in (1.1.5), as evidence for a
beautiful conjecture of Böcherer (see [Boc86] or [FS03, Introduction]) which suggests in particular
a relation of the type

|a(F, 1)|2 ' L(F, 1/2)L(F × χ4, 1/2) (1.1.6)
(where the ' sign means equality up to non-zero factors ‘unrelated to central critical values’;
this version of the conjecture is that proposed by Furusawa and Martin [FM11, § 1, (1.4)]). We
therefore consider that Theorem 1.2 provides suggestive global evidence towards these specific
variants of Böcherer’s conjecture. Note that, at the current time, this conjecture is not rigorously
known for any cusp form in S∗2k which is not a Saito–Kurokawa lift.

Remark 1.3. One can easily present analogues of the phenomenon in Theorem 1.2, as we
understand it, in the setting of random matrices. For instance, if µn denotes the probability
Haar measure on SO2n(R), one may consider the measures

dνn(g) = cn det(1− g) dµn(g),

where cn > 0 is the constant that ensures that νn is a probability measure.2 The distribution of
the low-lying eigenvalues of g ∈ SO2n(R), when computed using this measure, will clearly differ
from that arising from Haar measure (intuitively, by diminishing the influence of matrices with
an eigenvalue close to 1, the factor det(1− g) will produce a repulsion effect similar to what
happens for symplectic matrices).

Readers familiar with the case of GL(2)-modular forms but not with Siegel modular forms (or
with their representation-theoretic interpretation) may look at Appendix A, where we discuss
briefly the analogies and significant differences between our results and some more elementary
GL(2)-versions.

For orientation, we add the following quick remarks: (1) the spin L-function of F ∈ S∗2k has
analytic conductor (see [IK04, p. 95] for the definition) of size k2; (2) the cardinality of S∗2k (that
is, the dimension of S2k) is of order of magnitude k3 (see for example [Kli90, Corollary p. 123]
for the space M2k of all Siegel modular forms of weight 2k, and [Kli90, p. 69] for the size of
the ‘correction term’ M2k/S2k); (3) as already mentioned, the spin L-function is self-dual with
functional equation involving the sign +1 for all F ∈ S∗2k.

Apart from the treatment of low-lying zeros, we do not ‘enter the critical strip’ in this paper.
However, we hope to come back to the problem of extending Theorem 1.1 to averages at points
inside the critical strip, and we may already remark that, if a statement like (1.1.6) is valid, the
weight already involves some critical values of L-functions (in fact, of an L-function of degree
eight).

1.2 Local equidistribution statement
In order to state our main result on local spectral equidistribution of Siegel modular forms,
we begin with some preliminary notation concerning cuspidal automorphic representations of
G(A) = GSp(4, A).

2 In fact, although this seems irrelevant, a computation with the moments of characteristic polynomials of
orthogonal matrices shows that cn = 1/2 for all n.
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Let π be a cuspidal automorphic representation of G(A), which we assume to be unramified at
all finite places and with trivial central character. It is isomorphic to a restricted tensor product
π =⊗vπv, where, for all places, πv is an irreducible admissible unitary representation of the local
group G(Qv).

By our assumption, πp is unramified for all primes p and so the natural underlying space
for local equidistribution at p (when considering families) is the set Xp of unramified unitary
infinite-dimensional irreducible representations of G(Qp) with trivial central character. This set
has a natural topology, hence a natural σ-algebra.

We now proceed quite concretely to give natural coordinates onXp from which the measurable
structure is obvious. By [Car79], any πp ∈Xp can be identified with the unique unramified
constituent of a representation χ1 × χ2 o σ induced from a character of the Borel subgroup
which is defined as follows using unramified (not necessarily unitary!) characters χ1, χ2, and σ
of Q×p : 

a1 ∗ ∗ ∗
a2 ∗ ∗

λa−1
1

∗ λa−1
2

 7→ χ1(a1)χ2(a2)σ(λ).

Having trivial central character means that

χ1χ2σ
2 = 1

and, since the characters are unramified, it follows that πp is characterized by the pair
(a, b) = (σ(p), σ(p)χ1(p)) ∈ C∗ × C∗. The classification of local representations of G(Qp) (see for
instance [PS09, Proposition 3.1]) implies that the local parameters satisfy

0< |a|, |b|6√p. (1.2.1)

There are some identifications between the representations associated to different (a, b),
coming from the Weyl W group of order eight generated by the transformations

(a, b) 7→ (b, a), (a, b) 7→ (a−1, b), (a, b) 7→ (a, b−1). (1.2.2)

We will denote by Yp the quotient of the set of (a, b) satisfying the upper bounds (1.2.1),
modulo the action of W . This has the quotient topology and quotient σ-algebra, and we identify
Xp with a subset of Yp using the parameters (a, b) described above. We will also denote byX ⊂Xp

the subset of tempered representations; under the identification of Xp with a subset of Yp, the
set X corresponds precisely to |a|= |b|= 1. Note that this subset is indeed independent of p.

In applications to L-functions, the local–global nature of automorphic representations is
reflected not only in the existence of local components, but in their ‘independence’ (or product
structure) when p varies. To measure this below, we will also need to consider, for any finite set
of primes S, the maps

π 7→ (πp)p∈S

which have image in the space

XS =
∏
p∈S

Xp

and can be identified with a subset of

YS =
∏
p∈S

Yp.
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Now we come back to Siegel modular forms. Let Sk = Sk(Sp(4, Z)) be the space of Siegel
cusp forms of degree two, level 1 and weight k. By adélization (as described in more detail in the
next section), there is a cuspidal automorphic representation πF canonically attached to F ;
the assumption that the level is 1 and there is no nebentypus means that πF is unramified at
finite places with trivial central character, as above. Thus, we have local components πp(F ) ∈Xp

and corresponding parameters (ap, bp) ∈ Yp for every prime p.

The generalized Ramanujan conjecture has been proved in this setting by Weissauer [Wei09]:
it states that, if F is not a Saito–Kurokawa lift (these forms are defined in [EZ85] for example;
at the beginning of § 5.2, we recall the description in terms of L-functions), we have πp(F ) ∈X
for all p, that is, |ap|= |bp|= 1. On the other hand, if F is a Saito–Kurokawa lift, then |a|= 1
and

{|b|, |b|−1}= {p1/2, p−1/2}.

Remark 1.4. Partly because our paper is meant to explore the general philosophy of families
of cusp forms, we will not hesitate to use this very deep result of Weissauer when this helps in
simplifying our arguments. But it will be seen that the proof of the local equidistribution property
itself does not invoke this result, and it seems quite likely that, with some additional work, it could
be avoided in most, if not all, of the applications (in similar questions of local equidistribution
for classical Maass cusp forms on GL(2), one can avoid the unproved Ramanujan–Petersson
conjecture).

Denote by S∗k any fixed Hecke basis of Sk. Although this is not known to be unique, the
averages we are going to consider turn out to be independent of this choice. In fact, all final
results could be phrased directly in terms of automorphic representations, avoiding such a choice
(at least seemingly).

We next proceed to define our way of weighting the cusp forms in S∗k. This generalizes the
ωFk in the statement of the first theorem, and the reader may assume below that the parameters
introduced are d= 4 and Λ = 1.

Let d > 0 be a positive integer such that −d is a fundamental discriminant of an imaginary
quadratic field (that is, one of the following holds: (1) d is congruent to 3 (mod 4) and is square-
free; or (2) d= 4m, where m is congruent to 1 or 2 (mod 4) and m is square-free). Let Cld denote
the ideal class group of this field, h(−d) denote the class number, that is, the cardinality of Cld,
and w(−d) denote the number of roots of unity. Finally, fix a character Λ of Cld.

There is a well-known natural isomorphism, to be recalled more precisely in § 2.2, between
Cld and the SL(2, Z)-equivalence classes of a primitive semi-integral two by two matrices with
positive-definite matrix with determinant equal to d/4. By abuse of notation, we will also use
Cld to denote the set of equivalence classes of such matrices.

Define normalizing factors

ck,d =
(
d

4

)3/2−k 4ck
w(−d)h(−d)

,

where

ck =
√
π

4
(4π)3−2kΓ

(
k − 3

2

)
Γ(k − 2).
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We note that, using Dirichlet’s class number formula, one can also write

ck,d =
(
d

4

)1−k 4πck
w(−d)2L(1, χd)

,

where χd is the real primitive Dirichlet character associated to the extension Q(
√
−d). Now, for

each F ∈ S∗k, we have a Fourier expansion

F (Z) =
∑
T>0

a(F, T )e(Tr(TZ)),

where T runs over positive-definite symmetric semi-integral matrices of size 2:

T =
(
a b/2
b/2 c

)
with (a, b, c) ∈ Z. It follows easily from the modularity property that a(F, T ) depends only on
the equivalence class of T modulo SL(2, Z). In fact, when k is even, a(F, T ) depends only on the
equivalence class of T modulo GL(2, Z).

We now let

ωFk,d,Λ = ck,d · dΛ ·
|a(d, Λ; F )|2

〈F, F 〉
,

where we put

dΛ =

{
1 if Λ2 = 1,
2 otherwise

and

a(d, Λ; F ) =
∑
c∈Cld

Λ(c)a(F, c), (1.2.3)

a quantity which is well defined in view of the invariance of Fourier coefficients under SL(2, Z).

Remark 1.5. We will often consider (d, Λ) to be fixed, and simplify the notation by writing ωFk
only. Note that if d= 4 and Λ = 1, the weight ωFk is the same as the one defined in Theorem 1.1.

Next we define the local spectral measures associated to the family S∗k; we will show that
they become equidistributed as k→+∞ over even integers. Let S be a finite set of primes. We
have the components πS(F ) = (πp(F ))p∈S ∈XS , and we define the measure νS,k on XS by

dνS,k = dνS,k,d,Λ =
∑
F∈S∗k

ωFk,d,ΛδπS(F ),

where δ• is the Dirac mass at the given point. As we will see, the normalization used has the
effect that νS,k is asymptotically a probability measure on XS : we will show that

lim
k→+∞

νS,2k(XS) = 1.

The local equidistribution problem, which can clearly be phrased for very general families
of cusp forms, is to determine if these measures have limits as k→+∞, to identify their
limit, to see in particular if the limit for a given S is the product of the limits for the
subsets {p}, p ∈ S (corresponding to independence of the restrictions), and finally, if possible, to
express the resulting equidistribution in quantitative terms.
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To state our theorem, we now define the limiting measures. First of all, we define a generalized
Sato–Tate measure µ on each Xp by first taking the probability Haar measure on the space
of conjugacy classes of the compact unitary symplectic group USp(4), then pushing this to a
probability measure on X by means of the map

eiθ1

eiθ2

e−iθ1

e−iθ2

 7→ (eiθ1 , eiθ2) ∈X, (θ1, θ2) ∈ [0, π]2, θ1 6 θ2,

and finally extending it to Xp by defining it to be equal to 0 outside X.
In terms of the coordinates (θ1, θ2) on X, the resulting measure µ is explicitly given by

dµ(θ1, θ2) =
4
π2

(cos θ1 − cos θ2)2 sin2θ1 sin2θ2 dθ1 dθ2 (1.2.4)

from the Weyl integration formula [KS99, 5.0.4]. We can also interpret this measure as coming
in the same way from conjugacy classes of the unitary spin group USpin(5, C), because of the
‘exceptional isomorphism’ Sp(4)' Spin(5).

For each finite set of primes S, and d, Λ as above, we now define the measure µS = µS,d,Λ on
XS by the formula

dµS =
⊗
p∈S

dµp,d,Λ,

where, for a single prime, we have

dµp,d,Λ =
(

1−
(
−d
p

)
1
p

)
∆−1
p dµ

(recall that µ is defined on Xp, but has support on X only; the same is therefore true of µS) and
the density functions ∆p = ∆p,d,Λ are given by

∆p(θ1, θ2) =



((
1 +

1
p

)2

− 4 cos2 θ1

p

)((
1 +

1
p

)2

− 4 cos2 θ2

p

)
if p inert,((

1− 1
p

)2

+
1
p

(2 cos θ1
√
p− λp)

(
2 cos θ1√

p
− λp

))
×
((

1− 1
p

)2

+
1
p

(2 cos θ2
√
p− λp)

(
2 cos θ2√

p
− λp

))
if p split,(

1− 2λp cos θ1√
p

+
1
p

)(
1− 2λp cos θ2√

p
+

1
p

)
if p ramified,

(1.2.5)

where the behavior of primes refers to the field Q(
√
−d) and, in the second and third cases, we

put

λp =
∑

N(p)=p

Λ(p),

the sum over the (one or two) prime ideals of norm p in Q(
√
−d).

Although we have written down this concrete, but unenlightening, expression, there is a
more intrinsic definition of these measures µp = µp,d,Λ and this will in fact be the way they will
naturally occur (and the way we will prove the results): they are precisely what Furusawa and
Shalika [FS02] call the Plancherel measure for the local Bessel model associated to the data (d, Λ).
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In particular, this description shows that they are probability measures, which is not quite
obvious from the definition. On the other hand, the following property, which is of great relevance
to global applications, is immediate: as p→+∞, the measures µp converge weakly to the measure
µ, which has a group-theoretic interpretation.

Our local equidistribution result can now be stated.

Theorem 1.6 (Local equidistribution and independence). Fix any d, Λ as above. For any finite
set of primes S, the measures νS,k on XS converge weak-∗ to µS as k→+∞ over even integers,
that is, for any continuous function ϕ on YS , we have

lim
k→+∞

∑
F∈S∗2k

ωF2kϕ((ap(F ), bp(F ))p∈S) =
∫
YS

ϕ(x) dµS(x).

In particular, if

ϕ((yp)p∈S) =
∏
p∈S

ϕp(yp)

is a product function, we have

lim
k→+∞

∑
F∈S∗2k

ωF2kϕ((ap(F ), bp(F ))p∈S) =
∏
p∈S

∫
Yp

ϕp(x) dµp(x).

Moreover, assume that ϕ is of product form, and that ϕp is a Laurent polynomial in
(a, b, a−1, b−1), invariant under the action of the group W given by (1.2.2), and of total degree dp
as a polynomial in (a+ a−1, b+ b−1). Then we have∑

F∈S∗2k

ωF2kϕ((ap(F ), bp(F ))p∈S) =
∫
YS

ϕ(x) dµS(x) +O(k−2/3L1+ε‖ϕ‖∞) (1.2.6)

for any ε > 0, where

L=
∏
p∈S

pdp ,

and ‖ϕ‖∞ is the maximum of |ϕ| on X |S| ⊂ YS . The implied constant depends only on d and ε.

Remark 1.7. It is possible to extend our results to odd k. However, this requires a slightly
different definition of the weights ωFk . For simplicity, we only consider k even in this paper.

Remark 1.8. In a recent preprint, Shin [Shi] has proved a related result. In Shin’s work, the
weights ωFk are not present; instead, the cusp forms are counted with the natural weight 1.
Using the trace formula, he proves a qualitative result that for suitable families of cusp forms
on connected reductive groups over totally real fields, there is local equidistribution at a given
place; when the level grows the sum of the point measures associated to the forms of fixed level
converges towards the Plancherel measure on the unitary dual of the local group.

In fact, from the viewpoint of automorphic representations on reductive groups, our result is
essentially a (quantitative) relative trace formula analogue of what Shin (and others before him,
such as DeGeorge–Wallach [DW79], Clozel [Clo86], Sarnak [Sar87], Savin [Sav89], Serre [Ser97],
and Sauvageot [Sau97]) did using the trace formula.

We expect that the methods of this paper would suffice to prove the equidistribution result
for Siegel modular forms of level N coprime to the set of places S as N + k→∞. It would also
be interesting to see if our results can be generalized to the case of automorphic forms on the
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split special orthogonal groups, using the formulas for the Bessel model there from [BFF97] (at
least qualitatively). We hope to treat these questions elsewhere.

We briefly explain the structure of this paper. In § 2 we introduce the Bessel model, explain
its relation to the Fourier coefficients, and derive a result relating the Fourier coefficients to
Satake parameters. In § 3 we recall the definition of Poincaré series in this context and derive a
Petersson-type quantitative orthogonality formula for the Siegel cusp forms (this involves non-
trivial adaptations of the method of Kitaoka [Kit84]). In § 4 we put the above results together
to deduce our main theorem (Theorem 1.6) on local equidistribution. Finally, in § 5, we prove
Theorems 1.1 and 1.2 as well as provide several other applications of the results of the previous
sections.

1.3 Notation

We introduce here some notation used in the paper.

– The symbols Z, Z>0, Q, R, C, Zp, and Qp have the usual meanings; A denotes the ring of
adèles of Q. For a complex number z, e(z) denotes e2πiz.

– For any commutative ring R and positive integer n, M(n, R) denotes the ring of n by
n matrices with entries in R and GL(n, R) denotes the group of invertible matrices in
M(n, R). If A ∈M(n, R), we let tA denote its transpose. We use R× to denote GL(1, R).

– For matrices A and B, we use A[B] to denote tBAB, whenever the matrices are of
compatible sizes.

– We say that a symmetric matrix in M(n, Z) is semi-integral if it has integral diagonal entries
and half-integral off-diagonal ones.

– Denote by Jn the 2n by 2n matrix given by

Jn =
(

0 In
−In 0

)
.

We use J to denote J2.

– For a positive integer n, define the algebraic group GSp(2n) over Z by

GSp(2n, R) = {g ∈GL(2n, R) | tgJng = µn(g)Jn, µn(g) ∈R×}

for any commutative ring R.
Define Sp(2n) to be the subgroup of GSp(2n) consisting of elements g1 ∈GSp(2n) with
µn(g1) = 1.
The letter G will always stand for GSp(4). The letter Γ will always stand for the group
Sp(4, Z).

– The Siegel upper-half space is defined by

Hn = {Z ∈Mn(C) | Z = tZ, Im(Z) is positive definite}.

For

g =
(
A B
C D

)
∈G(R)

and Z ∈H2, we denote

J(g, Z) = CZ +D.
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– For a prime p, the maximal compact subgroup Kp of G(Qp) is defined by

Kp =G(Qp) ∩GL(4, Zp).

– For a quadratic extension K of Q and p a prime, define Kp = K⊗Q Qp; we let ZK denote
the ring of integers of K and ZK,p its p-closure in Kp.

2. Bessel models

2.1 Global Bessel models
We recall the definition of the Bessel model of Novodvorsky and Piatetski-Shapiro [NP73]
following the exposition of Furusawa [Fur93].

Let S ∈M2(Q) be a symmetric matrix.3 Define disc(S) =−4 det(S) and put d=−disc(S).
For

S =
(
a b/2
b/2 c

)
,

we define the element

ξ = ξS =
(
b/2 c
−a −b/2

)
.

Let K denote the subfield Q(
√
−d) of C. We always identify Q(ξ) with K via

Q(ξ) 3 x+ yξ 7→ x+ y

√
−d
2
∈K, x, y ∈Q. (2.1.1)

We define a Q-algebraic subgroup T = TS of GL(2) by

T = {g ∈GL(2) | tgSg = det(g)S}, (2.1.2)

so that it is not hard to verify that T (Q) = Q(ξ)×. We identify T (Q) with K× via (2.1.1).
We can also consider T as a subgroup of G via

T 3 g 7→
(
g 0
0 det(g) tg−1

)
∈G. (2.1.3)

Let us further denote by U the subgroup of G defined by

U =
{
u(X) =

(
12 X
0 12

) ∣∣∣∣ tX =X

}
,

and by R the subgroup R= TU of G.
Let ψ =

∏
v ψv be a character of A such that:

– the conductor of ψp is Zp for all (finite) primes p;

– ψ∞(x) = e(x) for x ∈ R;

– ψ|Q = 1.

We define the character θ = θS on U(A) by

θ(u(X)) = ψ(Tr(S(X))).

3 The notation conflicts a little with the sets of primes S, but we hope that the bold face font of the latter and
the context will prevent any confusion.
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Let Λ be a character of T (A)/T (Q) such that Λ|A× = 1. Via (2.1.1), we can think of Λ as a
character of K×(A)/K× such that Λ|A× = 1. Denote by Λ⊗ θ the character of R(A) defined by
(Λ⊗ θ)(tu) = Λ(t)θ(u) for t ∈ T (A) and u ∈ U(A).

Let π be an automorphic cuspidal representation of G(A) with trivial central character and
Vπ be its space of automorphic forms. For Φ ∈ Vπ, we define a function BΦ on G(A) by

BΦ(h) =
∫
R(Q)ZG(A)\R(A)

(Λ⊗ θ)(r)Φ(rh) dr. (2.1.4)

The C-vector space of functions on G(A) spanned by {BΦ | Φ ∈ Vπ} is called the global Bessel
space of type (S, Λ, ψ) for π; it is invariant under the regular action of G(A) and, when the
space is non-zero, the corresponding representation is a model of π. Thus, one says that π has
a global Bessel model of type (S, Λ, ψ) if this global Bessel space is non-zero, that is, if there
exists Φ ∈ Vπ such that BΦ 6= 0.

2.2 The classical interpretation
Let us now suppose that Φ, π come from a classical Siegel cusp form F . More precisely, for a
positive integer N , define

Γ∗(N) :=

g ∈ Γ : g ≡


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 (modN)

.
We say that F ∈ Sk(Γ∗(N)) if it is a holomorphic function on H2 which satisfies

F (γZ) = det(J(γ, Z))kF (Z)

for γ ∈ Γ∗(N), Z ∈H2, and vanishes at the cusps. It is well known that F has a Fourier expansion

F (Z) =
∑

T>0,T∈L

a(F, T )e(Tr(TZ)),

where e(z) = exp(2πiz) and T runs through all symmetric positive-definite matrices of size two in
a suitable lattice L (depending on N). If N = 1, then L is just the set of symmetric, semi-integral
matrices. Also, recall that Sk(Γ∗(1)) is denoted simply by Sk.

We define the adélization ΦF of F to be the function on G(A) defined by

ΦF (γh∞k0) = µ2(h∞)k det(J(h∞, iI2))−kF (h∞(i)), (2.2.1)

where γ ∈G(Q), h∞ ∈G(R)+, and

k0 ∈
∏
p-N

Kp

∏
p|N

KN
p ,

where

KN
p =

g ∈G(Zp) : g ≡


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 (modN)


is the local analogue of Γ∗(N). Then ΦF is a well-defined function on the whole of G(A) by
strong approximation, and is an automorphic form.
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We now assume N = 1. Let d be a positive integer such that −d is the discriminant of the
imaginary quadratic field Q(

√
−d). Define

S = S(−d) =



d4 0

0 1

 if d≡ 0 (mod 4),


1 + d

4
1
2

1
2

1

 if d≡ 3 (mod 4).

(2.2.2)

Define the groups R, T, U as in the previous section.

Put K = Q(
√
−d). Recall that Cld denotes the ideal class group of K. Let (tc), c ∈ Cld, be

coset representatives such that

T (A) =
∐
c

tcT (Q)T (R)Πp<∞(T (Qp) ∩GL2(Zp)) (2.2.3)

with tc ∈
∏
p<∞ T (Qp). We can write

tc = γcmcκc

with γc ∈GL(2,Q), mc ∈GL+(2, R), and κc ∈Πp<∞GL(2, Zp).
The matrices

Sc = det(γc)−1 (tγc)Sγc

have discriminant −d, and form a set of representatives of the SL(2, Z)-equivalence classes of
primitive semi-integral positive-definite matrices of discriminant −d.

Choose Λ a character of T (A)/T (Q)T (R)(Πp<∞T (Zp)), which we identify with an ideal class
character of Q(

√
−d).

Next, for any positive integer N , define (this is a certain ray class group)

Cld(N) = T (A)/T (Q)T (R)Πp<∞(T (Qp) ∩K(0)
p (N)),

where K(0)
p (N) is the subgroup of GL2(Zp) consisting of elements that are congruent to a matrix

of the form (
∗ 0
∗ ∗

)
(mod N).

As before, we can take coset representatives (tc′), c′ ∈ Cld(N), such that

T (A) =
∐
c′

tc′T (Q)T (R)Πp<∞(T (Qp) ∩K(0)
p (N)) (2.2.4)

with tc′ ∈
∏
p<∞ T (Qp), and write

tc′ = γc′mc′κc′

with γc′ ∈GL(2,Q), mc′ ∈GL+(2, R), and κc′ ∈Πp<∞K
(0)
p (N).

Define the matrices

Sc′ = det(γc′)−1 (tγc′)Sγc′ .
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For each pair of positive integers L, M , define the element H(L, M) ∈G(A) by

H(L, M)∞ = 1, H(L, M)p =


LM2

LM
1

M


for each prime p <∞. Note that H(1, 1) = 1.

For any symmetric matrix T , we let TL,M denote the matrix

TL,M =
(
L

L

) (
M

1

)
T

(
M

1

)
. (2.2.5)

Define the quantity B(L, M ; ΦF ) by

B(L, M ; ΦF ) =BΦ(H(L, M)) =
∫
R(Q)ZG(A)\R(A)

(Λ⊗ θ)(r)ΦF (rH(L, M)) dr. (2.2.6)

The next proposition proves an important relation which expresses the quantity B(L, M ; ΦF )
in terms of Fourier coefficients. The proof is fairly routine, but to our best knowledge it has not
appeared in print before.

Proposition 2.1. Let F ∈ Sk have the Fourier expansion

F (Z) =
∑
T>0

a(F, T )e(Tr(TZ)).

Then we have

B(L, M ; ΦF ) = r · e−2πTr(S)(LM )−k
1

|Cld(M)|
∑

c∈Cld(M)

Λ(c)a(F, SL,Mc ),

where r is a non-zero constant depending only on the normalization used for the Haar measure
on R.

Proof. For the purpose of this proof, we shorten H(L, M) to H whenever convenient. Note that

B(L, M ; ΦF ) =B(1, 1; ΦL,M
F ),

where the automorphic form ΦL,M
F is given by

ΦL,M
F (g) = ΦF (gH).

Define

H∞ =


LM 2

LM
1

M

 ∈G(R)+

and define the Siegel modular form

F ′(Z) = (LM )−kF (H−1
∞ Z), (2.2.7)

which is in Sk(Γ∗(LM 2)), as one can easily show.
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Let ΦF ′ be the adélization of F ′ as defined by (2.2.1). We claim that ΦL,M
F = ΦF ′ . To see

this, since both functions are right invariant under the group∏
p-LM 2

Kp

∏
p|LM 2

KLM 2

p ,

it is enough to show that ΦL,M
F (g∞) = ΦF ′(g∞) for g∞ ∈G(R)+. This is shown by the following

computation:

ΦL,M
F (g∞) = ΦF (g∞H)

= ΦF (H−1
∞ g∞)

= µ2(H−1
∞ g∞)k det(J(H−1

∞ g∞, iI2))−kF (H−1
∞ g∞(i))

= (LM )−kµ2(g∞)k det(J(g∞, iI2))−kF (H−1
∞ g∞(i))

= ΦF ′(g∞).

Hence, we are left with the problem of evaluating B(1, 1; ΦF ′). Note that ΦF ′ is right invariant
under K(0)

p (M) (where we think of GL2 as a subgroup of GSp4 via (2.1.3)). Using (2.2.4), the
same arguments as in [Sah09b, Proposition 2.8.5] give us

B(1, 1; ΦF ′) = e−2πTr(S) 1
|Cld(M)|

∑
c∈Cld(M)

Λ(c)a(F ′, Sc)

for a suitably normalized Haar measure, where a(F ′, T ) denotes the Fourier coefficients of F ′.
Using (2.2.7), one can easily check that

a(F ′, Sc) = (LM )−ka(F, SL,Mc ),

and this completes the proof. 2

Remark 2.2. In an earlier preprint version of this paper, we had claimed such a result with
a sum over c in Cld instead of Cld(M). This was incorrect (when M 6= 1); the mistake in the
proof was to assume that ΦF ′ is invariant under the bigger subgroup GL2(Zp) when arguing as
in [Sah09b, Proposition 2.8.5].

Remark 2.3. The above result is one of the three crucial ingredients that are required for the
proof of the asymptotic Petersson-type formula (Proposition 3.6) which forms the technical heart
of this paper. The other two ingredients are Sugano’s formula (Theorem 2.5) and the asymptotic
orthogonality for Poincaré series (Proposition 3.3).

2.3 Local Bessel models and Sugano’s formula

Let π =⊗vπv be an irreducible automorphic cuspidal representation of G(A) with trivial central
character and Vπ be its space of automorphic forms. We assume that π is unramified at all finite
places. Let S be a positive-definite, symmetric, semi-integral matrix such that −d=−4 det(S)
is the discriminant of the imaginary quadratic field K = Q(

√
−d). Let ψ, Λ be defined as in the

previous section. Define the groups R, T, U as before and the Bessel function BΦ on G(A) as
in (2.1.4), for a function Φ =

∏
v Φv which is a pure tensor in π.

For a finite prime p, we use (K/p) to denote the Legendre symbol; thus, (K/p) equals −1, 0,
or 1 depending on whether the prime is inert, ramified, or split in K. In the latter two cases, we
use pK to denote an element of Kp = K⊗Q Qp such that NK/Q(pK) ∈ pZ×p .
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Outside v =∞, the local representations are unramified spherical principal series. Therefore,
by the uniqueness of the Bessel model for G, due to Novodvorsky and Piatetski-Shapiro [NP73],
we have

BΦ(g) =BΦ(g∞)
∏
p

Bp(gp), (2.3.1)

where Bp is a local Bessel function on G(Qp), the definition of which we will now recall.

Remark 2.4. If the global Bessel space is zero, then both sides of (2.3.1) are zero. In
particular, (2.3.1) remains valid regardless of whether our choice of S and Λ ensures a non-
zero Bessel model.

To describe the local Bessel function Bp for a prime p, let B be the space of locally constant
functions ϕ on G(Qp) satisfying

ϕ(tuh) = Λp(t)θp(u)ϕ(h) for t ∈ T (Qp), u ∈ U(Qp), h ∈G(Qp).

Then, by Novodvorsky and Piatetski-Shapiro [NP73], there exists a unique subspace B(πp)
of B such that the right regular representation of G(Qp) on B(πp) is isomorphic to πp. Let Bp
be the unique Kp-fixed vector in B(πp) such that Bp(1) = 1. Therefore, we have

Bp(tuhk) = Λp(t)θp(u)Bp(h) (2.3.2)

for t ∈ T (Qp), u ∈ U(Qp), h ∈G(Qp), k ∈Kp.
Let hp(l, m) ∈G(Qp) be the matrix defined as follows:

hp(l, m) :=


pl+2m

pl+m

1
pm

.
As explained in [Fur93], the local Bessel function Bp is completely determined by its

values on hp(l, m). An explicit formula for Bp(hp(l, m)) in terms of the Satake parameters is
stated in [BFF97]. This formula can be neatly encapsulated in a generating function, due to
Sugano [Sug85], which we now explain.

Because πp is spherical, as recalled earlier, it is the unramified constituent of a representation
χ1 × χ2 o σ induced from a character of the Borel subgroup associated to unramified characters
χ1, χ2, σ of Q×p and, because it has trivial central character (since π does), we have χ1χ2σ

2 = 1.
Let us put (ap, bp) = (σ(p), σ(p)χ1(p)) ∈ Yp and, as in the definition of the measure µp, let

λp =
∑

x∈K×p /Z×K,p
N(x)=p

Λp(x),

where the number of terms in the sum is 1 + (K/p).
The next theorem is due to Sugano [Sug85, p. 544] (the reader may also consult [Fur93,

(3.6)]).

Theorem 2.5 (Sugano). Let π be an unramified spherical principal series representation of
G(Qp) with associated local parameters (a, b) ∈ Yp and spherical Bessel function Bp as above.
Then we have

Bp(hp(l, m)) = p−2m−(3l/2)U l,mp (a, b), (2.3.3)
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where, for each l, m> 0, the function

U l,mp (a, b) = U l,mp (a, b; Kp, Λp)

is a Laurent polynomial in C[a, b, a−1, b−1], invariant under the action of the Weyl group (1.2.2),
which depends only on p, (K/p), and λp.

More precisely, the generating function

Cp(X, Y ) = Cp(X, Y ; a, b) =
∑
l>0

∑
m>0

U l,mp (a, b)XmY l (2.3.4)

is a rational function given by

Cp(X, Y ) =
Hp(X, Y )

Pp(X)Qp(Y )
, (2.3.5)

where

Pp(X) = (1− abX)(1− ab−1X)(1− a−1bX)(1− a−1b−1X),
Qp(Y ) = (1− aY )(1− bY )(1− a−1Y )(1− b−1Y ),

Hp(X, Y ) = (1 +XY 2)(M1(X)(1 +X) + p−1/2λpσ(a, b)X2)

−XY (σ(a, b)M1(X)− p−1/2λpM2(X))

− p−1/2λpPp(X)Y + p−1

(
K

p

)
Pp(X)Y 2,

in terms of auxiliary polynomials given by

σ(a, b) = a+ b+ a−1 + b−1, τ(a, b) = 1 + ab+ ab−1 + a−1b+ a−1b−1,

M1(X) = 1−
(
p−

(
K

p

))−1(
p1/2λpσ(a, b)−

(
K

p

)
(τ(a, b)− 1)− λ2

p

)
X − p−1

(
K

p

)
X2,

M2(X) = 1− τ(a, b)X − τ(a, b)X2 +X3.

Remark 2.6. For instance, we note that

U0,0
p (a, b) = 1

and that

U1,0
p (a, b) = σ(a, b)− p−1/2λp = a+ b+ a−1 + b−1 − p−1/2λp. (2.3.6)

We also note that taking X = 0 leads to the simple formula∑
l>0

U l,0p (a, b)Y l =
1− p−1/2λpY + p−1(K/p)Y 2

Qp(Y )
, (2.3.7)

which we will use later on. The formula for Y = 0 is more complicated, but we note (also for
further reference) that it implies the formula

U0,1
p (a, b) = τ(a, b)−

(
p−

(
K

p

))−1(
p1/2λpσ(a, b)−

(
K

p

)
(τ(a, b)− 1)− λ2

p

)
. (2.3.8)

As was the case for the definition of the measures µp, we have written down a concrete
formula. These are not very enlightening by themselves (though we will use the special cases
above), and the intrinsic point of view is that of Macdonald polynomials [Mac00/01] associated
to a root system. In particular, this leads to the following important fact.
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Proposition 2.7. Let (d, Λ) be as before. For any fixed prime p, the functions

(a, b) 7→ U l,mp (a, b),

where l, m run over non-negative integers, form a basis of the space of Laurent polynomials in
C[a, b, a−1, b−1] which are invariant under the group W generated by the three transformations
above.

Moreover, any such Laurent polynomial ϕ which has total degree d as polynomial in the
variables (a+ a−1, b+ b−1) can be represented as a combination of polynomials U l,mp (a, b) with
l + 2m6 d.

Proof. Because of Theorem 2.5, we can work with the Bessel functions Bp(hp(l, m)) instead.
But, as shown in detail in [FMS, § 3], these unramified Bessel functions are (specializations of)
Macdonald polynomials associated to the root system of G, in the sense of [Mac00/01]. By the
theory of Macdonald polynomials, these unramified Bessel functions form a basis for the Laurent
polynomials in two variables that are symmetric under the action of the Weyl group W .

The last statement, concerning the U l,mp occurring in the decomposition of ϕ of bidegree
(d, d), can be easily proved by induction from the corresponding fact for the coefficients (say
Ũl,m(a, b)) of the simpler generating series

1
Pp(X)Qp(Y )

=
∑
l,m>0

Ũl,m(a, b)XmY l,

for which the stated property is quite clear. (It is also a standard fact about the characters
of representations of USp(4, C), since σ(a, b) and τ(a, b) are the characters of the two fundamental
representations acting on a maximal torus.) 2

Lemma 2.8. Let (d, Λ) be as before. Let S be a finite set of primes and (lp), (mp) be tuples of
non-negative integers, indexed by S. There exists an absolute constant C > 0 such that for every
(xp)p∈S = (ap, bp) ∈XS , that is, parameters of tempered representations, we have∣∣∣∣∏

p∈S

U
lp,mp
p (ap, bp)

∣∣∣∣6 C |S|
∏
p∈S

(lp + 3)3(mp + 3)3.

Proof. It is enough to prove this when S = {p} is a single prime, and lp = l, mp =m> 0. Then,
by Sugano’s formula, the polynomial U l,mp (a, b) is a linear combination of at most 14 polynomials
of the type arising in the expansion of the denominator only, that is, of

1
Pp(X)Qp(Y )

,

and moreover the coefficients in this combination are absolutely bounded as p varies (they are
either constants or involve quantities like p−1/2).

Expanding in geometric series and using |a|= 1, |b|= 1, the coefficient of XmY l in the
expansion of the denominator is a product of the coefficient of Xm and that of Y l; each of
them is a sum, with coefficient +1, of 6(m+ 3)3 (respectively (l + 3)3) terms of size 61. The
result follows from this. 2

Remark 2.9. Sugano’s formula explicitly computes the Bessel function in terms of Satake
parameters in the case of an unramified representation. The other case where an explicit formula
for the Bessel function at a finite place is known is when πp is Steinberg; see [Pit11, Sah09a].
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2.4 The key relation
We consider now Siegel modular forms again. Let

F (Z) =
∑
T>0

a(F, T )e(Tr(TZ)) ∈ Sk

be an eigenfunction for all the Hecke operators. Define its adélization ΦF (g) by (2.2.1). This is a
function on G(Q)\G(A) and we may consider the representation of G(A) generated by it under
the right-regular action. Because we do not have strong multiplicity one for G, we can only say
a priori that this representation is a multiple of an irreducible representation πF . However, the
unicity of πF , as an isomorphism class of representations of G(A), is enough for our purposes.4

We can factor πF =⊗πv(F ), where the local representations πv are given by

πv(F ) =

{
holomorphic discrete series if v =∞,
unramified spherical principal series if v is finite,

and we denote by (ap(F ), bp(F )) ∈ Yp the local parameters corresponding to the local
representation πp(F ) at a finite place.

Let once more d be a positive integer such that −d is a fundamental discriminant and define S
as in (2.2.2). Choose an ideal class character Λ of K. Let the additive character ψ, the groups
R, T, U , and the matrices Sc, S

L,M
c′ be defined as in § 2.2. For positive integers L, M , define

B(L, M ; ΦF ) by (2.2.6). Then, by the uniqueness of the Bessel model (that is, (2.3.1)), we have

B(L, M ; ΦF ) =B(1, 1; ΦF )
∏
p

Bp(hp(lp, mp)) =B(1, 1; ΦF )
∏
p|LM

Bp(hp(lp, mp)),

where lp and mp are the p-adic valuations of L and M , respectively. Now, using Sugano’s
formula (2.3.3) and twice Proposition 2.1, which has the effect of canceling the constant r 6= 0
that appears in the latter, we deduce the following theorem.

Theorem 2.10. Let (d, Λ) be as before, let p be prime, and let U l,mp (a, b) be the functions
defined in Theorem 2.5. For any F ∈ S∗2k and integers L, M > 1, we have

|Cld|
|Cld(M)|

∑
c′∈Cld(M)

Λ(c′)a(F, SL,Mc′ ) = Lk−3/2Mk−2
∑
c∈Cld

Λ(c)a(F, Sc)
∏
p|LM

U
lp,mp
p (ap(F ), bp(F )),

where lp and mp are the p-adic valuations of L and M , respectively.

The point of this key result is that it allows us to study functions of the Satake parameters of
πF using Fourier coefficients of F , although there is no direct identification of Hecke eigenvalues
with Fourier coefficients.

Remark 2.11. This relation holds for every Λ, but we cannot remove the sum over c by Fourier
inversion because the functions U lp,mpp depend on Λ.

3. Poincaré series, Petersson formula, and orthogonality

The relation given by Theorem 2.10 between Fourier coefficients of F on the one hand, and
functions of the spectral Satake parameters of πF on the other, will enable us to deduce

4 Added in proof: in a recent preprint, Narita, Pitale, and Schmidt have shown that ΦF does indeed generate an
irreducible representation.
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equidistribution results for Satake parameters from asymptotics for Fourier coefficients. For this,
we need a way to understand averages of Fourier coefficients of Siegel forms F in a suitable
family; this will be provided by a variant of the classical Petersson formula. In order to prove
the latter, we follow the standard approach: we consider Poincaré series and study their Fourier
coefficients.

3.1 Poincaré series and the Petersson formula
Given a symmetric semi-integral positive-definite matrix Q of size two, the Qth Poincaré series
of weight k, denoted Pk,Q, is defined as follows:

Pk,Q(Z) =
∑

γ∈∆\Γ

det(J(γ, Z))−ke(Tr(Qγ(Z))),

where ∆ is the subgroup of Γ consisting of matrices of the form
(

1 U
0 1

)
, with U symmetric.

It is known that Pk,Q is absolutely and locally uniformly convergent for k > 6, and defines
an element of Sk (as first proved by Maass). In fact, any Siegel cusp form F ∈ Sk is a linear
combination of various Pk,Q (with Q varying). This follows from the basic property of Poincaré
series: they represent, in terms of the Petersson inner product, the linear forms on Sk given by
Fourier coefficients. Precisely, for F ∈ Sk with Fourier expansion

F (Z) =
∑
T>0

a(F, T )e(Tr(TZ)),

we have the crucial identity

〈F, Pk,T 〉= 8ck(det T )−k+3/2a(F, T ), (3.1.1)

where

ck =
√
π

4
(4π)3−2kΓ

(
k − 3/2

)
Γ(k − 2) (3.1.2)

(see [Koh93] or [Kli90, p. 90] for instance).
We are interested in the limiting behavior of Fourier coefficients of Poincaré series as k→+∞.

The following qualitative result was proved in [KST11].

Proposition 3.1 (Asymptotic orthogonality, qualitative version). For L, M > 1, c ∈ Cld, and
c′ ∈ Cld(M) let

a(k; c, c′, L, M) = a(Pk,Sc , S
L,M
c′ )

denote the SL,Mc′ th Fourier coefficient of the Poincaré series Pk,Sc . Then we have

a(k; c, c′, L, M)→ |Aut(c)| · δ(c, c′; L;M)

as k→+∞ over the even integers. Here

δ(c, c′; L;M) =

{
1 if L= 1, M = 1, and c is GL(2, Z)-equivalent to c′,

0 otherwise,

and |Aut(c)| is the finite group of integral points in the orthogonal group O(T ) of the quadratic
form defined by c.

Remark 3.2. Since this will be a subtle point later on, we emphasize that δ(c, c′; L, M) = 1 when
c and c′ are invariant under GL(2, Z), not under SL(2, Z).
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This is sufficient for some basic applications, but (for example) to handle the low-lying zeros,
we require a quantitative version. We prove the following proposition.

Proposition 3.3 (Asymptotic orthogonality, quantitative version). With notation as above, we
have

a(k; c, c′, L, M) = |Aut(c)| · δ(c, c′; L;M) + Lk−3/2Mk−2A(k; c, c′, L, M),

where

A(k; c, c′, L, M)� L1+εM3/2+εk−2/3

for any ε > 0, the implied constant depending only on ε and d.

In the proof, for conciseness, we will write |A| for the determinant of a matrix. The basic
framework of the argument is contained in the work of Kitaoka [Kit84], who proved an estimate
for the Fourier coefficients a(Pk,Q, T ) of Poincaré series for fixed Q and k > 6, in terms of the
determinant det(T ) (and deduced from this an estimate for Fourier coefficients of arbitrary Siegel
cusp forms in Sk, since the space is spanned by Poincaré series).

However, Kitaoka considered k to be fixed; our goal is to have a uniform estimate in terms
of L, M and k, and this requires more detailed arguments.

In particular, we will require the following quite standard asymptotics for Bessel functions:

Jk(x)� xk

Γ(k + 1)
if k > 1, 0 6 x�

√
k + 1, (3.1.3)

Jk(x)� min(1, xk−1)k−1/3 if k > 1, x> 1, (3.1.4)

Jk(x)� 2k√
x

if k > 1, x > 0, (3.1.5)

where the implied constants are absolute (the first inequality follows from the Taylor expansion
of Jk(z) at z = 0, the second is [ILS00, (2.11)], and the third, which is very rough, by combining
|Jk(x)|6 1 when x6 2k and, for example, [ILS00, (2.11’)] for x> 2k).

Proof of Proposition 3.3. Let

T = SL,Mc′ , Q= Sc,

so that we must consider the T th Fourier coefficients of Pk,Q (this notation, which clashes a
little with the earlier one for the torus T , is chosen to be the same as that in [Kit84], in order
to facilitate references). Before starting, we recall that since we consider d to be fixed, so is the
number of ideal classes, and hence Q varies in a fixed finite set, and may therefore be considered
to be fixed. Also, note that

det(T ) = dL2M2/4, (3.1.6)

and we seek estimates involving det(T ). Thus, compared with Kitaoka, the main difference is the
dependency on k, which we must keep track of. In particular, we modify and sharpen Kitaoka’s
method, so that any implicit constants that appear depend only on d.

Because we think of d as fixed, throughout the proof we drop the subscript d from the
symbols �,�,�. The reader should not be misled into thinking that the implied constants are
independent of d.
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Since the proof is rather technical, the reader is encouraged to assume first that d= 4, M = 1
(so that there is a single class c= c′, and moreover Q= Sc = Sc′ = 1) and also,5 by (2.2.5), T is
a simple diagonal matrix

T =
(
L 0
0 L

)
.

In principle, we now follow the formula for a(Pk,Q, T ) which is implicit in [Kit84]. Given
a system of representatives h of Γ1(∞)\Γ/Γ1(∞), Kitaoka defines certain incomplete Poincaré
series Hk(M, Z) such that

Pk,Q(Z) =
∑
M∈h

Hk(M, Z).

Denoting the T th Fourier coefficient of Hk(M, Z) by hk(M, T ), we have

a(k; c, c′, L, M) = a(Pk,Q, T ) =
∑
M∈h

hk(M, T ).

We write

M =
(
A B
C D

)
,

where A, B, C and D are matrices in M(2, Z), and we now divide the sum above depending on
the rank of C. We denote the component corresponding to rank i by Ri, so that

a(Pk,Q, T ) =R0 +R1 +R2.

Step 1 (Rank zero). First of all, we consider R0. By [Kit84, p. 160] (or direct check), we have

R0 =
∑

U∈GL(2,Z)
UT tU=Q

1,

which is 0 unless T is GL(2, Z)-equivalent to Q, in which case it is equal to |Aut(T )|= |O(T, Z)|
(where T is viewed as defining a quadratic form and O(T ) is the corresponding orthogonal
group). In our case, looking at the determinant we find that R0 = 0 unless L=M = 1, and then
it is also 0 except if c is GL(2, Z)-equivalent to c′, and is then |Aut(c)|. In other words, we have

R0 = |Aut(c)| · δ(c, c′; L;M)

and, hence, by definition, the remainder is therefore

R1 +R2 = Lk−3/2Mk−2A(k; c, c′, L, M) (3.1.7)

and, having isolated our main term, we must now estimate the two remaining ones.

Step 2 (Rank one). Following the computations in Kitaoka (specifically, [Kit84, Lemma 4, p. 159,
Lemma 1, p. 160 and up to line 2 on p. 163]), but keeping track of the dependency on k by keeping
the factor Q3/4−k/2 (which Kitaoka considers as part of his implied constant), we find that

|R1| �ε

∑
c,m>1

|T |k/2−3/4|Q|3/4−k/2A(m, T )m−1/2+ε(m, c)1/2

∣∣∣∣Jk−3/2

(
4π

√
|T ||Q|
mc

)∣∣∣∣, (3.1.8)

where A(m, T ) is the number of times T , seen as a quadratic form, represents m.

5 This is the only case needed in Theorem 1.1 for averaging the spin L-function; however, this is not sufficient for
Theorem 1.2, although the latter is also concerned only with the spinor L-function.
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Now recall that |Q|= d/4 and |T |= L2M2(d/4), and observe that A(m, T ) = 0 unless L
divides m and A(m, T ) =A(m/L, Sc) whenever L divides m. It follows that

A(m, T )�ε (m/L)ε

for any ε > 0. Using (3.1.8), we get by a very rough estimate that

|R1| �ε (LM )k−3/2
∑
c,m>1
L|m

m−1/2+ε(m/L)ε(m, c)1/2

∣∣∣∣Jk−3/2

(
π

LM d

mc

)∣∣∣∣
� (LM )k−3/2Lε

∑
c,m1>1

m
−1/2+ε
1 (m1, c)1/2

∣∣∣∣Jk−3/2

(
π
Md

m1c

)∣∣∣∣.
Now we define

R1 =
∑
c,m>1

m−1/2+ε(m, c)1/2

∣∣∣∣Jk−3/2

(
π
Md

mc

)∣∣∣∣
= R11 + R12 + R13,

where R1i corresponds to the sums restricted to
mc > πMd if i= 1,
πMdk−1/2 6mc6 πMD if i= 2,
mc6 πMdk−1/2 if i= 3.

For i= 1, the argument of the Bessel function is 61 and, by (3.1.3), we find

R11�
1

Γ(k − 3/2)

∑
mc>πMd

m−1/2+ε(m, c)1/2

(
πMd

mc

)k−3/2

.

We can replace the exponent k − 3/2 in the sum with any exponent 1 + δ, for small 0< δ 6 1
(since k > 6 anyway), and then we can remove the summation condition, observing that the
double series is then convergent, and obtain

R11�M1+εk−E

(taking δ small enough in terms of ε) for any E > 1 and ε > 0, where the implied constant
depends on E, ε, and d.

For i= 2, we use (3.1.3) and find that

R12�
kk/2−3/4

Γ(k − 3/2)

∑
cm6πMd

m−1/2+ε(m, c)1/2�M1+εk−E

for E > 1 and ε > 0 again (by summing over c first and then over m, and by Stirling’s formula).
Finally, using now (3.1.4), we have

R13�ε k
−1/3

∑
cm<πMdk−1/2

m−1/2+ε(m, c)1/2� k−1/3−1/2M1+ε = k−5/6M1+ε,

(summing as for R12).
It follows that

R1 = R11 + R12 + R13�M1+εk−5/6

357

https://doi.org/10.1112/S0010437X11007391 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007391


E. Kowalski, A. Saha and J. Tsimerman

for any ε > 0, and so the contribution of rank one is bounded by

|R1| � (LM )k−3/2LεM1+εk−5/6 (3.1.9)

for any ε > 0, where the implied constant depends only on d and ε.

Step 3 (Rank two). Finally, we deal with the R2 term, which is much more involved. The relevant
set of matrices M is given by

M ∈
{(

? ?
C D

)}
⊂ Sp(4, Z),

where |C| 6= 0 and D is arbitrary modulo C. Denoting

M∗2 (Z) = {C ∈M2(Z) | |C| 6= 0},

we have then

R2 =
∑

C∈M∗2 (Z)

∑
D (mod C)

hk(M, T ).

The inner sum was computed by Kitaoka [Kit84, pp. 165, 166]. To state the formula, let

P = P (C) := TQ[tC−1] = T (tC−1)QC−1,

and let

0< s1 6 s2 (3.1.10)

be such that s2
1, s2

2 are the eigenvalues of the positive-definite matrix P . Then Kitaoka proved
that ∑

D (mod C)

hk(M, T ) =
1

2π4

(
|T |
|Q|

)k/2−3/4

|C|−3/2K(Q, T ; C)Jk(P (C)), (3.1.11)

where K(Q, T ; C) is a type of matrix-argument Kloosterman sum (see [Kit84, § 1, p. 150] for
the precise definition, which we do not need here) and (we have made the change of variable
t= sin(θ) for convenience)

Jk(P ) =
∫ π/2

0
Jk−3/2(4πs1 sin θ)Jk−3/2(4πs2 sin θ) sin θ dθ.

We note that

|P |= |T ||Q||C|−2 = (d/4)2L2M2|C|−2.

In order to exploit this formula (3.1.11), we must handle the sum over C. For this purpose, we
use a parameterization of M∗2 (Z) in terms of principal divisors: any C ∈M∗2 (Z) can be written
uniquely as

C = U−1

(
c1 0
0 c2

)
V −1, (3.1.12)

where

1 6 c1, c1 | c2, U ∈GL(2, Z) and V ∈ SL(2, Z)/Γ0(c2/c1),

where Γ0(n) denotes the congruence subgroup of SL(2, Z) (conjugate to Γ0(n)) consisting of
matrices (

a b
c d

)
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with n | b. Note that there is a bijection

SL(2, Z)/Γ0(n)' P1(Z/nZ)

(this is denoted S(n) in [Kit84]) and in particular

|SL(2, Z)/Γ0(n)|= n
∏
p|n

(1 + p−1)� n1+ε (3.1.13)

for any ε > 0.
We will first consider matrices where the last three parameters c = (c1, c2, V ) are fixed,

subject to the conditions above. The set of such triples is denoted V and, for each c ∈ V, we fix
(as we can) a matrix U1 ∈GL(2, Z) such that the matrix

A(c) =A := T

[
V

(
c1

c2

)−1

U1

]
is Minkowski-reduced. This matrix is conjugate to a diagonal matrix H =H(c) of the form

H =
(
a

c

)
with a6 c. Computing determinants and using the fact that A is Minkowski-reduced, we note
also that we have

(d/4)
L2M2

c2
1c

2
2

= ac� s2
1s

2
2 = (d/4)2L

2M2

c2
1c

2
2

(3.1.14)

(we recall again that d is assumed to be fixed).
For fixed c ∈ V, the set of matrices C ∈M∗2 (Z) corresponding to c can be parameterized in

the form

C = U−1U−1
1

(
c1

c2

)
V −1,

where U varies freely over GL(2, Z) (this is a simple change of variable of the last parameter
U ∈GL(2, Z) in (3.1.12)). As shown in [Kit84, p. 167], for any such C associated to c, we have
also

|P | � |A|, Tr(P )� Tr(A[U ]) = Tr(H[U ]).

We can now start estimating. First, for a given C parameterized by (U, c), Kitaoka proved
(see [Kit84, Proposition 1]) that the Kloosterman sum satisfies

|K(Q, T ; C)| � c2
1c

1/2+ε
2 (c2, T [v])1/2

for any ε > 0, where v is the second column of V and the implied constant depends only on ε.
Hence, by (3.1.11), we obtain∑

D (mod C)

hk(M, T )� (LM )k−3/2c
1/2
1 c−1+ε

2 (c2, T [v])1/2|Jk(P (C))|.

In order to handle the Bessel integral Jk(P (C)), we will partition M∗2 (Z) into three sets C1, C2

and C3, according to the relative sizes of the values s1 and s2 for the corresponding invariants c.
These can be determined from the size of Tr(P ) and |P |; precisely, we let

C1 = {C | Tr(P )< 1},
C2 = {C | Tr(P ) > max(2|P |, 1)},

C3 = {C | 1 6 Tr(P )< 2|P |},

359

https://doi.org/10.1112/S0010437X11007391 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007391


E. Kowalski, A. Saha and J. Tsimerman

and we further denote by Ci(c) the subsets of Ci, where C is associated with the invariants
c = (c1, c2, V ). The following lemma gives the rough size of these sets, or a weighted version that
is needed below.

Lemma 3.4. With notation as above, for any c = (c1, c2, V ), we have

|C1(c)| � (ac)−1/2−ε, (3.1.15)∑
C∈C2(c)

|A|1+δ(Tr(A[U ]))−5/4−δ�

{
(ac)1/2+δ−ε if ac < 1,
(ac)1/4+ε if ac> 1,

(3.1.16)

|C3(c)| � (ac)1/2+ε, (3.1.17)

for any ε > 0 and δ > 0 in the second, where the implied constants depend on δ and ε.

Proof. All these were proved by Kitaoka. Precisely:

– the bound (3.1.15) comes from [Kit84, p. 167], using the fact that in that case we have
a� 1;

– the bound (3.1.16) comes from the arguments of [Kit84, pp. 168, 169] (note that in that
case the summation set is infinite); to be more precise, Kitaoka argued with what amounts
to taking

δ = k/2− 7/4 so that k/2− 3/4 = 1 + δ, (1− k)/2 =−5/4− δ,

but the only information required (up to [Kit84, p. 169, Line 10]) is the sign and the value
of the sum of the two exponents

k/2− 3/4 + (1− k)/2 =−1/4 = 1 + δ + (−5/4− δ)

(this is used in [Kit84, p. 168, Line -12]). Hence, Kitaoka’s argument applies for δ > 0;

– the bound (3.1.17) comes from [Kit84, p. 168], using the fact that in that case we have
c� 1. 2

As shown also by Kitaoka, we have the following crucial localization properties (see [Kit84,
p. 166]):

(i) if C ∈ C1, then s1 6 1 and s2 6 1;

(ii) if C ∈ C2, then s1 6 1 and s2� 1, with absolute implied constants;

(iii) if C ∈ C3, then s1� 1 and s2� 1, with absolute implied constants.

Now, by breaking up the sum over C in R2 according to the three subsets Ci, we can write

|R2| �R21 +R22 +R23,

where, for i= 1, 2, 3, and any fixed ε > 0, we have

R2i� (LM )k−3/2
∑
c∈V

c
1/2
1 c−1+ε

2 (c2, T [v])1/2R2i(c)

for any ε > 0 with

R2i(c) =
∑

C∈Ci(c)

|Jk(P (C))|,

the implied constant depending only on d and ε.
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Accordingly, we study each of R21, R22, and R23 separately.

Estimation of R21. Since we have s1 6 1, s2 6 1, we use (3.1.3); using the superexponential
growth of the Gamma function, we obtain easily

|Jk(P (C))| �ε
(s1s2)2+δ

2k

for C ∈ C1 and any fixed δ > 0. On the other hand, by (3.1.15), we have

|C1(c)| � (ac)−1/2−ε� (s1s2)−1−2ε,

for any ε > 0, and taking it small enough we obtain

R21(c)� (s1s2)1+δ

2k
� (LM )1+δ (c1c2)−1−δ

2k
(3.1.18)

for any fixed δ > 0. For fixed c1, c2 first, we have∑
V ∈SL(2,Z)/Γ0(c2/c1)

c
1/2
1 c−1+ε

2 (c2, T [v])1/2R21(c)� (LM )1+δ

2k
∑
V

c
−1/2−δ
1 c−2−δ+ε

2 (c2, T [v])1/2,

from which one deduces easily∑
V ∈SL(2,Z)/Γ0(c2/c1)

c
1/2
1 c−1+ε

2 (c2, T [v])1/2R21(c)� (LM )1+δ

2k
(c1c2)−1−δ+ε(c2/c1, LM 2)1/2

for any δ > 0, possibly different than before (using (3.1.13) and [Kit84, Proposition 2] to handle
the greatest common divisor; the exponent of c1 was worsened by 1/2 to facilitate the use of this
lemma).

Writing c2 = nc1, with n> 1, we can finally sum over c1 and n; the resulting series converge
for δ > 0 and we obtain

R21� 2−k(LM )k−3/2+1+δ
∑
c1,n>1

c−2
1 n−1−δ+ε(n, LM 2)1/2

and therefore by taking, for example, δ = 2ε (and changing notation), we derive

R21� (LM )k−3/2(LM )1+εk−E (3.1.19)

for any ε > 0 and E > 1, where the implied constant depends on d, E, and ε.

Estimation of R22. We treat the R22 term next. Using (3.1.3) for the Bessel function involving s1

and (3.1.5) for the one involving s2, and using the fact that

Tr(A[U ])� Tr(P ) = s2
1 + s2

2 � s2
2

for this term, it is easy to check that

|Jk(P (C))| � 1/Γ(k − 3/2)|A|k/2−3/4(TrA[U ])(1−k)/2.

If we write

|A|k/2−3/4(TrA[U ])(1−k)/2 = |A|1+δ(TrA[U ])−5/4−δ
(

|A|
Tr(A[U ])

)k/2−7/4−δ

for any fixed δ > 0, and observe that

|A|
Tr(A[U ])

� ac

s2
2

� s2
1� 1,
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it follows using the superexponential growth of the Gamma function that

R22(c)� 2−k
∑

C∈C2(c)

|A|1+δ(TrA[U ])−5/4−δ

for any fixed δ > 0. By (3.1.16), we have

R22(c)� 2−k ×

{
(ac)1/2+δ−ε if ac < 1,
(ac)1/4+ε if ac> 1

for any ε > 0 and δ > 0.
We take ε= δ/2 and, using (3.1.14), we deduce that

R22 �
(LM )k−3/2

2k

( ∑
c1c2>d1/2LM/4

(
LM
c1c2

)1+δ ∑
V ∈SL(2,Z)/Γ0(c2/c1)

c
1/2
1 c−1+ε

2 (c2, T [v])1/2

+
∑

c1c26d1/2LM/4

(
d1/2LM

2c1c2

)1/2+δ ∑
V ∈SL(2,Z)/Γ0(c2/c1)

c
1/2
1 c−1+ε

2 (c2, T [v])1/2

)
for any δ > 0. In the second sum, we can write trivially(

d1/2LM
2c1c2

)1/2+δ

6

(
d1/2LM

2c1c2

)1+δ

�
(

LM
c1c2

)1+δ

,

so we end up with

R22�
(LM )k−3/2

2k
∑
c1|c2

(
LM
c1c2

)1+δ ∑
V ∈SL(2,Z)/Γ0(c2/c1)

c
1/2
1 c−1+ε

2 (c2, T [v])1/2

and now, using the same type of arguments leading from (3.1.18) to (3.1.19), we see that

R22� (LM )k−3/2(LM )1+εk−E (3.1.20)

for any ε > 0 and E > 1, the implied constant depending on d, E, and ε.

Estimation of R23. Recall that we have 1� s1 6 s2 for C ∈ C3. We estimate the Bessel integral
using

|Jk(P )|6
(∫

M1

+
∫
M2

)
|Jk−3/2(4πs1 sin θ)Jk−3/2(4πs2 sin θ) sin θ| dθ,

where

M1 = {θ ∈ [0, π/2] | 4πs1 sin θ 6 1},
M2 = {θ ∈ [0, π/2] | 1 6 4πs1 sin θ, 1 6 4πs2 sin θ}.

In the first we use (3.1.3) and the superexponential growth of the Gamma function to write

Jk−3/2(4πs1 sin θ)� 2−ksδ1, Jk−3/2(4πs2 sin θ)� 1� sδ2,

for any δ > 0, and in the second we use the estimate (3.1.4) to get

Jk−3/2(4πs1 sin θ)Jk−3/2(4πs2 sin θ)� k−2/3,

so that

|Jk(P (C))| � k−2/3 + 2−k(s1s2)δ� k−2/3(s1s2)δ
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for any δ > 0. It follows that

R23(c)� k−2/3
∑

C∈C3(c)

(s1s2)δ,

which, by (3.1.17) with, for example, ε= δ, gives

R23(c)� k−2/3(LM )1+δ(c1c2)−1−δ

for any δ > 0. Then the same argument as that following (3.1.18) is used to sum over the
parameters c, and to deduce

R23� (LM )k−3/2(LM )1+εk−E (3.1.21)

for any ε > 0 and E > 1, the implied constant depending on d, E, and ε.
Summarizing, we have

(LM )k−3/2A(k; c, c′, L, M) =R1 +R2�R1 +R21 +R22 +R23

and, putting together the estimates (3.1.9), (3.1.19), (3.1.20) and (3.1.21), we find that we have
proved the estimate

A(k; c, c′, L, M)� L1+εM3/2+εk−2/3

for ε > 0, which was our goal. 2

Remark 3.5. For later investigations, it may be worth pointing out that the limitation on the
error term, as a function on k, arises only from the contributions R1 and (the second part of) R23.
All other terms decay faster than any polynomial in k as k→+∞.

3.2 A quasi-orthogonality relation for Siegel modular forms
We now put together the results of the previous sections. For every k > 1, we fix a Hecke basis
S∗k of Sk. Fix the data (d, Λ) as in § 1.2 and let ωFk,d,Λ be as defined there; accordingly, we have
measures νsop,k defined for every finite set of primes S and weight k > 1 using a suitable average
over F ∈ S∗k.

Our main result in this section is the following proposition.

Proposition 3.6. Let S be a finite set of primes and l = (lp), m= (mp) be S-tuples of non-
negative integers. Put

L=
∏
p∈S

plp , M =
∏
p∈S

pmp .

Then we have∫
XS

∏
p∈S

U
lp,mp
p (xp) dνS,k =

∑
F∈S∗k

ωFk,d,Λ
∏
p∈S

U
lp,mp
p (ap(F ), bp(F ))−→ δ(l;m)

as k→∞ over the even integers, where

δ(l;m) =

{
1 if L=M = 1, that is, all lp and mp are 0,
0 otherwise.

More precisely, for any even k, we have∑
F∈S∗k

ωFk,d,Λ
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )) = δ(l;m) +O

(
L1+εM3/2+ε

k2/3

)
(3.2.1)

for any ε > 0, where the implied constant depends only on d and ε.
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We will first prove a lemma which is easy, but where the distinction between SL(2, Z)- and
GL(2, Z)-equivalence of quadratic forms is important.

Lemma 3.7. For c, c′ ∈ Cld, put

δ(c, c′) =

{
1 if c is GL(2, Z)-equivalent to c′,

0 otherwise.

Then we have ∑
c,c′∈Cld

Λ(c)Λ(c′)δ(c, c′)|Aut(c)|= 2h(−d)w(−d)
dΛ

,

where

dΛ =

{
1 if Λ2 = 1,
2 otherwise.

Proof. Let H ⊂ Cld be the group of 2-torsion elements. The classes c′ which are GL(2, Z)-
equivalent to a given class c are c and c−1, hence there are either one or two, depending on
whether c ∈H or not. Similarly, |Aut(c)| (which is the order of GL(2, Z)-automorphisms of a
representative of c) equals either 2w(−d) or w(−d), depending on whether c lies in H or not.

Therefore, we have∑
c,c′∈Cld

Λ(c)Λ(c′)δ(c, c′)|Aut(c)| =
∑
c∈Cld

Λ(c)|Aut(c)|
∑
c′

Λ(c′)δ(c, c′)

=
∑
c∈H
|Aut(c)|Λ(c)2 +

∑
c/∈H

|Aut(c)|Λ(c)(Λ(c) + Λ(c−1))

= w(−d)
∑
c

(1 + Λ2(c))

by writing 2 = 1 + Λ(c2) = 1 + Λ2(c) when c ∈H. The result follows immediately. 2

Now we come to the proof of Proposition 3.6.

Proof. For brevity, we drop the subscripts d and Λ here. For F ∈ S∗k, by definition of ωFk , we have

ωFk
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )) =

4ckdΛ(d/4)3/2−k

w(−d)h(−d)
|a(d, Λ; F )|2

〈F, F 〉
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )).

Now we write

|a(d, Λ; F )|2 = a(d, Λ; F )a(d, Λ; F )

and, using (1.2.3) to express the first term, we get

|a(d, Λ; F )|2

〈F, F 〉
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )) =

a(d, Λ; F )
〈F, F 〉

∑
c∈Cld

Λ(c)a(F, Sc)
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )).
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Now Theorem 2.10 applies to transform the left-hand side into

|Cld|
|Cld(M)|

L3/2−kM2−ka(d, Λ; F )
〈F, F 〉

∑
c′∈Cld(M)

Λ(c′)a(F, SL,Mc′ )

=
|Cld|L3/2−kM2−k

|Cld(M)|
∑
c∈Cld

c′∈Cld(M)

Λ(c)Λ(c′) ·
a(F, Sc)a(F, SL,Mc′ )

〈F, F 〉
,

after expanding a(d, Λ; F ) using its definition. We are now reduced to a quantity involving only
Fourier coefficients.

We then apply the basic property of the Poincaré series (3.1.1) to express these Fourier
coefficients in terms of inner product with Poincaré series: we have

〈F, Pk,Sc〉 = 8ck

(
d

4

)−k+3/2

a(F, Sc),

〈F, P
k,SL,M

c′
〉 = 8ck(LM )−2k+3

(
d

4

)−k+3/2

a(F, SL,Mc′ )

for c ∈ Cld, c′ ∈ Cld(M), and, multiplying out with the normalizing constants, we get

ωFk
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )) =

Mk−1Lk−3/2dΛ(d4)k−3/2

16ckw(−d)|Cld(M)|
∑
c∈Cld

c′∈Cld(M)

Λ(c)Λ(c′)
〈F, Pk,Sc〉〈F, Pk,SL,M

c′
〉

〈F, F 〉

for every F ∈ S∗k.
We now sum over F and exchange the summation to average over F first. Since {F/‖F‖} is

an orthonormal basis of the vector space Sk, we have∑
F∈S∗k

1
‖F‖2

〈F, Pk,Sc〉〈F, Pk,SL,M
c′
〉= 〈Pk,Sc , Pk,SL,M

c′
〉.

Now, according to (3.1.1) again, we have

〈Pk,Sc , Pk,SL,M
c′
〉= 8ck

(
dL2M2

4

)−k+3/2

a(k; c, c′, L, M),

where a(k; c, c′, L, M) denotes, as before, the SL,Mc′ th Fourier coefficient of the Poincaré series
Pk,Sc . Applying this and the formal definition

a(k; c, c′, L, M) = |Aut(c)|δ(c, c′; L;M) + Lk−3/2Mk−2A(k; c, c′, L, M),

as in Proposition 3.1, we obtain first, using Lemma 3.7, that∑
F∈S∗k

ωFk
∏
p∈S

U
lp,mp
p (ap(F ), bp(F )) = δ(l;m) + L−k+3/2M−k+2 dΛ

2h(−d)w(−d)|Cld(M |

×
∑
c∈Cld

c′∈Cld(M)

Λ(c)Λ(c′)A(k; c, c′, L, M),

and then Propositions 3.1 and 3.3 lead immediately to the desired result. 2

365

https://doi.org/10.1112/S0010437X11007391 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007391


E. Kowalski, A. Saha and J. Tsimerman

Remark 3.8. In the case of cusp forms on SL(2, Z) and its congruence subgroups, one can write
the Petersson formula in a way which is suitable for further transformations (with ‘off-diagonal
terms’ involving Kloosterman sums), as first investigated by Duke, Friedlander, and Iwaniec.
These are of crucial importance in, for example, the extension of the range of test functions for
low-lying zeros in [ILS00]). In our case, the complexity of the analogue expansion (which is only
implicit in Kitaoka’s work) for Siegel cusp forms makes this a rather doubtful prospect, at least
at the moment.

4. Local equidistribution

To pass from Proposition 3.6 to a local equidistribution result, we must understand how the
test functions considered there relate to the space of all continuous functions on YS . This is
the purpose of this section.

4.1 Symmetric functions and polynomials
We first observe explicitly that the Laurent polynomials

U l,mp (a, b) ∈ C[a, b, a−1, b−1]

of Theorem 2.5 are invariant under the transformations

(a, b) 7→ (b, a), (a, b) 7→ (a−1, b), (a, b) 7→ (a, b−1),

which means that they can be interpreted as functions (also denoted U l,mp ) on the space Yp or
on the set Xp of unramified principal series of G(Qp). We first state a simple consequence of
Proposition 2.7.

Corollary 4.1. Let S be a fixed finite set of primes and let YS be as before. The linear span
of the functions

(ap, bp)p∈S 7→
∏
p∈S

U
lp,mp
p (ap, bp),

where (lp), (mp) run over non-negative integers indexed by S, is dense in the space C(YS) of
continuous functions on YS .

Proof. By the Stone–Weierstrass theorem, this follows immediately from Proposition 2.7, using
the product structure to go from a single prime to a finite set of primes. 2

The point of this, in comparison with Proposition 3.6, is of course the following fact.

Proposition 4.2. Let S be any fixed finite set of primes and let µS be the associated Plancherel
measure on YS , defined in the introduction. We have∫

YS

∏
p∈S

U
lp,mp
p (ap, bp) dµS =

{
1 if lp =mp = 0 for all p ∈ S,

0 otherwise

for all non-negative integers (lp), (mp) indexed by primes in S.

Proof. Since we work with product measures and product functions, it is enough to prove this
for the case n= 1. But that follows directly from [FMS, Equation (8)]. 2

Remark 4.3. This fact can also be proved by direct contour integration via Cauchy’s formula
using the generating function description for U l,mp (a, b) (given by Theorem 2.5).
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It is now a simple matter to conclude the proof of Theorem 1.6.

Proof of Theorem 1.6. Fix a finite set of primes S. Using the Weyl equidistribution criterion,
in order to prove that νS,k converges weakly to µS as k→+∞ over even integers, it suffices to
show that

lim
k→+∞

∫
YS

ϕ((xp)) dνS,k =
∫
YS

ϕ(x) dµS(x) (4.1.1)

for all functions ϕ taken from a set of continuous functions whose linear combinations span
C(YS). By Corollary 4.1, the functions

ϕ((ap, bp)) =
∏
p∈S

U
lp,mp
p (ap, bp),

where (lp), (mp) are non-negative integers indexed by S, form such a set. But for ϕ of this type,
the desired limit (4.1.1) is obtained by combining Propositions 4.2 and 3.6.

Now for the proof of the quantitative version (1.2.6). First of all, we can assume that all
polynomials ϕp are non-constant, that is, that dp > 1 for each p ∈ S, by working with a smaller S
if necessary (and incorporating the constant functions at a single prime). The polynomials ϕp
are finite linear combinations, say

ϕp(ap, bp) =
∑

06lp6ep

∑
06mp6fp

ϕ̂p(lp, mp)U
lp,mp
p (a, b),

of the basis polynomials U lp,mpp , for some ep, fp > 0 with max(ep, fp) > 1.
Taking the product of these expressions over S, summing over F , and using (3.2.1), we get∑

F∈S∗2k

ωF2kϕ((ap(F ), bp(F ))p∈S) =
∫
YS

ϕ(x) dµS(x) + k−2/3R, (4.1.2)

where we see that the remainder R can be bounded by

|R| �
∑
L|Lϕ

∑
M |Mϕ

L1+εM3/2+ε
∏
p∈S

|ϕ̂p(vp(L), vp(M))|

for any ε > 0, where the implied constant depends only on ε and

Lϕ =
∏
p∈S

pep , Mϕ =
∏
p∈S

pfp .

The coefficients in the expansion are obtained as inner products

ϕ̂p(l, m) = 〈ϕp, U l,mp 〉

in L2(Yp, dµp), by orthogonality of the polynomials U l,mp . Since the underlying measure µp is a
probability measure supported on the tempered subsetX ⊂ Yp, those coefficients may be bounded
by

|ϕ̂p(vp(L), vp(M))|6 ‖ϕpU
lp,mp
p ‖∞ 6 C(vp(L) + 3)3(vp(M) + 3)3‖ϕp‖∞,

by Lemma 2.8. Therefore, we get the estimate

|R| � L1+ε
ϕ M3/2+ε

ϕ η(LM )
∏
p∈S
‖ϕp‖∞ = L1+ε

ϕ M3/2+ε
ϕ η(LM )‖ϕ‖∞,

where η(n) is the multiplicative function such that

η(pν) = C(ν + 1)6
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for p prime and ν > 0 (here we use the fact that max(ep, fp) > 1 for each p). This is a divisor-like
function, that is, it satisfies

η(n)� nε

for any ε > 0, the implied constant depending only on ε. Therefore, we get

|R| � L1+ε
ϕ M3/2+ε

ϕ ‖ϕ‖∞

for any ε > 0, where the implied constant depends only on ε > 0.

To derive (1.2.6), we observe that, by the second part of Proposition 2.7, the linear
decomposition of ϕp holds with

ep + 2fp 6 dp,

where dp is the total degree of ϕp as polynomial in (a+ a−1, b+ b−1). Thus, at the cost of
worsening the factor involving M , we obtain (1.2.6). 2

Remark 4.4. The proof shows that if we know that the factors ϕp are combinations of
polynomials U l,mp with l 6 lp, m6mp, we have the stronger estimate∑

F∈S∗2k

ωF2kϕ((ap(F ), bp(F ))p∈S) =
∫
YS

ϕ(x) dµS(x) +O(k−2/3L1+εM3/2+ε‖ϕ‖∞)

for any ε > 0, where

L=
∏
p∈S

plp , M =
∏
p∈S

pmp .

5. Applications

We now gather some applications of the local equidistribution theorem. To emphasize the general
principles involved, and their expected applicability to the most general ‘families’ of L-functions,
we denote

Ek(α(F )) =
1∑

F∈S∗k
ωFk

∑
F∈S∗k

ωFk α(F )

for k > 2 even and for any complex numbers (α(F )). This is the averaging operator for a
probability measure depending on k, and we know from the previous results that

Ek(α(F ))∼
∑
F∈S∗k

ωFk α(F )

as k→+∞ over even integers. We denote by Pk(•) the associated probability. We also recall
that S[2k is the set of cusp forms which are not Saito–Kurokawa forms, and we denote by S

]
2k the

complementary set of Saito–Kurokawa lifts.

5.1 Direct applications

We start with direct consequences of the local equidistribution. The first is partly superseded by
the proof of the generalized Ramanujan conjecture in our case [Wei09], but it may still be taken
as an indication that the special Saito–Kurokawa modular forms which fail to satisfy it are ‘few’,
even when counted with our special weights.
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Proposition 5.1. (1) Fix a prime p. Then ‘most’ F ∈ S∗k satisfy the generalized Ramanujan
conjecture at p, in the sense that we have

P2k(πp(F ) is not tempered) = P2k(πp(F ) /∈X ⊂Xp)−→ 0

as k→+∞.

(2) Let α(F ) be any bounded function defined for F which are Saito–Kurokawa lifts, that is,

F ∈ S
]
k. Then we have

lim
k→+∞

E2k(α(F )1{F ∈ S
]
2k}

) = 0.

Proof. Since the limiting measure µp is supported on X ⊂Xp, this is immediate. 2

In particular, it follows that the measure ν[S,k defined as νS,k, but with F restricted to S[k,
also converge weakly, as k→+∞, to µS . We will denote by E[

k(α(F )) the average

E[
k(α(F )) = Ek(α(F )1{F∈S[k}

),

so that the previous result means that this is still, asymptotically, a probability average.
The next result has the feel of a ‘strong approximation’ theorem.

Proposition 5.2 (‘Strong approximation’). (1) Let Aut denote the set of all cuspidal
automorphic representations on GSp(4, A). Then, for any finite set of primes S, the local
components πS for those π ∈Aut unramified at the primes in S form a dense subset of XS .

(2) Fix a finite set of primes S and let (εp)p∈S be signs ±1. There exist infinitely many Siegel
cusp forms F of level 1 which are Hecke eigenforms such that the Hecke eigenvalues at all p ∈ S
have sign εp.

Proof. (1) The support of the limiting measure µS is XS , hence the result is again immediate
(with the much more precise information that denseness holds already for π associated to Siegel
cusp forms of full level).

(2) This sample application follows from the fact that the Hecke eigenvalue at a prime p is
ap + a−1

p + bp + b−1
p for F ∈ S∗k, and it is clear from the formulas for the Haar measure µ (1.2.4)

and for the density function ∆p (1.2.5) that

µp({(ap, bp)p∈S | the sign of ap + a−1
p + bp + b−1

p is εp})> 0

for any prime p and hence

µS({(ap, bp)p∈S | the sign of ap + a−1
p + bp + b−1

p is εp for p ∈ S})> 0

(and, hence, for k large enough, at least one F ∈ S∗k satisfies those local conditions). 2

Remark 5.3. In fact, our local equidistribution shows much more. For instance, for any non-
negligible subset of T of XS and any fundamental discriminant −d, our result shows that one
can find infinitely many Siegel modular forms whose local components at S lie in T and the
sum of whose Fourier coefficients of discriminant −d is non-zero. Since such sums of Fourier
coefficients of Siegel modular forms are conjecturally related to central critical L values of the
twisted forms, see § 5.4, this can be interpreted as a (conditional) result on the plentitude of
Siegel modular forms with prescribed local behavior and non-vanishing central critical values.
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5.2 Averaging L-functions
The spin L-function associated to F ∈ S∗k is defined, in terms of the Satake parameters (ap, bp),
by the Euler product

L(F, s) =
∏
p

(1− app−s)−1(1− bpp−s)−1(1− a−1
p p−s)−1(1− b−1

p p−s)−1;

it is explained in [AS01] that this is a Langlands L-function associated with the spin
representation Spin(5, C)→GL(4, C). This spin group is the Langlands dual group of Sp(4) and,
since Spin(5)' Sp(4), this is natural in view of the parameterization of the local representations
in terms of semi-simple conjugacy classes of USp(4, C) which is described in the introduction.
From the point of view of Sp(4), this is the Langlands L-function corresponding to the natural
representation GSp(4)⊂GL(4).

The idea is that in the region of absolute convergence (which is Re(s)> 1, for F not a Saito–
Kurokawa lift), the average of such a product is the average of asymptotically independent
random variables, and hence will be the product of the averages for the limiting distributions at
each p. Saito–Kurokawa lifts, being asymptotically negligible, do not cause much trouble in that
case.

To go to the details, we first recall that, from work of Andrianov [And74], it is known that
L(F, s) has the basic standard analytic properties expected from an L-function; it is self-dual
with root number (−1)k and unramified at finite places; it extends to a meromorphic function
of s, and the completed L-function

Λ(F, s) = (2π)−2sΓ(s+ 1/2)Γ(s+ k − 3/2)L(F, s)

satisfies
Λ(F, s) = (−1)kΛ(F, 1− s).

Furthermore, if k is odd, the L-function is entire; otherwise, it may have poles at s= 3/2
and s=−1/2, and this happens precisely when F is a Saito–Kurokawa lift (that is, if F ∈ S

]
k).

In that case, the L-function is given by

L(F, s) = ζ(s− 1/2)ζ(s+ 1/2)L(f, s) (5.2.1)

for some classical cusp form f of weight 2k − 2 on SL(2, Z) (the L-function of which is also
normalized so that the critical line is Re(s) = 1/2). Note that although, in general, there are
other automorphic forms on GSp(4) where the L-function has poles, the Saito–Kurokawa lifts
are the only ones which are holomorphic with level 1 (we refer to Piatetski-Shapiro’s paper [Pia83]
for more details).

Remark 5.4. For completeness, even though we do not need it here, let us recall the
corresponding results for the other ‘standard’ L-function, which is the degree-five L-function
coming from the projection

pr : Spin(5, C)→ SO(5, C)⊂GL(5, C).

This L-function has the form

L(F, pr, s) =
∏
p

((1− p−s)(1− apbpp−s)(1− apb−1
p p−s)(1− a−1

p bpp
−s)(1− (apbp)−1p−s)−1.

(5.2.2)
From work of Mizumoto [Miz81], it is known that L(F, pr, s) has the basic standard analytic

properties expected from an L-function; it is self-dual with root number 1 and unramified at
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finite places; it extends to an entire function of s, and the completed L-function

Λ(F, pr, s) = 2−2sπ−5s/2Γ
(
s+ 1

2

)
Γ(s+ k − 1)Γ(s+ k − 2)L(F, s)

satisfies

Λ(F, pr, s) = Λ(F, pr, 1− s).

Let us now return to the spin L-function. To average the L-function, we express it in additive
terms. For this purpose, we denote by

πp : S∗k→Xp

the map F 7→ πp(F ), the local component of the automorphic representation πF associated with
F as described earlier, which we identify with (ap(F ), bp(F )) ∈ Yp.

Expanding the Euler factors in powers of p−s and then expanding the product into Dirichlet
series, we find the expression

L(F, s) =
∑
n>1

λ(F, n)n−s

in the region of absolute convergence, where

λ(F, n) =
∏
p|n

Hvp(n)(πp(F )) for n=
∏
p|n

pvp(n),

in terms of functions Hm, m> 0, on Yp given by the symmetric functions

Hm(a, b) =
∑

k1+k2+k3+k4=m

ak1−k3bk2−k4

(note that Hm is independent of p, though that is not crucial in what follows, and that it is well
defined on Xp since it is invariant under the Weyl group).

If Re(s)> 1, the series L(F, s) converge absolutely at s for F ∈ S[2k, and we have

E[
2k(L(F, s)) =

∑
n>1

E[
2k(λ(F, n))n−s.

Fix n first, and factor it as before:

n=
∏
p|n

pvp .

By our local equidistribution theorem applied to ν[S,2k, we have

E[
2k(λ(F, n)) = E[

2k

(∏
p|n

Hvp(πp(F ))
)
→
∏
p|n

∫
Xp

Hvp(x) dµp(x)

as k→+∞. Therefore, by the dominated convergence theorem, we have∑
n>1

E[
2k(λ(F, n))n−s→

∑
n>1

(∏
p|n

∫
Xp

Hvp(x) dµp(x)
)
n−s

since, using the formula
1
6(m+ 1)(m+ 2)(m+ 3)
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for the number of monomials of degree m in four variables (the number of terms in Hm), we
have

|E[
2k(λ(F, n))n−s|6 n−σ

∏
p|n

(vp + 3)3

for all n> 1 and k, which defines an absolutely convergent series for σ = Re(s)> 1. (We use here
the generalized Ramanujan conjecture, proved in this case by Weissauer [Wei09].)

Now we refold back the limiting expression as an Euler product:∑
n>1

(∏
p|n

∫
Xp

Hvp(x) dµp(x)
)
n−s =

∏
p

∑
l>0

p−ls
∫
Xp

Hl(x) dµp(x)

=
∏
p

∫
Xp

Lp(x, s) dµp(x),

where Lp(x, s) is the local L-factor of a local representation x= (a, b) ∈Xp defined in the lemma
above (the Euler expansion is justified again by the fact that the series on the left is absolutely
convergent, as we checked in the lemma). Thus, we have proved

lim
k→+∞

E[
2k(L(F, s)) =

∏
p

∫
Xp

Lp(x, s) dµp(x). (5.2.3)

Now assume Re(s)> 1 and s 6= 3/2. Then all spin L-functions of Saito–Kurokawa lifts are well
defined at s, and we therefore also want to have average formulas involving them. If Re(s)> 3/2,
this is immediate by the previous argument. Otherwise, we have∑

F∈S
]
2k

ωF2kL(F, s) = ζ(s− 1/2)ζ(s+ 1/2)
∑
F∈S

]
2k

ωF2kL(fF , s),

where fF is a classical modular form from which F arises. The L-function L(fF , s) is now
absolutely convergent, and its values are bounded for all Saito–Kurokawa lifts (by the generalized
Ramanujan conjecture, for instance). Thus, we have

lim
k→+∞

∑
F∈S

]
2k

ωF2kL(F, s) = 0

by Proposition 5.1(2), and this combined with (5.2.3) gives the result

lim
k→+∞

E2k(L(F, s)) =
∏
p

∫
Xp

Lp(x, s) dµp(x).

At this point, it is clear how to extend this to other Langlands L-functions. Indeed, let

ρ : GSp(4, C)→GL(r, C)

be an algebraic representation. The Langlands L-function is defined by

L(F, ρ, s) = L(πF , ρ, s) =
∏
p

det(1− ρ(xp(F ))p−s)−1,

where

xp(F ) = xp(ap, bp) =


ap

bp
a−1
p

b−1
p



372

https://doi.org/10.1112/S0010437X11007391 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007391


Local equidistribution for Siegel modular forms

is the semi-simple conjugacy class of GSp(4, C) associated with πp(F ). We can expand

det(1− ρ(xp(F ))p−s)−1 =
∏

16j6r

(1− αj(ap, bp)p−s)−1

for some polynomial functions αj on Xp, and then we can repeat the same argument to
derive (1.1.3) with

lim
k→+∞

E2k(L(F, ρ, s)) =
∏
p

∫
X

det(1− ρ(xp(a, b))p−s)−1 dµp(a, b),

when s is in the region of common absolute convergence of all F .
Finally, to get the precise expression in Theorem 1.1 for the spin L-function, we note that

the special case (2.3.7) of Sugano’s formula (Theorem 2.5), with Y = p−s, gives the explicit
decomposition

Lp(x, s) =
(

1− λpp−1/2−s +
(

K

p

)
p−1−2s

)−1(∑
l>0

U l,0p (a, b)p−ls
)

for any prime p. Applying Proposition 4.2, we get therefore the simple expression∫
Xp

Lp(x, s) dµp(x) =
1

1− λpp−1/2−s + (K/p)p−1−2s

and (using the definition of λp) we recognize that this is

L(Λ, s+ 1/2),

where Λ is the class group character of K = Q(
√
−d) defining our fixed Bessel models. When

d= 4 and Λ is trivial, this is ζ(s+ 1/2)L(χ4, s+ 1/2), which is the formula (1.1.2).

Remark 5.5. In fact, this second argument for the spin L-function can be used to bypass the
first one (which therefore requires only that we work with the family of functions U l,0p (a, b)).

Remark 5.6. Note that although Theorem 1.1 was stated in the introduction only for averages
with respect to the weight ωFk := ωFk,d,Λ in the special case d= 4, Λ = 1, our proof actually works
for general d and Λ.

The proof also gives the following fact concerning the limit averages.

Lemma 5.7. For p prime, let µp be the limiting measure in the local equidistribution result and
let

Lp(x, s) =
∏
p

(1− ap−s)−1(1− bp−s)−1(1− a−1p−s)−1(1− b−1p−s)−1

be the local L-function for x ∈Xp. Then the Euler product∏
p

∫
Xp

Lp(x, s) dµp(x)

is absolutely convergent for Re(s)> 1/2.

Proof. According to what we have said, we have∫
Yp

Lp(x, s) dµp(x) =
1

1− λpp−1/2−s + (K/p)p−1−2s

and the result is then obvious. 2
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5.3 Weights and averages over Saito–Kurokawa lifts
In this section, we will explicitly compute ωFk := ωFk,d,Λ when F is a Saito–Kurokawa lift. This
will lead to a stronger version of the second part of Proposition 5.1. This simple fact is included
because it may be helpful for further investigations.

Let k > 2 be even and let H∗2k−2 denote the Hecke basis of the space of holomorphic cusp
forms on GL(2) of weight 2k − 2 and full level. Let F ∈ S∗k be the (unique) Saito–Kurokawa lift
of f ∈H∗2k−2, so that the spinor L-function is given by (5.2.1). As usual, we let

F (Z) =
∑
T>0

a(F, T )e(Tr(TZ))

be the Fourier expansion of F . It is well known (see [EZ85] for instance) that a(F, T ) then
depends only on the determinant of T . In particular, it follows that ωFk,d,Λ = 0 whenever Λ 6= 1.
So, we assume that Λ = 1 and shorten ωFk,d,1 to ωFk .

Let
f̃(z) =

∑
n>0

c(n)e(nz)

be the cusp form of half-integer weight k − 1
2 on Γ0(4) that is associated to f via the Shimura

correspondence. Then, by [EZ85, Theorem 6.2, Equation (6)], we have

a(T ) = c(d) (5.3.1)

for any positive-definite semi-integral matrix T of determinant d/4. On the other hand, by a
result of Brown [Bro07], we have

〈F, F 〉=
k − 1

24 · 32 · π
· |c(d)|2

dk−3/2
· L(f, 1)
L(f × χd, 1

2)
〈f, f〉 (5.3.2)

whenever c(d) is non-zero.
Using (5.3.1), (5.3.2), and the definition of ωFk , it follows that

ωFk =
(48π)2h(−d)

w(−d)(k − 1)(k − 2)
Γ(2k − 3)

(4π)2k−3〈f, f〉
L(f × χd, 1

2)
L(f, 1)

.

Now we consider the average∑
f∈H∗2k−2

Γ(2k − 3)
(4π)2k−3〈f, f〉

L(f × χd, 1
2)

L(f, 1)
.

It is very likely that one can prove an asymptotic formula for this quantity as k→+∞
(possibly using the methods of Ramakrishnan and Rogawski in [RR05]). However, to deal with
it quickly, we observe first that L(f × χd, 1

2) and L(f, 1) are both non-negative (for example,
because L(f, s) is real valued, has no zero with Re(s)> 1, and tends to 1 as s→+∞, and the
ratio is non-negative by the above). Then, using the fact that L(f, s) has no Siegel zeros (a result
of Hoffstein and Ramakrishnan [HR95]), one gets in the usual way a lower bound

L(f, 1)� 1
log k

,

and therefore∑
f∈H∗2k−2

Γ(2k − 3)
(4π)2k−3〈f, f〉

L(f × χd, 1
2)

L(f, 1)
� (log k)

∑
f∈H∗2k−2

Γ(2k − 3)
(4π)2k−3〈f, f〉

L

(
f × χd,

1
2

)
.
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Next, from the results of Duke [Duk95], one gets∑
f∈H∗2k−2

Γ(2k − 3)
(4π)2k−3〈f, f〉

L

(
f × χd,

1
2

)
� 1

for k > 2, where the implied constant depends on d. The following proposition, which strengthens
Proposition 5.1(2), is then an immediate consequence.

Proposition 5.8. Suppose α(F ) is a complex-valued function defined for Saito–Kurokawa lifts
and satisfying for some δ > 0 the inequality

α(F )� k2−δ

for F ∈ S
]
2k. Then

lim
k→+∞

Ek(α(F )1{F ∈ S
]
k}

) = 0.

Using weak bounds, like the convexity bound, this applies for instance to α(F ) = L(F,
1/2 + it) for fixed t 6= 0.

5.4 Low-lying zeros, Katz–Sarnak symmetry type, and Böcherer’s conjecture
The determination of the distribution of low-lying zeros of the spin L-functions (assuming the
generalized Riemann hypothesis) for restricted test functions is not difficult once a quantitative
equidistribution statement is known. Conjecturally, the answer indicates which ‘symmetry type’
(in the sense of Katz–Sarnak) arises for the family. However, we will see that the answer in our
case is surprising, and gives some global evidence towards a well-known conjecture of Böcherer.

We now prove Theorem 1.2. This type of computation is quite standard by now, and is known
to succeed as soon as ‘approximate orthogonality’ has been proved with a power saving with
respect to the analytic conductor, which is the case thanks to our quantitative equidistribution
theorem (precisely, from (3.2.1)). We may therefore be brief, as far as technical details are
concerned (we refer to, for example, [DM06], where families derived from classical GL(2) cusp
forms are treated with respect to the weight). However, since the main term arising from this
computation has some meaning, we must justify it carefully.

As before, note that although Theorem 1.2 was stated in the introduction only for averages
with respect to the weight ωFk := ωFk,d,Λ in the special case d= 4, Λ = 1, we actually prove it for
any d (we stick to Λ = 1).

Proof of Theorem 1.2. Throughout this proof, ωFk denotes ωFk,d,1. For given F , we write

−L
′

L
(F, s) =

∑
n>1

c(F, n)Λ(n)n−s,

the logarithmic derivative of the spinor L-function, which is supported on powers of primes and
where Λ(n) is the von Mangoldt function and, for n= pm, m> 1, we have

c(F, pm) = amp + a−mp + bmp + b−mp = Tr(πp(F )m),

where πp(F ) is interpreted as a conjugacy class in USp(4, C).
We can apply the following form of the ‘explicit formula’ (see for example [IK04, Theo-

rem 5.12]) to relate sums over zeros to sums over primes involving those coefficients: denoting

γ(s) = (2π)−2sΓ(s+ 1/2)Γ(s+ k − 3/2)
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the common gamma factor for all L(F, s), for any test function ψ which is even and of Schwartz
class on R, we have∑

ρ

ψ

(
γ

2π

)
=

1
2π

∫
R

(
γ′

γ
(1/2 + it) +

γ′

γ
(1/2− it)

)
ψ(x) dx− 2

∑
n

ψ̂(log n)
c(F, n)Λ(n)√

n
.

We apply this to

ψ(x) = ϕ

(
x

2π
log(k2)

)
, ψ̂(t) =

π

log k
ϕ̂

(
πt

log k

)
,

where ϕ is an even Schwartz function with Fourier transform supported in [−α, α]. After treating
the gamma factor using the formula

Γ′

Γ
(k − 1 + it) +

Γ′

Γ
(k − 2− it) = 2 log k +O(t2k−2),

which follows from Stirling’s formula (see for example [DM06, §§ 3.1.1, 3.1.2] for precise details
of these computations) and spelling out the von Mangoldt function, we obtain

Dϕ(F ) =
∫

R
ϕ(x) dx− 2

log(k2)

∑
m>1

∑
p

log p
pm/2

c(F, pm)ϕ̂
(
m

log p
log(k2)

)
+O((log k)−1). (5.4.1)

Averaging over F leads to

Ek(Dϕ(F )) = ϕ̂(0)− 2
log(k2)

∑
m>1

∑
p

log p
pm/2

Ek(c(F, pm))ϕ̂
(
m

log p
log(k2)

)
+O((log k)−1).

As usual, easy estimates give

lim
k→+∞

1
log(k2)

∑
m>3

∑
p

log p
pm/2

Ek(c(F, pm))ϕ̂
(
m

log p
log(k2)

)
= 0

(the series over primes being convergent even without the compactly supported test function).

In the term m= 1, we have

Ek(c(F, p)) = Ek(ap + bp + a−1
p + b−1

p )

= Ek(U1,0
p (πp(F ))) +

λp√
p

=
λp√
p

+O(p1+εk−2/3) (5.4.2)

by (2.3.6) and (3.2.1), and hence the contribution of m= 1, which is given by

2
log(k2)

∑
p

log p
p1/2

Ek(c(F, p))ϕ̂
(

log p
log(k2)

)
,

is equal to

2
log(k2)

∑
p

λp log p
p

ϕ̂

(
log p

log(k2)

)
+O

(
1

k2/3 log k

∑
p6k2α

p1/2+ε

)
=Mk(ϕ) +O(k5α/2−2/3+ε)
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for any ε > 0, where

Mk(ϕ) =
2

log(k2)

∑
p

λp log p
p

ϕ̂

(
log p

log(k2)

)
= 2

∫
[1,+∞[

ϕ̂

(
log y

log(k2)

)
1

log(k2)
dy

y
+ o(1)

= 2
∫

[0,+∞[
ϕ̂(x) dx= ϕ(0) + o(1),

(since ϕ is even), by summation by parts using the prime number theorem and the fact that
λp = 2 or 0 for primes with asymptotic density 1/2 each, so the average value is 1 (see for
example [DM06, Lemma 2.7]).

Now we consider the term m= 2. Although we could appeal to the general estimate (1.2.6),
we will use an explicit decomposition and (3.2.1). First, using (2.3.7), we have

U2,0
p (πp(F )) = 1− λp√

p
U1,0
p (πp(F )) + c(F, p2) + τ(πp(F )) +O(p−1), (5.4.3)

where the implied constant is absolute and

τ(a, b) = 1 + ab+ ab−1 + a−1b+ (ab)−1

as in Theorem 2.5. By (2.3.8), we have

τ(πp(F ))(1 + αp) = U0,1
p (πp(F )) + βpσ(πp(F )) +O(p−1),

where the quantities αp� p−1 and βp� p−1/2 do not depend on F , and the implied constants
are absolute. Averaging (with Ek(·)) from this last formula and using (5.4.2), we find

Ek(τ(πp(F )))� p−1 + p3/2+εk−2/3

and, from (5.4.3), we therefore derive

Ek(c(F, p2)) =−1 +O(p−1 + p2+εk−2/3)

for any ε > 0. Consequently, we see that the term m= 2, after averaging, is given by

2
log(k2)

∑
p

log p
p

Ek(c(F, p2))ϕ̂
(

2
log p

log(k2)

)
= − 2

log(k2)

∑
p

log p
p

ϕ̂

(
2

log p
log(k2)

)
+O

(
1

k2/3 log k

∑
p6kα

p1+ε + (log k)−1

)
= −Nk(ϕ) +O((log k)−1 + k2α−2/3+ε),

where

Nk(ϕ) =
2

log(k2)

∑
p

log p
p

ϕ̂

(
2

log p
log(k2)

)
=
ϕ(0)

2
+ o(1),

by computations similar to that of M(ϕ) before.

We notice that the contribution of the main terms for m= 1 and m= 2 together are

−ϕ(0) +
ϕ(0)

2
=−ϕ(0)

2
,
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which gives a main term

ϕ̂(0)− ϕ(0)
2

=
∫

R
ϕ(x) dσSp(x).

Moreover, the error terms in both are negligible as long as 5α/2− 2/3< 0, that is, α < 4/15.
Under this condition, we obtain therefore

Ek(Dϕ(F )) =
∫

R
ϕ(x) dx+ o(1)

as k→+∞, which is the desired conclusion. 2

Remark 5.9. It is interesting to note that, to understand the logarithmic derivative of the spin
L-function L(F, s), one needs to involve the average of the quantity

τ(πp(F )) = 1 + apbp + apb
−1
p + a−1

p bp + (apbp)−1,

which is the coefficient of p−s in the projection L-function L(F, pr, s) (see (5.2.2)). This illustrates
the fact that, in the study of automorphic forms on groups of rank r > 2, all Langlands
L-functions (or, at least, those associated with the r fundamental representations of the dual
group) are intimately linked, and must be considered together.

We now comment on the relation of Theorem 1.2 with Böcherer’s conjecture. In the literature,
a density of low-lying zeros given by the measure dσSp (as we proved is the case) is taken as
an indication of symplectic symmetry type (the basic example being the family of real Dirichlet
characters). Intuitively, these are families of central L-values of self-dual L-functions with sign
of functional equation +1 for which the central point of evaluation has no special meaning.
However, although our families are indeed self-dual, a symplectic symmetry seems very unlikely
for our family, for at least two reasons: first, 1/2 is a critical point in the sense of Deligne and,
second, the forms of odd weight have functional equations with sign −1.

There is a natural explanation for the discrepancy: the Fourier coefficient |a(d, 1; F )|2
appearing in the weight

ωkF = ck,d
|a(d, 1; F )|2

〈F, F 〉
involves probably deeper arithmetic content than one might naively think. Indeed, in [Boc86],
Böcherer made the following remarkable conjecture.

Conjecture (Böcherer’s conjecture). For any F ∈ S∗2k, there exists a constant CF depending
only on F such that for all fundamental discriminants −d < 0 one has

L(F × χd, 1
2) = CF · d1−2kw(−d)−2 · |a(d, 1; F )|2,

where χd denotes the quadratic character associated to the extension Q(
√
−d).

Böcherer proved this conjecture for Eisenstein series and Saito–Kurokawa lifts in [Boc86].
Later, he and Schulze–Pillot proved an analogue of this conjecture (for Siegel modular forms with
level) in the case of Yoshida lifts. More recently, works of Furusawa–Shalika [FS03], Furusawa–
Martin [FM11], and Furusawa–Martin–Shalika [FMS] have tried to tackle this problem using the
relative trace formula.

Böcherer did not make any speculation about the value of the quantity CF . However, recent
works such as [FM11] give some inkling of what to expect.

378

https://doi.org/10.1112/S0010437X11007391 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007391


Local equidistribution for Siegel modular forms

We now show that a certain assumption on CF explains our result on low-lying zeros. To be
more definite, we make the following hypothesis.

Hypothesis. For non-Saito–Kurokawa forms F ∈ S∗2k, we have

ω2k
F = L(F, 1

2)L(F × χd, 1
2)L(χd, 1)−1γ(F ) (5.4.4)

in terms of spinor L-functions, where γ(F )> 0 is ‘well behaved’; in particular,∑
F∈S∗2k

γ(F )

has a positive limiting average value as k→+∞, and γ(F ) is asymptotically independent of the
central special L-values.

In terms of Fourier coefficients, this hypothesis is equivalent to the following specific variant
of Böcherer’s conjecture: for all F ∈ S∗2k that is not a Saito–Kurokawa lift, we should have

L

(
F,

1
2

)
L

(
F × χd,

1
2

)
= 4πc2kγ(F )−1(d/4)1−2kw(−d)−2 |a(d, 1; F )|2

〈F, F 〉
. (5.4.5)

Remark 5.10. Such a formulation (involving two central values, or in other words a central
value for the base change of F to the quadratic field Q(

√
−d)) is strongly suggested by [FM11,

(1.4)] and [PT11]. It is also compatible with a conjecture of Prasad and Takloo-Bighash [PT11],
which itself is an analogue (for the case of Bessel periods) of the remarkable Ichino–Ikeda
conjecture [II10] dealing with (SO(n), SO(n− 1)) periods. In this context, it is also worth
mentioning that the question of vanishing of the Bessel period, that is, the vanishing of a(d, Λ; F ),
is closely tied with the Gross–Prasad conjecture for (SO(5), SO(2)).

Under our stated hypothesis (5.4.4), we consider the crucial average∑
F∈S∗2k

ω2k
F c(F, p)

for a fixed prime p. Our goal is to show that this allows us to recover naturally the formula (5.4.2)
from which the ‘mock-symplectic’ symmetry type arose in the proof of Theorem 1.2 (the
contribution of p2 was consistent with the expected orthogonal symmetry type). Thus,
assuming (5.4.4), we need to compute the average∑

F∈S
]
2k

γ(F )L
(
F,

1
2

)
L

(
F × χd,

1
2

)
L(χd, 1)−1c(F, p).

Since c(F, p) = λ(F, p) is also the pth coefficient of the Dirichlet series L(F, s), and since the
analytic conductor of both L-functions is about k2, we see by applying a suitable approximate
functional equation (and recalling that the sign of the functional equation is 1 for both
L-functions) that this is roughly

2L(χd, 1)−1
∑
m,n6k

χd(n)√
mn

∑
F∈S

]
2k

γ(F )λ(F, m)λ(F, n)λ(F, p)

(the sums should involve a smooth cutoff).
Under the (reasonable) assumption that the coefficients of the Dirichlet series are

asymptotically orthogonal under this average (this depends on the hypothesis that γ(F ) is
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innocuous), one is led to the guess that the terms which contribute are those with m= np
or n=mp, and thus one should have∑

F∈S
]
2k

γ(F )L
(
F,

1
2

)
L

(
F × χd,

1
2

)
L(χd, 1)−1c(F, p)≈ 1 + χd(p)√

p
=
λp√
p

as k→+∞, where the L(1, χd) has canceled out with∑
m

χd(m)√
m
≈ L(1, χd)

(again with a smooth cutoff).
But this is exactly what we proved in (5.4.2), and what led to Theorem 1.2. We therefore

interpret this as a (global, averaged) confirmation of Böcherer’s conjecture in the form (5.4.5).
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Appendix A. Comparison with GL(2)-families

This section is intended to summarize some basic facts about holomorphic Siegel modular
forms and their adélic counterparts, by comparison with the case of classical modular forms
for congruence subgroups of SL(2, Z). We also give references for the SL(2)-analogues of the
results in this paper.

– The closest analogue of our family of cusp forms is the set H∗k of primitive holomorphic cusp
forms of weight k for SL(2, Z), with trivial nebentypus, counted according to the weight
given by

ωf =
Γ(k − 1)
(4π)k−1

1
〈f, f〉

.

In contrast with S∗k, this set is the unique Hecke-eigenbasis of the space Hk of cusp forms
of weight k and level 1; in our context, the corresponding multiplicity one theorem is not
known (because the Fourier coefficients are not functions of the Hecke eigenvalues), and so
the Hecke basis S∗k is not necessarily unique in Sk.
Another obvious distinction is the presence of the Fourier coefficient a(F, 1) in (1.1.1).
As we saw, this has crucial arithmetic content. A way to insert this aspect ‘by hand’ into
the classical case is to consider the twisted weights

ω′f = αωfL(f, 1/2) or ω′f = αωfL(f, 1/2)L(f × χd, 1/2),

where α > 0 is a constant such that ∑
f∈Hk

ω′f → 1,

as k→+∞. (The existence of the limit that makes this normalization possible is essentially
already in Duke’s paper [Duk95, Proposition 2], where the limit is with respect to the level.)

– The local equidistribution theorem for H∗k, as k→+∞, is the following: for any prime p,
the map sending f to the p-component of the associated automorphic representation of
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GL(2, A) can be identified with the map

p 7→ λf (p) ∈ R

where p(k−1)/2λf (p) is the pth Hecke eigenvalue, or equivalently the pth Fourier coefficient.
By Hecke’s bound, we have λf (p) ∈ [−2

√
p, 2
√
p], and the associated representation of

GL(2,Qp) is the unramified principal series obtained from the unramified characters α,
β of Q×p such that

α(p)β(p) = 1, α(p) + β(p) = λf (p).
Then, for any finite set of primes S, the measures mS,k defined as the sum of Dirac measures
at λf (p) for p ∈H∗k converge weakly to the measure

nS =
∏
p∈S

µST

where µST is the Sato–Tate measure, supported on [−2, 2], given there by

2
π

√
1− x2/4 dx.

– The above fact is quite easy to prove. First, the Hecke relations describe λf (L) in terms of
the factorization of L> 1, namely

λf (L) =
∏
p|L

Ulp(λf (p)),

where Ul is the lth Chebychev polynomial defined by

Ul(2 cos θ) =
sin((l + 1)θ)

sin θ
.

These form a basis of polynomials in one variable, and hence span a dense subset of
C([−2

√
p, 2
√
p]), with ∫

Ul(x) dµST (x) = δ(l, 1).

– The second ingredient is the Petersson formula; indeed, for any lp > 0, let

L=
∏
p∈S

plp ,

and then we have∑
f∈H∗k

ωf
∏
p∈S

Ulp(λf (p)) =
∑
f∈H∗k

ωfλf (L)

= δ(L, 1)− 2πi−k
∑
c>1

c−1S(L, 1; c)Jk−1

(
4π
√
L

c

)
−→ δ(L, 1)

as k→+∞, where S(L, 1; c) denotes the standard Kloosterman sum. This gives the local
equidistribution statement. Note that, in contrast with our results, the limiting measure at
p is independent of p in this case.

– The Hecke relations are analogues of Sugano’s formula (Theorem 2.5); the Petersson formula
and the related orthogonality are the analogues of Proposition 3.6. On the other hand, the
necessary work to go from Fourier coefficients (controlled by Poincaré series) to Hecke
eigenvalues is completely absent from the classical case.
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– Analogues of the direct applications of § 5.1 were proved first, essentially, by
Bruggeman [Bru78] (analogue of Proposition 5.1 for Maass forms, where the Ramanujan–
Petersson conjecture is not yet known); analogues of Proposition 5.2 are due to
Sarnak [Sar87] (Maass forms) and Serre (holomorphic forms), though both counted the
cusp forms with the natural weight 1, and used the trace formula instead of the Petersson
formula (correspondingly, their limiting distributions was different: at p they obtained the
Plancherel measure for the unramified principal series of GL(2,Qp) with trivial central
character).

– Computations tantamount to working with the twisted weight ω′f are also classical (in
particular, the computation of ∑

f

ω′fλf (m)

for a fixed m is a special case of the first moment computation in [KMV02], in the case
where the level goes to infinity and the Rankin–Selberg convolution is the weight 1 theta
series with L-function ζ(s)L(s, χ4)).

– The analogue of Böcherer’s conjecture for H∗k is the famous formula of Waldspurger [Wal81]
which relates the value L(f × χd, 1

2) for f ∈H∗k to the squares of Fourier coefficients of
modular forms of half-integral weight. However, these special values do not appear in the
standard weights used for averaging L-functions. However, a weighted averaged version
of Waldspurger’s formula was proved by Iwaniec [Iwa87] using identities for Kloosterman
sums, and this may be considered as somewhat analogue to our Theorem 1.1.

– The Saito–Kurokawa forms have no analogue in H∗k. Indeed, all cusp forms of GL(2) (or
GL(n)) are expected to satisfy the Ramanujan–Petersson conjecture; for forms in H∗k,
this is a theorem of Deligne [Del74]. On the other hand, Saito–Kurokawa forms do not
satisfy the generalized Ramanujan conjecture; this is due to the fact that they are CAP
representations [Pia83].
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(Birkhäuser, Boston, MA, 1985).

Fur93 M. Furusawa, On L-functions for GSp(4)×GL(2) and their special values, J. Reine Angew.
Math. 438 (1993), 187–218.

FM11 M. Furusawa and K. Martin, On central critical values of the degree four L-functions
for GSp(4): the fundamental lemma, II, Amer. J. Math. 244 (2011), 197–233.

FMS M. Furusawa, K. Martin and J. Shalika, On central critical values of the degree four
L-functions for GSp(4): the fundamental lemma, III, forthcoming.

FS02 M. Furusawa and J. A. Shalika, On inversion of the Bessel and Gelfand transforms, Trans.
Amer. Math. Soc. 354 (2002), 837–852 (electronic).

FS03 M. Furusawa and J. A. Shalika, On central critical values of the degree four L-functions for
GSp(4), Memoirs of the American Mathematical Society, vol. 782 (American Mathematical
Society, Providence, RI, 2003).

HR95 J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Int. Math. Res. Not. 6 (1995),
279–308.

II10 A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups
and the Gross–Prasad conjecture, Geom. Funct. Anal. 19 (2010), 1378–1425.

Iwa87 H. Iwaniec, On Waldspurger’s theorem, Acta Arith. 49 (1987), 205–212.

IK04 H. Iwaniec and E. Kowalski, Analytic number theory, Colloquium Publications, vol. 53
(American Mathematical Society, Providence, RI, 2004).

ILS00 H. Iwaniec, W. Luo and P. Sarnak, Low lying zeros of families of L-functions, Publ. Math.
Inst. Hautes Études Sci. 91 (2000), 55–131.

KS99 N. M. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues and symmetry,
Colloquium Publications, vol. 45 (American Mathematical Society, Providence, RI, 1999).

Kit84 Y. Kitaoka, Fourier coefficients of Siegel cusp forms of degree two, Nagoya Math. J. 93 (1984),
149–171.

Kli90 H. Klingen, Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced
Mathematics, vol. 20 (Cambridge University Press, Cambridge, 1990).
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