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Summary

We study genetic variation in phenotypic plasticity maintained by a balance between mutation and

weak stabilizing selection. We consider linear reaction norms allowing for spatial and}or temporal

variation in the environments of development and selection. We show that the overall genetic

variation maintained does not depend on whether the trait is plastic or not. The genetic variances

in height and slope of a linear reaction norm, and their covariance, are predicted to decrease with

the variation in the environment. Non-pleiotropic loci influencing either height or slope are

expected to decrease the genetic variance in slope relative to that in height. Decrease in the ratio of

genetic variance in slope to genetic variance in height with increasing variation in the environment

presents a test for the presence of loci that only influence the slope, and not the height. We use

data on Drosophila to test the theory. In seven of eight pair-wise comparisons genetic variation in

reaction norm is higher in a less variable environment than in a more variable environment, which

is in accord with the model’s predictions.

1. Introduction

Experimental work on phenotypic plasticity has often

concentrated on the mean values of different popu-

lation characteristics such as the mean height or mean

slope of a reaction norm (for a survey see Schlichting

& Pigliucci, 1998; Pigliucci et al., 1997; Morin et al.,

1997; Moreteau et al., 1997). Yet, genetic variation in

phenotypic plasticity within and between populations

has repeatedly been observed, using split families

(Windig, 1994), isofemale lines (David et al., 1994; de

Moed et al., 1997) and populations of different

geographic origin (van’t Land et al., 1999; Morin et

al., 1999). Genetic variation in phenotypic plasticity,

i.e. in the slope of a reaction norm, will be apparent in

the genotype–environment (GnE) interaction com-

ponent of variance (Fry, 1992; Scheiner, 1993; de

Jong, 1990, 1995; Windig, 1997). The extent of GnE

interaction differs between populations. Both Noach

et al. (1996) in a Drosophila melanogaster population

from Tanzania, and Karan et al. (1999)) in a D.

* Corresponding author. Tel : ­31 30 253 2246. Fax: ­31 30 251

3655. e-mail : g.dejong!bio.uu.nl

melanogaster population from southern France, found

significant GnE interaction for wing length. The study

of Karan et al. (1999) showed lower genetic variation

in slope of the reaction norm for wing length, but

higher genetic variation for reaction norm height,

than was found by Noach et al. (1996).

The D. melanogaster data point to important

questions about the patterns of genetic variation in

height and slope that should be expected theoretically

and about the role that the variation in environment

may play in these patterns. As with experimental

work, most theoretical work on phenotypic plasticity

has concentrated on the mean values of different

population characteristics (e.g. mean height or slope

of a reaction norm). The corresponding �ariances and

co�ariances of these characteristics are usually treated

as externally determined fixed parameters. There are

only a couple of studies that have incorporated the

dynamics of genetic variances of phenotypically plastic

traits into a modelling framework. Gavrilets (1986,

1988) studied the maintenance of genetic variation in

linear reaction norms by a balance between mutation

and stabilizing selection in an environment varying in

time. Via & Lande (1987) analysed mutation–selection
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balance in a plastic trait but did not treat en-

vironmental variation in any explicit form. Gavrilets

& Hastings (1994) considered transient changes in

genetic variances of plastic traits brought about by

linkage disequilibrium generated by selection. In

contrast, there has been extensive theoretical work on

different aspects of genetic variation for non-plastic

quantitative traits (for reviews see Bu$ rger, 1998; Roff,

1997).

This paper has two general and one specific

objective. The first general objective is to emphasize

the need for detailed theoretical and experimental

studies of genetic variation in phenotypic plasticity.

The second one is to relate theoretical studies of

phenotypic plasticity with an extensive modelling

framework developed for non-plastic traits. The

specific objective of this paper is to consider a model

for the maintenance of genetic variation in plasticity

by a balance of mutation and selection and to relate

this model’s predictions to experimental data.

2. Model

(i) Description

We consider a diploid population with non-over-

lapping generations that inhabits a set of ‘micro-

habitats ’. Adults leave the microhabitats, form a

mating pool and mate at random with respect to both

genotype and microhabitats. Zygotes settle in a

microhabitat for development. We allow for variation

of environmental conditions both in space (i.e.

between the microhabitats) and in time (i.e. within a

microhabitat). For each individual, we differentiate

between its environment of development x (at which a

quantitative trait z is developed) and its environment

of selection y (at which the individual’s viability w is

determined). We assume that the distribution of x and

y across the system of microhabitats does not change

between the generations and has means xa , ya , variances

var(x), var(y) and covariance cov(x, y). Without loss

of generality the average of x over the whole set of

microhabitats can be set to zero: x- ¯ 0.

Here, we consider a model for linear reaction

norms:

z
x
¯ g

!
­g

"
x­e, (1)

where g
!
and g

"
are the genotypic values, and e is an

independent stochastic deviation with zero mean and

a constant variance E (e.g. Gavrilets, 1986, 1988; de

Jong, 1995, 1999; Gavrilets & Scheiner, 1993). We

will interpret g
!
and g

"
as the ‘height ’ and the ‘slope’

of the reaction norm. We will use g-
!
, g-

"
for the mean

values, G
!
, G

"
for the variances, and C for the

covariance of the distribution of g
!

and g
"

in the

population. We assume that stabilizing selection

operates within each microhabitat. Fitness (viability)

is described by a Gaussian fitness function:

w¯ exp (®(z®θ)#

2V
s,y

* , (2)

where the parameter s
y
¯1}(2V

s,y
) characterizing the

strength of selection and the optimum phenotype θ¯
θ(y) can vary between microhabitats. If the optimum

varies, we will occasionally assume a linear function

according to θ(y)¯ c
!
­c

"
y, where c

!
and c

"
represent

the optimum height and slope, respectively. We

assume that microhabitats contribute to a pool of

zygotes that disperse randomly across microhabitats

to form the next generation.

(ii) Multi-locus model for diallelic loci

We will study the behaviour of this system using a

population genetic model operating in terms of allele

frequencies. We assume that there are n diallelic loci

with alleles A
i
and a

i
that contribute additively to the

trait value. The contribution of allele A
i
is ­0±5γ

i,x

whereas that of allele a
i
is ®0±5γ

i,x
in environment x.

We will assume that locus contributions γ
i,x

change as

linear functions of the variable x characterizing the

environment of development: γ
i,x

¯α
i
­β

i
x, where

α
i
and β

i
are allelic contributions to the ‘height ’ and

‘slope’, respectively (cf. de Jong, 1990, 1995, 1999;

Gavrilets & Hastings, 1994). Let p
i
be the frequency of

allele A
i
, q

i
¯1®p

i
. We will assume approximate

linkage equilibrium. This assumption implies that

selection is weak relative to recombination: 1}s
y
¯

2V
s,y

(1. The population-level characteristics ga
!
, ga

"
,

G
x
, G

!
, G

"
and C can be represented in terms of allele

frequencies and the contributions of individual loci :

ga
!
¯Σ

i
α
i
(p

i
®q

i
), ga

"
¯Σ

i
β
i
(p

i
®q

i
)

G
!
¯Σ

i
2α#

i
p
i
q
i
, G

"
¯Σ

i
2β#

i
p
i
q
i
, C¯Σ

i
2α

i
β
i
p
i
q
i

(iii) Allele frequency change

Under approximate linkage equilibrium, the change

in allele frequency p
i
in one generation as caused by

selection and mutation with rate µ
i
(assuming equal

forward and backward rates) is

∆p
i
¯

p
i
q
i

2wa
¦wa
¦p

i

­µ
i
(q

i
®p

i
), (3)

where w- is the mean fitness of the population (Wright,

1935; Barton, 1986). With quadratic stabilizing

selection and hard selection, the mean fitness of the

population can be written as

wa ¯E²1®s
y
((c

!
®ga

!
)®(c

"
y®ga

"
x))#

®s
y
(G

!
­2xC­x#G

"
)´. (4a)
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With Gaussian stabilizing selection and soft selection,

the logarithm of the mean fitness of the population

can be written as

lnwa ¯E²®s
y
((c

!
®ga

!
)®(c

"
y®ga

"
x))#

®s
y
(G

!
­2xC­x#G

"
)´, (4b)

where E²…´ denotes the mathematical expectation

over the set of microhabitats. Hard or soft selection

does not influence our results.

(iv) Selection on linear reaction norm at equal

selection strength in all en�ironments

Assume first that the selection intensity s¯1}(2V
s
) is

the same in all environments. A straightforward

computation shows that in our model the allele

frequencies dynamics are given by the following

equation:

∆p
i
¯®

1

2V
s

p
i
q
i
[(α#

i
­β#

i
var(x)) (q

i
®p

i
)­2α

i
(ga

!
®θ)

­2β#
i
(ga

!
var(x)®cov(x, θ))]­µ

i
(q

i
®p

i
). (5)

Let the deviations of the mean height and mean slope

from θ- and cov(θ,x)}var(x), respectively, be much

greater than the corresponding contributions of the

individual loci : g-
!
®θ- (α

i
and g-

"
®cov(x, θ)}varx(

β
i
. This corresponds to initial stages of the dynamics

away from equilibrium. In this case, the first and last

terms in the right-hand side of (5) can be neglected

relative to the second and third terms. The changes in

the mean height and slope of the reaction norm

induced by changes in allele frequencies are ∆ga
!
¯

Σ 2α
i
[∆p

i
and ∆ga

"
¯Σ 2β

i
[∆p

i
. Using matrix notation,

these equations can be represented as

9∆ga
!

∆ga
"

:¯ 9G!

C

C var(x)

G
"
var(x):

A

B

ga
"
®

cov(x, θ)

ga
!
®θa

var(x)

C

D

. (6)

Equation (6) shows that the population evolves

towards a state with

ga
!
¯ θa , (7a)

ga
"
¯

cov(x, θ)

var(x)
¯ rAvar(θ)

var(x)
, (7b)

where r is the correlation of x and θ. If the optimal

reaction norm is linear, i.e. θ(y)¯ c
!
­c

"
y, mean

reaction norm height ga
!

evolves to optimal reaction

norm height c
!
, and mean reaction norm slope g-

"

evolves to g-
"
¯ c

"
cov(x,y)}var(x) (de Jong, 1999).

That is, the mean height of the reaction norms is

expected to match the phenotypic optimum, whereas

the mean slope deviates from the optimal slope. The

evolved mean slope equals the optimum slope times

the regression of the environment of selection, y, on

the environment of development, x. In an alternative

expression, the evolved mean slope is proportional to

the correlation between the environment of devel-

opment, x, and the optimum phenotype and the

squared root of the ratio of variances in the phenotypic

optima and the environment of development. These

conclusions correspond to those based on simple

quantitative genetic models that assumed bivariate

normality of the distribution of g
!

and g
"

in the

population (Gavrilets, 1988; Gavrilets & Scheiner,

1993; de Jong, 1999).

(v) Genetic �ariance under mutation–selection

balance

If there is no mutation (µ
i
¯ 0), the population will

eventually reach a state with genetic variation main-

tained in no more than a single locus. (This can be

proven using Result 3 in Zhivotovsky & Gavrilets

(1992).) Obviously, mutation will maintain genetic

variation in all n loci. Assuming that the population

has evolved to a state where both (7a) and (7b) are

true, allele frequencies do not change (∆p
i
¯ 0) if

p
i
¯q

i
¯1}2 or

p
i
q
i
¯

2µ
i
V
s

α#
i
­β#

i
var(x)

. (8)

Polymorphic equilibria with some p
i
at one-half should

be unstable unless mutation rates are very high. Thus,

for small mutation rates the allele frequencies at the

mutation–selection balance equilibrium are defined by

(8).

Using (8), the equilibrium genetic variances and

covariance at mutation–selection balance are :

G$

!
¯ 4V

s
3µ

i

α#
i

α#
i
­β#

i
var(x)

, (9a)

G$

"
¯ 4V

s
3µ

i

β#
i

α#
i
­β#

i
var(x)

, (9b)

C¯ 4V
s
3µ

i

α
i
β
i

α#
i
­β#

i
var(x)

. (9c)

Here, the covariance C between g
!
and g

"
arises only

because of the loci that have pleiotropic effects on

both the height and slope of the reaction norm. In

principle, linkage disequilibrium, which is neglected

here, could contribute to covariance C. Equations (9)

are similar to those obtained earlier assuming bivariate

normality of the distribution of g
!

and g
"

in the

population (Gavrilets, 1988).

The total genotypic variance of a plastic trait over

the whole set of microhabitats is

G
tot

¯G
!
­G

"
var(x)­ga #

"
var(x),
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with G¯G
!
­G

"
var(x) due to genetic variation and

g- #
"
var(x) due to plasticity even if no genetic variation

is present (de Jong, 1990; Scheiner, 1993). Note that

covariance C does not enter these equations because

of our scaling assumption that x- ¯ 0. For a non-

plastic trait (that is if β
i
¯ 0 for all i), g

"
, G

"
and C all

equal zero, resulting in G
tot

¯G¯G
!
; at a balance of

mutation and stabilizing selection

G
tot

¯G*¯G$

!
¯ 4µV

s
, (10)

where µ¯Σ
i
µ
i
is the rate of mutation per gamete.

This is the standard rare-allele approximation for the

variance maintained by mutation in non-plastic traits

(reviewed in Bu$ rger, 1998). For a plastic trait and

equal selection intensity in all environments, the

genetic variance is

G*¯G$

!
­G$

"
var(x)¯ 4µV

s
, (11)

which is the same as given by (10). Equations (9) and

(11) show as expected that increasing the mutation

rate and}or decreasing the strength of stabilizing

selection increases the total genotypic variance G
tot

the

genetic variance G* and genetic variation in reaction

norms characterized by G
!
, G

"
and C. Increasing the

variation in the environment of development (var(x))

decreases the evolved genetic variances in the height

and slope of reaction norms (and their covariance).

The variation in the environment of selection

(var(θ)¯ c
"

var(y)) does not affect the equilibrium

values G$

!
, G$

"
and C*.

(vi) Linear reaction norm at unequal selection

strength in all en�ironments

Assuming that the strength of stabilizing selection

varies between microhabitats (Zhivotovsky et al.,

1996) modifies the formulae derived above but does

not result in any qualitatively new effects. It is

convenient to re-scale the environmental variable x so

that the mean value of the product of the selection

strength s
y

and x over the whole set of microhabitats

is zero: E²s
y
x´¯ 0. (This is an analogue of the

assumption x- ¯ 0 made above for analysing the case

of constant s
y
.)

The analogues of (7) are

ga
!
¯E²s

y
θ´}E²s

y
´, ga

"
¯ cov(s

y
x, θ)}cov(s

y
x,x),

and the corresponding analogue of (8) is

p
i
q
i
¯

µ
i

E²s
y
´

1

α#
i
­β#

i
cov(s

y
x,x)}E²s

y
´
. (12)

For a plastic trait and unequal selection intensity over

environments, the genetic variance under mutation–

selection balance is

G$

!
E²s

y
´­G$

"
cov(s

y
x,x)¯ 2µ. (13)

Equation (13) is analogous to (11). Greater variation

in the environment x reduces the genetic variance in

height and slope.

3. Numerical examples

(i) Alternati�e equilibria

Above, we considered the genetic variance maintained

in linear reaction norms assuming that the mean

height and slope have evolved towards the optimum

values. For a non-plastic trait, it is known that at a

mutation–selection balance, mean genotypic values

can slightly deviate from the optimum (Barton, 1986;

Hastings, 1990). At such a non-optimum equilibrium,

the genetic variance can be several times higher than

when the mean genotypic value is exactly at the

optimum. We will demonstrate this property of the

mutation–selection balance in the case of selection on

a phenotypically plastic trait by iterating (7) nu-

merically.

In all simulations, the number of diallelic loci is n¯
100, selection strength is given by 2V

s
¯ 20, mutation

rate per locus per generation is µ
i
¯10−&, and genomic

mutation rate µ¯10−$. The expected genetic variance

is therefore G*¯G$

!
­G$

"
var(x)¯ 4µV

s
¯ 0±04. The

optimum phenotype is given by θ(y)¯ c
!
­c

"
y, with

optimum height c
!
¯10 and optimum slope c

"
¯1.

The genotypic values for the heterozygote A
i
a
i

are

g
!,Aa,i

¯ z
!
}n for the height and g

",Aa,i
¯ z

"
}n for the

slope. The genotypic values for homozygote A
i
A

i
are

g
!,AA,i

¯ z
!
}n­α

i
and g

",AA,i
¯ z

"
}n­β

i
. Here, α

i
¯

z
!
}n­a z

!
}n (U

a,i
®0±5) and β

i
¯ z

"
}n­a z

"
}n

(Uβ,i
®0±5), where Uα,i

and Uβ,i
are independently

drawn from a uniform distribution (0,1), and the

variable a is used to scale the random effect. The

genotypic values for homozygote a
i
a
i

are g
!,aa,i

¯
z
!
}n®α

i
and g

",aa,i
¯ z

"
}n®β

i
. Note that the expected

genotypic values for genotype A
i
A

i
are E²g

!,AA,i
´¯

2z
!
}n for height and E²g

",AA,i
´¯ 2z

"
}n

i
for slope. The

range of the mean genotypic value in the population

is 0% g-
!
%2z

!
for height, and 0% ga

"
% 2z

"
for slope.

The correlation over loci between allelic values α
i
and

β
i
is zero, but the genetic covariance C between height

and slope is not. Initially, each allele frequency is at

p
i
¯1 or p

i
¯ 0. The iterations were stopped when

the change in G
!

was less than 10−( per generation.

Mean reaction norm height, mean reaction norm

slope, mean fitness and genotypic variance depend on

the number of loci starting at p
i
¯1 (Fig. 1). For this

set of simulations, var(x)¯1 and cov(x, y)¯ 0±5. At

z
!
¯ c

!
¯10 and z

"
¯ c

"
¯1, the optimum reaction

norm height c
!
and optimum slope c

"
are both reached

with 50 loci starting at p¯1. At z
!
¯ 8 and z

"
¯1, the

optimum height is reached with 63 loci starting at

p¯1 while the equilibrium slope g-
"
¯ c

"
cov(x, y)}

var(x)¯ 0±5 is reached with 50 loci starting at p¯1.
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(d)

0·956

0·953
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0·1

0·2

Number of loci starting at p = 1 Number of loci starting at p = 1

Fig. 1. Mutation–selection balance equilibrium for a phenotypically plastic trait. Mean reaction norm height, mean
reaction norm slope, mean fitness and genotypic variance depend upon the number of loci starting at p

i
¯1. Selection

on reaction norm height overrules selection on slope as the allelic values for height are much larger. Alternative
equilibria for mean genotypic value occur. Variation in the environment equals var(x)¯1. Allelic values are
α

i
¯ z

!
}n\(0±5­Uα,i

) and β
i
¯ z

"
}n\(0±5­Uβ,i

) (the parameter a¯1±0). Averages of five runs. (A) Mean height g-
!
;

(B) mean slope g-
"
; (C) genetic variance G*¯G$

!
­G$

"
var(x) ; (D) mean fitness.

Selection on height overrules selection on slope as the

allelic contributions to g
!

are about 10 times larger

than those to g
"

(Fig. 1A). As a consequence, the

evolved slope is drawn away from its equilibrium

value of g-
"
¯ c

"
cov(x, y)}var(x)¯ 0±5, towards a

value given by the number of loci starting at p
i
¯1

for which the optimum g
!

is reached at z
!
¯ 8

(Fig. 1B). Here, pleiotropy is acting as a constraint.

Alternative equilibria are found for g-
!
when a larger

or a smaller number of loci than n¯ 50 (for z
!
¯10)

or n¯ 63 (for z
!
¯ 8) start at p

i
¯1. The alternative

equilibria are very near to the optimum equilibrium:

the difference in height is less than one allelic value

(Fig. 1A, B). The lowest genetic variances G$

!
, G$

"
and

G*¯G$

!
­G$

"
var (x) (Fig. 1C) and the highest mean

fitness (Fig. 1D) are found when the evolved value of

g-
!
coincides with the optimum value. At the alternative

equilibria, a lower mean fitness and higher genetic

variances, in height and in slope, are found. The

increase in genetic variance at the alternative equilibria

can be up to 7 times the predicted equilibrium genetic

variance, which is similar to the situation found by

Barton (1986) for a non-plastic trait. The alternative

equilibria are more prominent with no random effects

in the genotypic values, that is, at a¯ 0. With higher

random effects, e.g. with a" 2±0, the alternative

equilibria fade out, and the genetic variance settles at

a level somewhat lower than predicted.

Alternative equilibria are not found when the geno-

typic values for the homozygote A
i
A

i
are g

!,AA,i
¯

z
!
}n­α

i
and g

",AA,i
¯ z

"
}n­β

i
, with α

i
¯ z

!
}n

(Uα,i
®0±5) and β

i
¯ z

"
}n (Uβ,i

®0±5), that is, when the

expected genotypic values for both homozygotes equal

the genotypic value of the heterozygote. If so, the

genetic variance is always somewhat lower than

expected from (11).

(ii) Varying le�els of pleiotropy and en�ironmental

�ariation

Not all loci need be pleiotropic, influencing both

height and slope. Let us assume that n
!

loci only

control the height of the reaction norm (α
i
1 0, β

i
¯

0), n
"
loci only control the slope (α

i
¯ 0, β

i
1 0), while

n
p

loci are pleiotropic (α
i
1 0, β

i
1 0). The genotypic

variances for reaction norm height and slope become:

G$

!
¯ 4V

s
3
n
!

µ
i
­4V

s
3
np

µ
i

α#
i

α#
i
­β#

i
var(x)

,

G$

"
¯ 4V

s

1

var(x)
3
n
"

µ
i
­4V

s
3
np

µ
i

β#
i

α#
i
­β#

i
var(x)

.

For those loci that only influence slope, the variance

in the environment var(x) functions as a component

of the selection strength. In Fig. 2, the effect of the
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Fig. 2. The influence of variation in the environment and pleiotropy on genetic variances under a mutation–selection
balance. Loci might be pleiotropic (n

p
loci), or coding for height (n

!
¯ (100®n

p
)}2 loci) or slope (n

"
¯ (100®n

p
)}2 loci) ;

the number of pleiotropic loci n
p

is indicated by different symbols. Allelic values are identical over loci, at α
i
¯ 0±1 for

height and at β
i
¯ 0±05 for slope. (A) Equilibrium genetic variance in height ; (B) equilibrium genetic variance in slope;

(C ) equilibrium genetic correlation; (D) ratio of equilibrium genetic variances in height and slope; (E ) minimum genetic
variance; (F ) environment of minimum genetic variance.

variation in the environment of development on the

genetic variances in height G$

!
and slope G$

"
, the

logarithm of the ratio G$

"
}G$

!
, and the genetic

correlation between height and slope, C*}oG$

!
G$

"
,

are given for different numbers of pleiotropic loci with

equal allelic values. The genetic variances in height

and slope decrease with the environmental variation

(Fig. 2A, B). If some loci influencing only the slope

are present, the genetic variance in slope decreases

faster with the environmental variance than the genetic

variance in height (Fig. 2C). The decrease in the

logarithm of the ratio G$

"
to G$

!
is observed only if

there are non-pleiotropic loci. The genetic correlation

between height and slope too depends on the number

of pleiotropic loci (Fig. 2D).

Genetic variation among linear reaction norms

causes the genotypic variance in the phenotypically

plastic trait to be a quadratic function of the

environment (de Jong, 1990). The minimum of the

genetic variance in the trait equals G
min

¯
G$

!
®C*#}G$

"
, and is found at x

min
¯®C*}G$

"
. When

all loci are pleiotropic and have equal allelic values,

G
min

¯ 0 and x
min

¯®α}β. When some loci are not

pleiotropic but only code for reaction norm height or

reaction norm slope, G
min

and x
min

depend upon the

variation in the environment. The position of the

minimum variance, x
min

, is at an environmental value

x higher than x- ¯ 0 if the covariance C is negative, but

lower if the covariance C is positive. Examples of G
min

and x
min

are plotted in Fig. 2E and F.

4. Comparison with data

Two studies might provide enough detail on the

environment and on phenotypic plasticity to attempt

to compare the model with data. Barker & Krebs
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Table 1. Genetic �ariance and co�ariance in height and slope of isofemale lines. The genetic correlation, r
G
,

between height and slope is tested for difference from zero

Species Locality Sex T¯ 0 G
!

C G
"

r
G

P Significance

D. aldrichi Dixalea 21±6c 33±188 ®1±705 0±220 ®0±631 0±050 NS
D. aldrichi Oxford Downs 22±1c 45±729 ®4±050 0±632 ®0±753 0±012 *
D. buzzatii Dixalea 21±6c 21±511 ®1±404 0±501 ®0±428 0±217 NS
D. buzzatii Oxford Downs 22±1c 22±119 ®2±338 0±670 ®0±607 0±063 NS
D. melanogaster France F 20d 16±890 ®0±908 0±207 ®0±486 0±016 *
D. melanogaster France M 20d 10±872 ®0±731 0±273 ®0±424 0±039 *
D. melanogaster Tanzania F 22±7c 19±854 ®1±216 0±322 ®0±481 0±017 *
D. melanogaster Tanzania M 22±7c 13±622 ®0±438 0±123 ®0±338 0±106 NS

Drosophila aldrichia and D. buzzatiia : trait¯ ln(wing length}thorax length).
D. melanogasterb : trait¯wing length.
* P! 0±05.
a Data from Barker & Krebs (1995).
b Data from Noach et al. (1996).
c Yearly-average temperature.
d Indication for growing season.

Table 2. Relati�e size of genetic �ariance in height and slope, minimum in genetic �ariance o�er temperatures

and temperature of minimum genetic �ariance. Genetic �ariances are computed o�er isofemale lines

Species Locality Sex T¯ 0 T
min

G
min

ln(G
"
}G

!
)

D. aldrichi Dixalea 21±6c 29±4 19±47 ®5±02
D. aldrichi Oxford Downs 22±1c 28±5 19±78 ®4±28
D. buzzatii Dixalea 21±6c 24±4 17±58 ®3±76
D. buzzatii Oxford Downs 22±1c 25±6 13±96 ®3±50
D. melanogaster France F 20d 24±4 12±91 ®4±40
D. melanogaster France M 20d 22±7 8±91 ®3±68
D. melanogaster Tanzania F 22±7c 26±5 15±26 ®4±12
D. melanogaster Tanzania M 22±7c 26±3 12±06 ®4±71

a, b, c,d As Table 1.

(1995) studied isofemale lines from two Australian

populations of the cactus drosophilas Drosophila

buzzatii and D. aldrichi. They showed the logarithm of

the wing}thorax ratio (ln(W}T)) to be linear over the

temperature range 18–31 °C. Noach et al. (1996)

compared phenotypic plasticity in isofemale lines

from two populations of Drosophila melanogaster.

They showed that wing length of D. melanogaster is

linear with temperature from 17±5 °C to 27±5 °C;

overall wing length is greater and of more negative

slope with temperature in the French population than

in the Tanzanian population. Genotype by environ-

ment interaction over isofemale lines was statistically

significant in D. buzzatii and D. aldrichi, and in the

Tanzanian population of D. melanogaster. Here,

Barker & Krebs’ (1995) data on ln(W}T) and Noach

et al.’s (1996) data on wing length are re-analysed;

results are presented in Tables 1 and 2.

The data presented in Table 1 show that the

between-isofemale-line genetic correlations between

height and slope are negative at the yearly-average

temperature taken as T¯ 0. In both D. buzzatii and

D. aldrichi, the genetic variation in height and in slope

of the regression of ln(W}T) on temperature is lower

in the locality Dixalea than in the locality Oxford

Downs, in agreement with a higher variability of

temperature in Dixalea. The ratio G
"
}G

!
is higher in

D. buzzatii than in D. aldrichi, and more negative at

the locality Dixalea than at Oxford Downs; again,

this might be in agreement with a higher variability of

temperature in Dixalea. The temperature of minimum

variance is higher in D. aldrichi than in D. buzzatii, but

does not differ between localities for the two cactus

drosophilas. The data might indicate that in D.

buzzatii and D. aldrichi some loci affect reaction norm

slope but not reaction norm height. In D. melano-

gaster, genetic variation for slope and height in

females and for height in males is lower in France than

in Tanzania, in agreement with a higher variability of

temperature in France. However, the genetic variation

for slope is lower in Tanzanian males than in French

males. The ratio G
"
}G

!
does not show any pattern.
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The temperature of minimum genetic variance is

higher in the D. melanogaster isofemale lines from

Tanzania than in those from France (Table 2).

Overall, in seven of eight pair-wise comparisons

genetic variation in reaction norms is higher in the less

variable environment, which is in accord with the

model’s predictions.

5. Discussion

Our model makes several points about genetic

variation maintained by mutation–selection balance

and the influence of environmental variation on

genetic variation in height and slope of reaction

norms. At mutation–selection balance, the total

genotypic variance, G
tot

, of a plastic trait is always

larger than that of a non-plastic trait. However, the

genetic variances, G*¯G$

!
­G$

"
var(x) of a plastic

trait and a non-plastic trait are the same. This result

is in agreement with general results on the maintenance

of genetic variation under mutation–selection balance

in pleiotropic traits. Under the house-of-cards ap-

proximation, pleiotropy reduces the variance in a trait

below that predicted by a single-character analysis

(Turelli, 1988). Tanaka (1996) proved that ifmutations

have pleiotropic effects on many characters under

stabilizing selection, the weighted sum of the genetic

variances of these characters always equals 2µ (his

equation 15). The weighting is by the intensities of

selection s
t
on each trait : i.e. 3

t

s
i
G

i
¯ 2µ for t traits ;

for one trait, t¯1, which gives the classical result

(reviewed in Bu$ rger, 1998). With selection on a plastic

trait, the weighting is by the effective selection

intensities E²s
y
´ on the reaction norm height and

cov(s
y
x,x) on the reaction norm slope (13). Genetic

load equals 2µ, whatever the number of pleiotropic

traits or the distribution of genetic variances over

pleiotropic traits (Tanaka, 1998). Stabilizing selection

on a phenotypically plastic trait is a special case of this

general result.

Phenotypic plasticity influences the allocation of

the total genetic variance. This applies to the character

state model too; in the character state model, the total

genetic variation over all environments under

mutation–selection balance becomes E²s
x
G

x
´¯ 2µ.

The genetic variance per environment in the character

state model does not vary as the inverse of the

selection intensity in that environment, as would be

expected for a single trait. The observed genetic

variance per environment depends on selection over

all environments.

Our model of a phenotypically plastic trait under

mutation–selection balance is related to a multi-locus

diallelic model for a single non-plastic trait introduced

by Wright (1935) and further analysed by Barton

(1986). Barton (1986) discovered the existence of

alternative equilibria with very similar mean trait

values but with substantially different genotypic

variances. Alternative equilibria exist for a pheno-

typically plastic trait as well (Fig. 1A). At the

alternative equilibria the genetic variances in height

and slope markedly increase, even though the mean

values for both height and slope do not deviate from

their optimabymore thanone allelic effect.Alternative

equilibria exist only if the allelic contributions for the

A
i
alleles have expected values of the same sign; that

is, if all A
i
alleles increase (or decrease) trait value.

Random allelic values, without similar contributions

of the A
i
alleles to the trait, do not lead to alternative

equilibria. The genetic variance found in iterations

using random allelic values in height and slope is

lower than expected (data not shown). Random allelic

values lead to some noise in the ratio of G$

!
and G$

"
,

but the ratio remains independent of the environment.

The ratio of G$

!
and G$

"
depends upon the environment

when some loci contribute only to the genetic variation

in slope. Therefore, the ratio of G$

!
and G$

"
presents a

potential test for the presence of pleiotropy in all loci

coding for height and slope.

Under mutation–selection balance, pleiotropy

proved to lead to a constraint between reaction norm

height and slope. The optimal value for slope and the

optimal value for height could not always be sim-

ultaneously reached for some initial conditions. The

outcome of selection depended upon the size of the

allelic values ; higher allelic values for a trait (height or

slope) led to more effective selection and carried the

other trait along. The evolved genetic correlation does

not equal 1. The deviation from the optimum slope is

not observed in iterations if all loci are started at

random allele frequencies. Migration between popu-

lations will randomize allele frequencies and restore

selection towards optimum genotypic values for both

height and slope.

The genetic variation in the height and slope of a

linear reaction norm are not independent if height and

slope are pleiotropically determined by the same loci.

Genetic variance in height, G$

!
, and slope, G$

"
, both

decrease with increasing variation in the environment

of development, var(x), but do not dependon variation

in the environments of selection, var(θ). The studies of

Barker & Krebs (1995) and Noach et al. (1996) report

genetic variation in linear reaction norms inDrosophila

species, and meteorological data about the popu-

lations’ environments. Necessary for evaluating the

influence of variation in the environment on the

genetic variances in height and slope are the mean and

variance of the environmental variable (here, tem-

perature) influencing plasticity. In the analysis of the

data presented in Tables 1 and 2, the average annual

temperature was set as x- ¯ 0. Overall, in seven of

eight pair-wise comparisons genetic variation in height

or slope was higher in the less variable environment;
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this is in accordwith the model’s predictions.However,

the meteorological annual average temperature need

not be the relevant average temperature for Drosophila

development. This leads to some uncertainties in the

analysis, as the estimates of the genetic variances are

sensitive to the choice of the mean temperature.

Variation in the environment is gauged from the

annual temperature range, the only relevant statistic

available. No error margins on the estimates of the

genetic variances are available. More data on the

relevant environment would be necessary for a more

reliable comparison of the model with data on genetic

variances. Moreover, the influence of variation in the

environment on genetic variances at the environmental

mean might be compromised if selection intensity is

not equal in each environment. Unfortunately, data

on selection intensities over environments are lacking

in the Drosophila studies.

Some patterns in genetic variation of height and

slope cannot be found when only the variance of the

relevant environmental variable (for instance tem-

perature) changes. Karan et al. (1999) found larger

genetic variation in height and smaller genetic vari-

ation in slope in their French population of Drosophila

melanogaster than Noach et al. (1996) found in their

Tanzanian population. The genetic variance in height

and slope have to be inversely related, however, if we

compare two populations with the same variation in

the environment, the same selection intensity and the

same mutation rate but potentially differing in allelic

values for g
!

and g
"
. Then, it follows from (11) that

larger G$

!
has to imply a smaller G$. Replication over

populations and better environmental data are necess-

ary to interpret patterns of genetic variation in

phenotypic plasticity.
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