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MAD Saturated Families and SANE Player

Saharon Shelah

Abstract. We throw some light on the question: is there a MAD family (a maximal family of infinite

subsets of N, the intersection of any two is finite) that is saturated (=completely separable i.e., any X ⊆
N is included in a finite union of members of the family or includes a member (and even continuum

many members) of the family). We prove that it is hard to prove the consistency of the negation:

(i) if 2ℵ0 < ℵω , then there is such a family;

(ii) if there is no such family, then some situation related to pcf holds whose consistency is large

(and if a∗ > ℵ1 even unknown);

(iii) if, e.g., there is no inner model with measurables, then there is such a family.

1 Introduction

We try to throw some light on the following problem.

Problem 1.1 Is there, provably in ZFC, a completely separable MAD family A ⊆
[ω]ℵ0 ; see Definition 1.3(1) and (4).

Erdös–Shelah [5] investigates the ZFC-existence of families A ⊆ P(ω) with sep-

arability properties, continuing Hechler [7], which mostly uses MA. Problem 1.1 is

[5, Problem A, p. 209]; see Miller [8] and Goldstern–Judah–Shelah [6] on the exis-

tence for larger cardinals. It seemed natural to prove the consistency of a negative

answer by CS iteration making the continuum ℵ2, but this had not worked out; the

results here show this is impossible.

The celebrated matrix-tree theorem of Balcar, Pelant, and Simon [1], Balcar and

Simon [2] is related to our starting point. Gruenhut and Shelah try to generalize it,

hoping eventually to get applications, e.g., “there is a subgroup of ω
Z that is reflexive

(i.e., canonically isomorphic to the dual of its dual)” and “less” (see [4, Problem

D7]), but have had no success so far. We then had tried to use such constructions to

answer Problem 1.1 positively, but this does not work. Simon [3] proved (in ZFC),

that there is an infinite almost disjoint A ⊆ [ω]ℵ0 such that B ⊆ ω and (∃∞A ∈
A)[B ∩ A infinite] ⇒ (∃A ∈ A)(A ⊆ B). Shelah and Steprans [10] tried to continue

it with dealing with Hilbert spaces.

Here s and ideals (formally J ∈ OB) are central. Originally we had a unified

proof using games between the MAD and the SANE players (SANE is naturally the
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opponent of MAD) but with some parameters for the properties. As on the one hand

it was claimed this was unreadable and on the other hand we have a direct proof,

which was presented (for s < a∗), in the Hebrew University and Rutgers, we use

the later one. A minor price is that the proof in Section 2 says to repeat the earlier

one with the following changes. The major price is that some information is lost: we

use smaller, more complicated cardinal invariants, and there are some points in the

proof that we hope will serve other proofs (including covering all cases), so we hope

to return to the main problem and relatives elsewhere.

A related problem of Balcar and Simon is: given a MAD family B we look for such

A refining it, i.e., (∀B ∈ id+
A)(∃A ∈ A)(A ⊆∗ B). At present there is no difference

between the two problems (see also Theorems 2.1, 3.1, and 3.6).

Conclusion 1.2

(1) If 2ℵ0 < ℵω , then there is a saturated MAD family.

(2) Moreover, in (1) for any dense J∗ ⊆ [ω]ℵ0 we can find such a family contained

in J∗.

Definition 1.3

(1) We say A is an AD (family) for B when A ⊆ [B]ℵ0 is infinite and almost disjoint

(i.e., A1 6= A2 ∈ A ⇒ A1 ∩ A2 finite). We say A is MAD for B when A is AD for

B and is ⊆-maximal among such A’s. If B = ω, we may omit it.

(2) For A ⊆ [ω]ℵ0 , idA is the ideal generated by A ∪ [ω]<ℵ0 .

(3) A MAD family A is saturated when: if B ∈ id+
A (see 1.7(3)), then B almost

contains some member of A (equivalently, if B ∈ id+
A, then B almost contains

continuum many members of A, because if B ∈ id+
A, then there is an AD family

B ⊆ [B]ℵ0 ∩ id+
A of cardinality 2ℵ0 ).

Definition 1.4

(1) Let a be the minimal cardinality of a MAD family.

(2) Let a∗ be the minimal κ such that there is a sequence 〈Aα : α < κ+ω〉 of pairwise

almost disjoint (i.e., with finite intersection) infinite subsets of ω satisfying: there

is no infinite set B ⊆ ω almost disjoint to Aα for α < κ but where B ∩ Aκ+n is

infinite for infinitely many n-s.

Observation 1.5 We have b ≤ a∗ ≤ a.

Remark 1.6

(1) Note that if there is a MAD family A ⊆ [ω]ℵ0 such that B ∈ id+
A ⇒ (∃2ℵ0

A ∈ A)

(B ∩ A is infinite), then there is a MAD family A ⊆ [ω]ℵ0 such that B ∈ id+
A ⇒

(∃2ℵ0
A ∈ A)(A ⊆ B); equivalently B ∈ id+

A ⇒ (∃A ∈ A)(A ⊆ B). Just list our

tasks and fulfil them by dividing each member of A into two infinite sets to fulfil

one task.

(2) So the four variants of “there is A . . .” in 1.3(4), 1.6(1) are equivalent.
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Notation 1.7

(1) For A ⊆ ω, let A[ℓ] be A if ℓ = 1 and ω\A if ℓ = 0.

(2) For J ⊆ [ω]ℵ0 , let J⊥ = {B : B ∈ [ω]ℵ0 and [A ∈ J ⇒ A ∩ B finite]}, and also

for Ā = 〈As : s ∈ S〉, let Ā⊥
= {As : s ∈ S}⊥.

(3) idA(B) is the ideal of P(B) generated by

(A↾B) ∪ [B]<ℵ0 and id+
A(B) = [B]ℵ0\ idA(B),

(on A↾B, see (7)); if B = ω, we may omit it.

(4) A ⊆∗ B means that A\B is finite.

(5) If C ⊆ P(B) and η ∈ C2, then IC,η(B) is {C ⊆ B : C ⊆∗ A[η(A)] for every A ∈ C};

if B = ω we may omit it.

(6) In part (5), if ν is a function extending η, then let IC,ν = IC,η .

(7) For A ⊆ P(B2) and B1 ⊆ B2, let A↾B1 = {A∩B1 : A ∈ A and A∩B1 is infinite}.

Definition 1.8

(1) Let OB = {I ⊆ [ω]ℵ0 : I ∪ [ω]<ℵ0 is an ideal of P(ω)}.

(2) For A ⊆ ω, let ob(A) = {B : B ∈ [ω]ℵ0 and B ⊆∗ A} so ob(ω) = [ω]ℵ0 .

(3) η ⊥ ν means ¬(η E ν) ∧ ¬(ν E η).

(4) We say A is AD in J ⊆ [ω]ℵ0 when A is AD and A ⊆ J.

(5) We say A is MAD in J ⊆ [ω]ℵ0 when A is AD in J and is ⊆-maximal among

such A’s.

(6) J ⊆ [ω]ℵ0 is hereditary when A ∈ [ω]ℵ0 ∧ A ⊆∗ B ∈ J ⇒ A ∈ J.

(7) J ⊆ [ω]ℵ0 is dense when (∀B ∈ [ω]ℵ0 )(∃A ∈ J)[A ⊆ B].

2 The Simple Case: s < a∗

We here give a proof for the case s < a∗.

Theorem 2.1

(1) If s < a∗, then there is a saturated MAD family A ⊆ [ω]ℵ0 .

(2) Moreover, given a dense J∗ ⊆ [ω]ℵ0 we can demand A ⊆ J∗.

Proof Stage A: Let κ = s, so cf(κ) > ℵ0. For (1) let J∗ ⊆ [ω]ℵ0 be a dense (and

even hereditary) subset of [ω]ℵ0 , i.e., as in part (2) and in both cases without loss of

generality every finite union of members of J∗ is co-infinite, i.e., ω /∈ id J∗ .

Choose a sequence 〈C∗
α : α < κ〉 of subsets of ω exemplifying s = κ, i.e.,

¬(∃B ∈ [ω]ℵ0 )
∧

α
(B ⊆∗ C∗

α ∨ B ⊆∗ ω\C∗
α).

For i < κ and η ∈ i2, let C∗
η = C∗

i . The aim of this notation is to simplify later proofs

where we say “repeat the present proof but . . . ”.

Stage B: For α ≤ 2ℵ0 let APα, the set of α-approximations, be defined by the follow-

ing conditions:

⊞1(a) T = Tt is a subtree of κ>2, i.e., closed under initial segments;
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(b) let suc(T) = {η ∈ T : ℓg(η) is a successor ordinal} and1 cℓ(T) = {η ∈ κ≥2:

if i < ℓg(η), then η↾i ∈ T};

(c) 1 ≤ |T| ≤ ℵ0 + |α|;
(d) Ī = Īt = 〈Iη : η ∈ cℓ(T)〉 = 〈It

η : η ∈ cℓ(Tt )〉;

(e) Ā = Āt = 〈Aη : η ∈ suc(T)〉 = 〈At
η : η ∈ suc(Tt )〉;

such that

(f) Aη ∈ Iη ∩ J∗ or2 Aη = ∅ and St = {η ∈ suc(Tt ) : Aη 6= ∅}
(g) Iη = {A ∈ [ω]ℵ0 : if i < ℓg(η), then A ⊆∗ (C∗

η↾i)
[η(i)], and if i + 1 < ℓg(η),

then A ∩ Aη↾(i+1) is finite}; so Iη is well defined also when η ∈ cℓ(T).

We let

(h) Ct
η = C∗

η (for generalizations);

⊞2 AP =
⋃

{APα : α ≤ 2ℵ0};

⊞3 s ≤AP t if and only if (both are from AP and)

(a) Ts ⊆ Tt ;

(b) Īs = Īt↾cℓ(Ts);

(c) Ās = Āt↾ suc(Ts).

Stage C: We assert various properties of AP; of course s, t denote members of AP:

⊞4(a) ≤AP partially orders AP;

(b) η ⊳ ν ∈ cℓ(Tt ) ⇒ It
ν ⊆ It

η ;

(c) if η ∈ cℓ(Tt ), then It
η ∈ OB, i.e., It

η ∪ [ω]<ℵ0 is an ideal of P(ω) ;

(d) 〈At
η : η ∈ St〉 is almost disjoint (so At

η ∈ ob(ω) and

η 6= ν ∈ St ⇒ At
η ∩ At

ν finite; recall that here we can assume St = suc(Tt ));

(e) if η ∈ cℓ(Tt ) and ℓg(η) = κ, then It
η = ∅;

(f) if s ≤AP t , then cℓ(Ts) ⊆ cℓ(Tt ) and η ∈ cℓ(Ts) ⇒ Is
η = It

η (and clause (b) of

⊞3 follows from clauses (a),(c));

(g) • if ν ∈ cℓ(Ts)\Ts and η ∈ Ss and B ∈ Is
ν , then B ∩ Aη is finite

• if ν ∈ Ts and η ∈ Ss but ¬(ν E η) and B ∈ Is
ν , then B ∩ Aη is finite.

[Why clause (d)? Let η0 6= η1 ∈ St ; if η0 ⊥ η1, let ρ = η0 ∩ η1, hence for

some ℓ ∈ {0, 1} we have ρˆ〈ℓ〉 E η0, ρˆ〈1 − ℓ〉 E η1, so Aηk
∈ It

ηk
⊆ It

ρˆ<k> ⊆

ob((Ct
ρ)[k]) for k = 0, 1, hence Aη0

∩Aη1
⊆∗ ob((Ct

ρ)[ℓ])∩ ob((Ct
ρ)[1−ℓ]) = ∅.

If η0 ⊳ η1, note that At
η1

∈ It
η1

⊆ ob(ω\At
η0

) by clause ⊞1(g). Also if η1 ⊳ η0

similarly, so clause (d) holds indeed.

Why Clause (e)? Recall the choice of 〈C∗
α : α < κ〉 and 〈Ct

η : η ∈ κ>2〉, hence

α < κ ⇒ Ct
η↾α = C∗

α. So if B ∈ It
η , then B ∈ Iη↾(α+1), hence (B ⊆∗ C∗

α ∨ B ⊆∗

ω\C∗
α) for every α < κ, a contradiction to the choice of 〈C∗

α : α < κ〉.]

⊞5(a) α < β ≤ 2ℵ0 ⇒ APα ⊆ APβ ;

(b) AP0 6= ∅ (e.g., use t with Tt = {〈 〉});

(c) if 〈ti : i < δ〉 is ≤AP-increasing, ti ∈ APαi
for i < δ, 〈αi : i < δ〉 is increasing,

δ a limit ordinal and αδ =
⋃

{αi : i < δ}, then tδ =
⋃

{ti : i < δ} naturally

defined belongs to APαδ
and i < δ ⇒ ti ≤AP tδ ;

1So cℓ({〈 〉}) = {〈 〉, 〈0〉, 〈1〉}.
2the case “Aη = ∅” is not needed in this proof
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⊞6 let Jt be the ideal on P(ω) generated by {At
η : η ∈ St} ∪ [ω]<ℵ0 .

For s ∈ AP and B ∈ ob(ω) we define:

(∗)1 SB = Ss
B := S1

B ∪ S2
B, where

(a) S1
B = S

s,1
B := {η ∈ cℓ(Ts) : [B\A]ℵ0 ∩ Is

η 6= ∅ for every A ∈ Js};

(b) S2
B = S

s,2
B := {η ∈ cℓ(Ts): for infinitely many ν, η E ν ∈ Ss and the set

B ∩ Aν is infinite};

(c) S3
B = S

3,s
B := SB.

(∗)2 SPι
B = SP

s,ι
B := {η ∈ Ts : ηˆ〈0〉 ∈ S

s,ι
B and ηˆ〈1〉 ∈ S

s,ι
B } for ι = 1, 2, 3, and

SB = Ss
B = S3

B.

Note that

(∗)3 for ι = 1, 2, 3,

(a) SιB is a subtree of cℓ(Ts);

(b) 〈 〉 ∈ SB ⇔ B ∈ J+
s ⇔ 〈 〉 ∈ S1

B;

(c) SPι
B ⊆ Ts;

(d) if B ⊆ A are from [ω]ℵ0 , then SιB ⊆ SιA, SPι
B ⊆ SPι

A.

[Why? For ι = 1, the first statement holds by recalling ⊞4(b). The second,

〈 〉 ∈ SιB ⇔ B ∈ J+
s , holds as Is

〈 〉 = ob(ω). The third, SPι
B ⊆ Ts as by

the definition of cℓ(Ts) we have ηˆ〈ℓ〉 ∈ cℓ(Ts) ⇒ η ∈ Ts. The fourth is

obvious. For ι = 2 this is even easier and for ι = 3 it follows.]

(∗)4 If η ∈ SB and ν0 ⊳ ν1 ⊳ · · · ⊳ νn−1 is a listing of {ν ⊳ η : ν ∈ SPB} (so this set

is finite) and we let Cs(η,B) :=
⋂

{(C s
νℓ)

[η(ℓg(νℓ))] : ℓ < n}, then SB∩Cs(η,B) =

{ν ∈ SB : ν E η or η E ν}.

[Why? Clearly (∀A ∈ Is
η)(A ⊆∗ Cs(η,B)) by the definition of Is

η (see ⊞1(g)), but

(∃A ⊆ Is
η)(|A ∩ B| = ℵ0), hence B ∩Cs(η,B) ∈ ob(ω).

As B∩Cs(η,B) ⊆ B, clearly SB∩Cs(η,B) ⊆ SB. Also as η ∈ SB and (∀A ∈ Is
η)(A ⊆∗

Cs(η,B)), clearly η ∈ SB∩Cs(η,B) and moreover {ν ∈ SB∩Cs(η,B) : η E ν} = {ν ∈
SB : η E ν} by ⊞4(b).

Also, as SB and SB∩Cs(η,B) are subtrees, clearly {ν : ν E η} ⊆ SB ∩ SB∩Cs(η,B) and

η E ν ∈ cℓ(Ts) ⇒ [ν ∈ SB ⇔ ν ∈ SB∩Cs(η,B)].

So to prove the equality it suffices to assume α < ℓg(η), ν ∈ SB, ℓg(η ∩ ν) =

α, ℓg(ν) > α, and ν ∈ SB∩Cs(η,B) and get a contradiction. If ℓ < n and α =

ℓg(νℓ), then (∀A ∈ Is
ν)[A ⊆∗ (C s

η↾α)[1−η(α)]], so it is an easy contradiction. If

α /∈ {ℓg(νℓ) : ℓ < n}, we can get a contradiction to η↾α /∈ SPB. So we are done

proving (∗)4.]

(∗)5 (a) For every η ∈ cℓ(Tt ) the set {B ∈ ob(ω) : η /∈ SB} belongs to OB;

(b) if ι = 1, 2, 3 and B = B0 ∪ · · · ∪ Bn ⊆ ω, then SιB = SιB0
∪ · · · ∪ SιBn

;

(c) if A ∈ Jt and B2 = B1\A, then SιB2
= SιB1

, SPι
B2

= SPι
B1

for ι = 1, 2, 3;

(d) S2
B ⊆ Tt for B ∈ ob(ω);

(e) if η ⊳ ν ∈ cℓ(Tt ), then η ∈ Tt ;

(f) if B ∈ ob(ω) and s ≤AP t , then

•1 S
s,1
B ⊇ S

t,1
B ∩ cℓ(Ts);

•2 S
s,2
B ⊆ S

t,2
B ∩ Ts (inclusion in different direction? yes!);

•3 S
s,3
B ⊇ S

t,3
B ∩ cℓ(Ts), in fact (S

t,2
B ∩ cℓ(Ts))\S

s,2
B ⊆ S

s,1
B ;
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(clause (f) is not used here).

(∗)6 For ι = 1, 2, 3 we have

(a) if B ⊆ ω, ℓ < 2, ν ∈ SιB ∩ Tt , and B ⊆∗ (Ct
ν)[ℓ] then νˆ〈ℓ〉 ∈ SιB, but

νˆ〈1 − ℓ〉 /∈ SιB;

(b) if B ⊆ ω and ν ∈ SιB ∩ Tt , then for some ℓ < 2 we have νˆ〈ℓ〉 ∈ SιB;

(c) ω /∈ Jt .

[Why? Read the definitions recalling (∗)5(c). For clause (c) recall that ν ∈ Ss ⇒
As ∈ Js and by ⊞1(f) we have Js ⊆ J∗ and by Stage A, ω /∈ ob( J∗).]

Stage D:

⊞7 If α < 2ℵ0 , s ∈ APα and B ∈ ob(ω)\ Js, then we can find t ∈ APα+1 such that

s ≤AP t and B contains Aη for some η ∈ St\Ts.

This is a major point, and we shall prove it in Stage F below.

Stage E: We prove the theorem.

Let 〈Bα : α < 2ℵ0〉 list P(ω), each appearing 2ℵ0 times. By induction on α ≤ 2ℵ0

we choose tα such that

⊛ (a) tα ∈ APα;

(b) β < α ⇒ tβ ≤AP tα;

(c) if α = β + 1, then either Bα ∈ Jtβ or Bα contains Aη , for some η ∈ Stα\Ttβ .

For α = 0 use ⊞5(b).

For α limit use ⊞5(c).

For α = β + 1 use ⊞7.

Now let t ∈ AP be
⋃

{tα : α < 2ℵ0} and recalling ⊞4(d) it is easy to check that Āt

is a saturated MAD family, enough for Theorem 2.1(1), and recalling that by ⊞1(f) it

is ⊆ J∗, also enough for Theorem 2.1(2).

Stage F: The rest of the proof is dedicated to the proof of ⊞7, so α, s and B are given.

The proof is now split into cases.

Case 1: Some ν ∈ SB is such that ν ∈ cℓ(Ts)\Ts.

By (∗)5(d) we have ν ∈ S1
B. Clearly, as ν ∈ SB, there is B1 ∈ [B]ℵ0 ∩ Is

ν . Note that

ℓg(ν) > 0 as 〈 〉 ∈ Ts by clause (c) of ⊞1.

Note that, A ∈ Is
ν ∧ η ∈ Ss ⇒ A∩As

η is finite, e.g., by the proof of ⊞4(d) or better

by ⊞4(g).

Subcase 1A: Assume ℓg(ν) is a successor ordinal.

Let B2 ⊆ B1 be such that B2 ∈ J∗ and B1\B2 are infinite. Now define t as follows:

Tt = Ts ∪ {ν}; At
ρ is As

ρ if ρ ∈ suc(Ts) and is B2 if ρ = ν; lastly define It
ρ for ρ ∈ Tt

as in clause (g) of ⊞1. It is easy to check that t is as required.

Subcase 1B: Assume ℓg(ν) is a limit ordinal.

Clearly ℓg(ν) < κ by ⊞4(e), as Is
ν 6= ∅ because B1 ∈ Is

ν . Clearly there is ℓ ∈ {0, 1}
such that B ′

1 := (C s
ν)[ℓ] ∩ B1 is infinite. Let B2 ⊆ B ′

1 be such that B2 and B ′
1\B2 are

infinite and B2 ∈ J∗. We define t by Tt = Ts ∪ {ν, νˆ〈ℓ〉},At
ρ is As

ρ if ρ ∈ suc(Ts),

and is B2 if ρ = νˆ〈ℓ〉 and It
ρ for ρ ∈ Tt is defined as in clause (g) of ⊞1.

It is easy to check that t is as required.
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Case 2: SPB = ∅ but not case 1.

Let ν∗B :=
⋃

{η : η ∈ SB}.

Subcase 2A: ν∗B ∈ S1
B.

As SB ⊆ cℓ(Ts) by the definition of SB, and since we are assuming “not case 1” we

have SB ⊆ Ts; hence ν∗B ∈ Ts, so ℓg(ν∗B ) < κ.

We define B∗
2 as B ∩ Aν∗B

if Aν∗B
is well defined and B∗

2 = ∅ otherwise; and for

ℓ = 0, 1, let B∗
ℓ := B ∩ (C∗

ℓg(ν∗
b

))
[ℓ]\B∗

2 .

Then we have

(∗)7 〈B∗
0 ,B∗

1 ,B∗
2 〉 is a partition of B.

Hence by (∗)5(b), for some ℓ = 0, 1, 2, we have

(∗)8 ν∗B ∈ S1
B∗
ℓ

,

(∗)9 ℓ 6= 2,

and

(∗)10 ρ := ν∗B ˆ〈ℓ〉 ∈ SB∗
ℓ

.

[Why? By the definitions noting ρ ∈ cℓ(Ts).]

Also as B∗
ℓ ⊆ B, clearly

(∗)11 SB∗
ℓ
⊆ SB.

But (∗)10 and (∗)11 contradict the choice of ν∗B .

Subcase 2B: ν∗B /∈ S1
B.

By (∗)3(b) and (∗)6(c) and the assumption of ⊞7, we have 〈 〉 ∈ S1
B, and by (∗)6(b),

clearly 〈0〉 ∈ S1
B or 〈1〉 ∈ S1

B, hence ν∗B 6= 〈 〉. If ν∗B = νˆ〈ℓ〉, by the definition of ν∗B ,

we have ν∗B ∈ SB, contradicting the subcase assumption. Hence, necessarily ℓg(ν∗B ) is

a limit ordinal ≤ κ; call it δ. So α < δ ⇒ ν∗B↾α ∈ SB but ρ ⊳ ̺ ∈ cℓ(Ts) ⇒ ρ ∈ Ts,

hence α < δ ⇒ ν∗B↾α ∈ Ts. Now for every α < δ let ν∗B,α := (ν∗B↾α)ˆ〈1 − ν∗B (α)〉,
so clearly ν∗B,α ∈ cℓ(Ts)\SB. Hence as ν∗B,α /∈ S2

B, by the definition of S2
B ⊆ SB the

set Aα = {Aρ : ρ ∈ Ss, ν
∗
B,α E ρ and B ∩ Aρ is infinite} is finite. So we can find

n = n(α) < ω and A∗
α,0, . . . ,A∗

α,n(α)−1 enumerating Aα, but also ν∗B,α /∈ S1
B ⊆ SB,

hence ob(B\
⋃

Aα) = ob(B\
⋃

{A∗
α,ℓ : ℓ < n(α)} is disjoint to Iν∗B,α ∩ J+

s and by

the choice of Aα and (∗)4, ob(B\
⋃

Aα) = [B\(A∗
α,0 ∪ · · · ∪ A∗

α,n(α)−1)]ℵ0 is disjoint

to Is
ν∗B,α

. Let A∗
α,n(α) be Aν∗B ↾α

when defined and ∅ otherwise. By the definitions of

Is
ν∗B,α

, Is
ν∗B ↾α

we have, for α < δ,

⊙1(a) [B ∩ (C s
ν∗B ↾α

)[1−ν∗B (α)]\(A∗
α,0 ∪ · · · ∪ A∗

α,n(α))]ℵ0 is disjoint to Is
ν∗B ↾α

;

(b) A∗
α,ℓ ∈ {Aρ : ρ ∈ St and ν∗B,α E ρ (hence Aα,ℓ ⊆ (C s

ν∗B ↾α
)[1−ν∗B (α)])} for

ℓ < n(α) (not needed presently).

[Why clause (b)? By the choice of Aα.]

Let A∗
= {B ∩ A : A = A∗

α,k for some α < δ, k ≤ n(α) and B ∩ A is infinite}.

SoA∗ is a family of pairwise almost disjoint infinite subsets of B, and if A∗ is finite,

B\
⋃

{A : A ∈ A∗} is still infinite because A∗ ⊆ Js and we are assuming B /∈ Js.

Let Λ := {ν ∈ Ss : ν∗B E ν, |Aν ∩ B| = ℵ0}.

⊙2 There is a set B1 such that
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(a) B1 ⊆ B is infinite;

(b) B1 is almost disjoint to any A ∈ A∗;

(c) if Λ is finite then ν ∈ Λ ⇒ |B1 ∩ Aν | < ℵ0 ;

(d) if Λ is infinite then for infinitely many ν ∈ Λ we have |B1 ∩ Aν | = ℵ0.

[Why? First assume Λ is finite, so without loss of generality, it is empty. If A∗ is

finite use the paragraph above on A∗. Otherwise as |A∗| ≤ |δ| + ℵ0 ≤ κ = s and

by the theorem’s assumption, s < a∗ ≤ a, and by the definition of a, it follows

that ⊙2 holds.

Second, assume that Λ is infinite and choose pairwise distinct νn ∈ Λ for n < ω.

Now recall that we are assuming s < a∗, and apply Definition 1.4 of a∗ to A∗ and

〈Aνn
: n < ω〉 to get an infinite B1 ⊆ B as required.]

⊙3(a) B1 ∈ J⊥s ;

(b) if ¬(ν∗B E η) and η ∈ Ss, then B1 ∩ Aη is finite.

[Why? For clause (a), note that first B1 ⊆ B ⊆ ω, second B1 is infinite by clause (a)

of ⊙2, third Bs /∈ Js is proved by dividing into two cases. If Λ is finite, use clause

(b) of ⊙3, proved below, and clause (c) of ⊙2; and if Λ is infinite, use ⊙2(d)).

So let us turn to proving clause (b); we should prove that η ∈ suc(Ts) ∧ ¬(ν∗B E

η) ⇒ B1 ∩ Aη finite.

If Aη ∈ {A∗
α,n : α < δ, n ≤ n(α)}, then either Aη ∩ B is finite hence Aη ∩ B1 ⊆

Aη ∩ B is finite, or Aη ∩ B is infinite, hence Aη ∩ B ∈ A∗, so B1 ∩ (Aη ∩ B)

is finite by the choice of B1. But B1 ⊆ B hence B1 ∩ Aη is finite. So assume

Aη /∈ {A∗
α,m : α < δ, n ≤ n(α)}. By the choice of Aα,n(α) for α < δ necessarily

¬(η ⊳ ν∗B ). Recall that we are assuming that ¬(ν∗B E η). Together, for some α < δ,

we have α = ℓg(ν∗B ∩ η) < δ and ν∗B↾α ⊳ η, and we get a contradiction by the

choice of Aα = {A∗
α,ℓ : ℓ < n(α)} and A∗

α,n(α).]

We shall now prove by induction on α ≤ δ that B1 ∈ Is
ν∗B ↾α

. For α = 0 recall

that Is
ν∗B ↾α

= [ω]ℵ0 for α limit Is
ν∗B ↾α

=
⋂

{Is
ν∗B ↾β

: β < α} and use the induction

hypothesis. For α = β + 1, first note that by ⊙2(b) B1 is almost disjoint to Aν∗B ↾β
if

ν∗B↾β ∈ Ss ⊆ suc(Ts), and second, B1 is almost disjoint to (C s
ν∗B ↾β

)[1−ν∗B (β)]. (Other-

wise, recalling ⊙3(b), we get a contradiction to the assumption SPB = ∅ by (∗)6(a)

and the induction hypothesis.) Together with the definition of Is
ν∗B ↾β

, Is
ν∗B ↾α

we have

B1 ∈ Is
ν∗B ↾α

. Having carried the induction, in particular B1 ∈ Is
ν∗B ↾δ

= Iν∗B . Now recall-

ing first B1 /∈ Js by ⊙3(a), second B1 ⊆ B by ⊙2(a), and third, the choice of A∗, Js.

Together they contradict the subcase assumption ν∗B /∈ S1
B.

Case 3: None of the above.

Without loss of generality:

⊕1 if B1 ⊆ B but B1 /∈ Js, then none of the two cases above holds.

We try to choose η̄n
= 〈ηρ : ρ ∈ n2〉 by induction on n such that:

(a) ηρ ∈ SPB;

(b) if ρ = ̺ˆ〈ℓ〉 then η̺ˆ〈ℓ〉 E ηρ;

(c) {ν : ν ⊳ ηρ and ν ∈ SPB} = {ηρ↾k : k < ℓg(ρ)}.

For n = 0, since SPB 6= ∅ as this is not Case 2 (and not Case 1), we can choose

ηρ ∈ SPB with minimal length. If n = m+1 and ρ ∈ m2, by the induction hypothesis,
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ηρ ∈ SPB, hence ηρ ∈ Ts, and by the definition of SPB for ℓ = 0, 1, the sequence

ηρˆ〈ℓ〉 belongs to SB.

First assume {ν ∈ SPB : ηρˆ〈ℓ〉 E ν} = ∅. So B1 := B ∩ Cs(ηρˆ〈ℓ〉,B) /∈ Js,

noting that Cs(ηρˆ〈ℓ〉,B) =
⋂

{C
[ρ(k)]
ηρ↾k : k ≤ m}, recalling it is defined in (∗)4 from

Stage C using ηρˆ〈ℓ〉 ∈ SB; hence ηρˆ〈ℓ〉 ∈ SB1
.

Now by (∗)4 we know SB1
= {ν ∈ SB : ν E ηρˆ〈ℓ〉 or ηρˆ〈ℓ〉 E ν}, so case 2 or

case 1 holds for B1, a contradiction to ⊕1.

Second, assume that we have (∃η)(ηρˆ〈ℓ〉 E η ∈ SPB), so choose such ηρˆ〈ℓ〉 of

minimal length.

Hence we have carried the inductive choice of 〈η̄n : n < ω〉.

For each ρ ∈ ω2 let ηρ =
⋃

{ηρ↾n : n < ω}, so clearly ηρ ∈ cℓ(Ts). Also 〈ηρ :

ρ ∈ ω2〉 is without repetitions and each ηρ belongs to cℓ(Ts), so as |Ts| < 2ℵ0 there is

ρ ∈ ω2 such that ηρ /∈ Ts. By clause (c) above we have {̺ : ̺ ⊳ ηρ and ̺ ∈ SPB} =

{ηρ↾n : n < ω}.

Note that

⊕2 〈Cs(ηρ↾k,B) : k < ω〉 is ⊆-decreasing.

Let W = {α < ℓg(ηρ): for some ν ∈ Ss we have ℓg(ν ∩ ηρ) = α and Aν ∩ B is

infinite}.

First, assume W is an unbounded subset of ℓg(ηρ). In this case we choose αn ∈ W

such that αn+1 > αn ≥ ℓg(ηρ↾n) for n < ω, and we choose νn ∈ Ss such that

ℓg(νn ∩ ηρ) = αn and Aνn
∩ B is infinite. So we can choose an infinite B0 ⊆ B such

that n < ω implies B0\
⋃

{Aνn↾k
: k < n} ⊆∗ Cs(ηρ↾αn,B) and (B0

⋂

Aνn
∈ ob(ω)).

So,

⊕3 B0 ⊆ B,B0 /∈ Js;

⊕4 the set SPB0
is empty.

[Why? By (∗)4, for each n < ω we have SB0
⊆ {ν : ν E ηρ↾n ∨ ηρ↾n E ν}, hence

SB0
∩ Ts ⊆ {ν : ν ⊳ ηρ or ηρ E ν}, but ηρ /∈ Ts, so SPB0

= ∅.]

⊕5 SB0
is not empty.

[Why? By (∗)3(b).]

By ⊕4 and ⊕5 for the set B0, Case 1 or Case 2 holds, so we get a contradiction

to ⊕1.

Second, assume sup(W) < ℓg(ηρ), so we can choose n(∗) < ω such that

sup(W) < ℓg(ηρ↾n(∗)). Now ν ∈ Ss ∧ηρ↾n(∗) E ν implies that B∩As
ν is finite, as oth-

erwise, recalling ηρ ∈ cℓ(Ts)\Ts, necessarily α = ℓg(ηρ ∩ ν) < ℓg(ηρ) and of course

α ≥ ℓg(ηρ↾n(∗)), but see the choice of n(∗), so ηρ↾n(∗) /∈ S2
β . Hence ηρ↾n(∗) ∈ S1

B, so we

can choose an infinite B1 ⊆ B such that B1 ∈ Is
ηρ↾n(∗)

. Checking by cases, B1 ∈ ob(ω) is

almost disjoint to any Aν , ν ∈ Ss. Obviously B1 ∈ Is
ηρ , so Case 1 holds as exemplified

by ηρ, again a contradiction to ⊕1.

3 The Other Cases

Theorem 3.1 (1) If κ = s = a∗ and cf([s]ℵ0 ,⊆) = s, then there is a saturated MAD

family.

https://doi.org/10.4153/CJM-2011-057-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-057-1


MAD Saturated Families and SANE Player 1425

(2) If κ = s = a∗ and U(κ) = κ and J∗ ⊆ [ω]ℵ0 is dense, then there is a saturated

MAD family ⊆ J∗.

Definition 3.2 (1) For cardinals ∂ ≤ σ ≤ θ ≤ λ (also the case θ < σ is OK) let

Uθ,σ,∂(λ) = Min{|P| : P ⊆ [λ]≤σ such that for every X ∈ [λ]θ, for some u ∈ P,

we have |X ∩ u| ≥ ∂}. If ∂ = σ, we may omit ∂; if σ = ∂ = ℵ0, we may omit them

both; and if σ = ∂ = ℵ0 ∧ θ = λ we may omit θ, σ, ∂. In the case of our theorem, it

means: U(κ) = Min{|P| : P ⊆ [κ]≤ℵ0 and (∀X ∈ [κ]κ)(∃u ∈ P)(|X ∩ u| ≥ ℵ0)}.

(2) If in addition J is an ideal on θ, then let Uθ,σ, J(λ) = Min{|P| : P ⊆ [λ]≤σ such

that for every function f : θ → λ, for some u ∈ P, the set {i < θ : f (i) ∈ u} does

not belong to J}.

(3) Let Pr(κ, θ, σ, ∂) mean: κ ≥ θ ≥ σ ≥ ∂, and we can find (E, P̄) witnessing it (if

∂ = σ, we may omit ∂; if σ = ∂ = ℵ0, we may omit them; if σ = ∂ = ℵ0 ∧ θ = κ,

we may omit θ, σ, ∂) which means:

(a) P̄ = 〈Pα : α ∈ E〉
(b) E is a club of κ and γ ∈ E ⇒ |γ| divide γ
(c) if u ∈ Pα then u ∈ [α]≤σ has no last member

(d) •1 P̄ is ⊆-increasing,

•2 |Pα| < κ,

(e) if w ⊆ κ is bounded and otp(w) = θ and sup(w) ∈ acc(E), then for some u, j

we have (so θ > ∂):

•1 |u ∩ w| ≥ ∂,

•2 j ∈ acc(E),

•3 u ∈ P j ,

•4 |w ∩ j| < θ, i.e., j < sup(w);

(f) if i ∈ {0} ∪ E and j = min(E\(i + 1)),w ⊆ [i, j), otp(w) = θ, then for some

set u;

•1 u ∈ P j and u ⊆ (i, j),

•2 |u ∩ w| ≥ ∂.

Explanation 3.3 The proof of Theorem 3.1 is based on the proof of Theorem 2.1.

The difference is that in the proof of ⊙2 of subcase 2B of stage F, if ℓg(ν∗B ) = κ,

it does not follow that we have |A∗| < a∗, so we have to do something else when

|A∗| = a∗ = s. By the assumption U(κ) = κ there is a sequence 〈uα : ω ≤ α < κ〉
of members of [κ]ℵ0 such that uα ⊆ α and for every X ∈ [κ]κ for some α, uα ∩ X

is infinite. Now if e.g., ℓg(ν) = α ≥ ω, we can use uα and apply 3.5 below to an

appropriate B̄ν getting Pν . We then add it to the family {C∗
α : α < κ}, witnessing

s = κ by the family Pν , as in Observation 3.5. So now we really need to use C s
ν rather

than C∗
α.

Observation 3.4 If Pr(κ, θ, σ, ∂) is witnessed by (E, P̄), then we can find (E ′, P̄ ′)

as in 3.2(3), but

(d) ′•2 if j > sup( j ∩ E ′), then |P ′
j | ≤ j,

(e) as above but require just sup(w) ∈ E.
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Proof Use any club E ′ ⊆ acc(E) of κ such that δ ∈ E ′ ⇒ |Pδ| ≤ |min(E ′\(δ + 1))|
and δ ∈ nacc(E ′) ⇒ cf(δ) 6= cf(θ), and let P ′

γ be Pγ if γ ∈ acc(E ′) and let P ′
γ be

⋃

{Pβ : β ∈ E ∩ γ} if γ ∈ nacc(E ′).

Observation 3.5 Assume B̄∗
= 〈B∗

n : n < ω〉 satisfies B∗
n ∈ [ω]ℵ0 ,B∗

n+1 ⊆ B∗
n , and

|B∗
n\B∗

n+1| = ℵ0 for infinitely many n’s. Then we can find P such that

(∗)(a) P ⊆ [ω]ℵ0 is of cardinality b;

(b) if A ⊆ [ω]ℵ0 is an AD family, B ⊆ ω and (∃∞n)(B ∩ B∗
n \ B∗

n+1) or just for

some sequence 〈(ni ,Ai) : i < ω〉 we have ni < ni+1,Ai ∈ A \ {A j : j < i}
and (Bni

\ Bni +1) ∩ Ai is infinite for every i, then for some countable (infinite)

P ′ ⊆ P there exists for 2ℵ0 functions η ∈ P
′

2 such that for some idA-positive

set A ⊆∗ B we have: A ⊆∗ C[η(C)] for every C ∈ P ′ and A ⊆∗ B∗
n for every n.

Proof of Observation 3.5 Let B = {B̄ : B̄ = 〈Bn : n < ω〉, where Bn ⊆ ω is

infinite, Bn ⊇ Bn+1, and Bn\Bn+1 is infinite for infinitely many n < ω}, i.e., the set of

B̄ satisfying the demands on B̄∗.

For B̄ ∈ B and A ⊆ [ω]ℵ0 let pos(B̄,A) = {B ⊆ ω : B as in (∗)(b)}. So Ob-

servation 3.5 says that for every B̄ ∈ B there is P ⊆ [ω]ℵ0 of cardinality b such that

if A ⊆ [ω]ℵ0 is an AD family and B ∈ pos(B̄,A), then there is a countable infinite

P ′ ⊆ P as required in (∗)(b) of Observation 3.5

Consider the statement:

⊞ if B̄ ∈ B, then we can find B such that

(a) B = 〈B̄δ : δ ∈ Sb

ℵ0
〉, recalling Sb

ℵ0
= {δ < b : cf(δ) = ℵ0};

(b) δ ∈ Sb

ℵ0
⇒ B̄δ ∈ B;

(c) if A is an AD family and B ∈ pos(B̄,A), then for some club E of b, for every

δ ∈ E ∩ Sb

ℵ0
we have (∃∞n)[B ∩ (Bδ,n\Bδ,n+1) ∈ id+

A];

(d) if δ1 < δ2 are from Sb

ℵ0
, then for some n < ω the set Bδ1,n ∩ Bδ2,n is finite.

Why is this statement enough? Because it allows us to find a subset B ′ of B of car-

dinality b such that B̄∗ ∈ B ′ and for every B̄ ∈ B ′ for some B = 〈B̄δ : δ ∈ Sb

ℵ0
〉 as

in ⊞, we have δ ∈ Sb

ℵ0
⇒ B̄δ ∈ B ′. Now P, the closure by Boolean operations of

{Bn : B̄ ∈ B ′ and n < ω} is as required.

Why? Let B̄ ∈ B ′ (e.g., B̄∗) and an AD family A ⊆ [ω]ℵ0 and assume B ∈
pos(B̄,A) is given.

We choose by induction on n < ω a sequence 〈B̄η,mη : η ∈ n2〉 such that

• B̄η ∈ B ′ moreover (∃∞n)(Bη,n\Bη,n+1 ∈ id+
A) for η ∈ n2;

• B̄η = B̄ if η = 〈 〉 so n = 0;
• B ∈ pos(B̄η,A) , mη and

⋂

{Bη↾ℓ,mη↾ℓ
} ∈ pos(B̄η,A ) if η ∈ n2;

• if νˆ〈0〉, νˆ〈1〉 ∈ n2, then the set Bνˆ〈0〉,mνˆ〈0〉
∩ Bνˆ〈1〉,mνˆ〈1〉

is finite.

For n = 0 this is trivial and for n = m + 1 we use ⊞(c), i.e., the construction of

B ′. For every n < ω, ̺ ∈ n2, let B̺ =
⋂

{Bη↾k,mη↾k
: k ≤ n}. So B̺ ∈ id+

A and

m < ℓg(̺) ⇒ B̺ ⊆ B̺↾m and if ̺1 6= ̺2 ∈ n2 then we have B̺1
∩ B̺2

is finite.

Obviously [̺ ∈ ω2 ⇒ (∀n < ω)(∃k < ω)(B̺↾n\B̺↾k ∈ id+
A)], and for each ̺ ∈ ω2

there is C̺ ∈ id+
A such that C̺ ⊆

∗ B̺↾n for n < ω.

[Why? We try by induction on k < ω to choose A̺,k,A ′
̺,k ∈ ob(ω) such that
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A ′
̺,k ∈ A,A̺,k ⊆ A ′

̺,k and m < k ⇒ A ′
̺,k 6= A ′

̺,m and A̺,k ⊆∗ B̺↾k. Now first, if

we succeed, then we can find C ∈ ob(ω) such that for every n < ω we have that

C∩A̺,n is infinite and C \
⋃

{A ′
̺,m : m < n} ⊆ B̺↾kn

. If there is an infinite C ′ ⊆ C

almost disjoint to every member of A, then C̺ = C ′ is as required. If there is no

such C ′, then we can find pairwise distinct A ′ ′
n ∈ A \ {A ′

̺,m : m < ω} such that

C ∩ A ′ ′
n is infinite for every n < ω. Clearly A ′ ′

n ∩ C ⊆∗ B̺↾m for every n,m < ω,

and there is an infinite C̺ ⊆ C such that C̺ ⊆∗ B̺↾m and C̺ ∩ A ′ ′
n is infinite for

every n,m < ω, so C̺ is as required.

Second, if k < ω and we cannot choose A̺,k, then we can choose C̺ ∈ ob(ω) such

that n < ω ⇒ C̺ ⊆∗ B̺↾n and C̺ ∩ A̺,m = ∅ for m < k, and C̺ is as required,

so we are done.]

So P ′
= {Bη↾k,m : k,m < ω} is as required.

So proving ⊞ is enough.

Why does this statement hold? Let f̄ = 〈 fα : α < b〉 be a sequence of members

of ωω witnessing b, such that without loss of generality fα ∈ ωω is increasing and

α < β < b ⇒ fα < Jbd
ω

fβ .

For α < b let Cα :=
⋃

{Bn ∩ [0, fα(n)) : n < ω}, so clearly

(∗)1(a) α < β ⇒ Cα ⊆∗ Cβ ,

(b) α < b ∧ n < ω ⇒ Cα ⊆∗ Bn.

We choose αε = α(ε) < b by induction on ε < b, increasing with ε as follows:

for ε = 0 let αε = min{α < b : Cα is infinite}, for ε = ζ + 1 let αε = min{α <
b : α > αζ and Cα\Cα(ζ) is infinite}, and for ε limit let αε =

⋃

{αζ : ζ < ε}. By the

choice of f̄ , every αε is well defined; see the proof of ⊕α below.

So 〈αε : ε < b〉 is increasing and continuous with limit b. For each δ ∈ Sb

ℵ0
let

〈ε(δ, n) : n < ω〉 be increasing with limit δ and, lastly, let

B̄δ =

〈

Cα(δ)\
⋃

m≤n

Cα(ε(δ,m)) : n < ω
〉

,

so Bδ,n = Cα(δ)\
⋃

m≤n Cα(ε(δ,m)), hence Bδ,n+1 ⊆ Bδ,n and Bδ,n\Bδ,n+1 is infinite by

the choice of αε(δ,n)+1. Clearly B̄δ ∈ B (which also follows from the proof below).

Why is 〈B̄δ : δ ∈ Sb

ℵ0
〉 as required in ⊞? Clauses (a) and (b) are obvious, and

clause (d) is easy; as, if δ1 < δ2, then for some n we have δ1 < α(ε(δ2, n), hence

Bδ1,n ∩ Bδ2,n ⊆ Bα(ε(δ1,n)) ∩ (Bα(δ2)\Cα(ε(δ2,n))) ⊆
∗ Bα(δ1) ∩ (Bα(δ2)\Bα(δ1)) = ∅.

Lastly, to check clause (c) of ⊞ let A be an AD family and B ⊆ ω be such that

(∗)2 u = uB := {n < ω : B ∩ Bn\Bn+1 /∈ idA} is infinite, or just u = {ni : i < ω}
where 〈(ni ,Ai) : i < ω〉 is as in (∗)(b) of the observation.

It is enough to prove that for every α < b:

⊕α there is β ∈ (α, b) such that B ∩Cβ\Cα ∈ id+
A.

[Why is it enough? Because then for some club E of b, for every δ ∈ E∩Sb

ℵ0
we would

have (∀ε < δ)(αε < δ) and (∀α < δ)(∃β)(α < β < δ ∧ Cβ\Cα ∈ id+
A), hence

(∃∞n)((Cα(ε(δ,n+1))\Cα(ε(δ,n))) ∈ id+
A), which means (∃∞n)(Bδ,n\Bδ,n+1) ∈ id+

A) as

required.]
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So let us prove ⊕α. If ⊕α fails, for every β ∈ (α, b) there are n = n(β) and

Aβ,0, . . . ,An(β)−1 ∈ A such that B ∩ Cβ\Cα ⊆∗ Aβ,0 ∪ · · · ∪ Aβ,n(β)−1. Without

loss of generality, n(β) is minimal, hence by (∗)1 the sequence 〈n(β) : β ∈ [α, b)〉
is non-decreasing, but b = cf(b) > ℵ0, hence, for some α∗ ∈ [α, b), the sequence

〈n(β) : β ∈ [α∗, b)〉 is constant, so let n(α∗) = n∗.

As A is AD and B ∩ Cα∗
\Cα ⊆∗ Aα∗,0 ∪ · · · ∪ Aα∗,n∗−1 and β ∈ (α∗, b) ⇒

B ∩Cα∗
\Cα ⊆ B ∩Cβ\Cα ⊆ Aβ,0 ∪ · · · ∪ Aβ,n∗−1, using “A is almost disjoint” and

the minimality of nα∗
= n∗ it follows that {Aα∗,ℓ : ℓ < n∗} ⊆ {Aβ,ℓ : ℓ < n∗}, hence

they are equal.

So,

⊙ β ∈ (α, b) ⇒ B ∩Cβ\Cα ⊆∗ Aα∗,0 ∪ · · · ∪ Aα∗,n∗−1.

For each n ∈ w = {ni : Ai /∈ {Aα∗,ℓ : ℓ < n∗}}, as B ∩ Bn\Bn+1 ∈ id+
A and

Aα∗,0, . . . ,Aα∗,n∗−1 are from idA, clearly there is

kn ∈ (B ∩ Bn\Bn+1\Cα)\Aα∗,0\ · · · \Aα∗,n∗−1\{k0, . . . , kn−1}.

By the choice of f̄ there is β ∈ (α∗, b) such that u1 := {n ∈ w : kn < fβ(n)} is

infinite. As fβ is increasing, clearly n ∈ u1 ⇒ kn < fβ(n) ⇒ kn ∈ Cβ\Cα. So

{kn : n ∈ u1} ∈ [ω]ℵ0 is infinite and is a subset of B ∩ Cβ\Cα\Aα∗,0, . . . ,Aα∗,n∗−1,

which is a contradiction, so ⊕α indeed holds, and we are done.

Proof of Theorem 3.1 We prove part (2), and part (1) follows. We imitate the proof

of Theorem 2.1.

Stage A: Let κ = s. Let P ⊆ [κ]ℵ0 witness U(κ) = κ. For transparency we assume

ω ∈ P and u ∈ P ⇒ otp(u) = ω. this holds without loss of generality as b ≤ a∗ =

s = κ.

[Why? It is enough to show that for every countable u ⊆ κ there is a family Pu of

cardinality ≤ b of subsets of u each of order type ω such that every infinite subset of u

has an infinite intersection with some member of P. Without loss of generality, u is a

countable ordinal α, and we prove this by induction on α. For α a successor ordinal

or not divisible by ω2 this is trivial, so let 〈αn : n < ω〉 be an increasing sequence of

limit ordinals with limit α, but α0 = 0. Let 〈βn,k : k < ω〉 list [αn, αn+1) with no

repetitions, let 〈 fǫ ∈
ωω : ǫ < b〉 exemplify b, each fǫ increasing, and let

Pα =

⋃

{Pβ : β < α} ∪ {{βn,k : n < ω, k < fǫ(n)} : ε < b}.

Clearly Pα has the right form and cardinality.

Lastly, assume v ⊆ u is infinite. If for some γ < α, u ∩ γ is infinite, use the choice

of Pγ . Otherwise let f ∈ ωω be defined by f (n) = min{k : (∃m)[n ≤ m∧βm,k ∈ v]},

and use ǫ < b large enough.]

Let 〈uα : α < κ〉 list P, possibly with repetitions. Without loss of generality

n ≤ ω ⇒ un = ω and α ≥ ω ⇒ uα ⊆ α. For α < κ let 〈γ(α, k) : k < ω〉 list uα in

increasing order and γα,k = γ(α, k).

Let 〈Uα : α < κ〉 be a partition of κ into sets each of cardinality κ such that

min(U1+α) ≥ sup(uα) + 1 and ω ⊆ U0. Let 〈C∗
α : α ∈ U0〉 list a subset of P(ω)

https://doi.org/10.4153/CJM-2011-057-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-057-1


MAD Saturated Families and SANE Player 1429

witnessing s = κ, and, as in Stage A of the proof of Theorem 2.1, the set J∗ ⊆ ob(ω)

is dense, and ω /∈ id J∗ .

If B̄ is as in the assumption of Observation 3.5 and α ∈ (0, κ), let PB̄ be as in the

conclusion of Observation 3.5, and for α < κ let 〈C∗
B̄,α,i

: i ∈ Uα〉 list PB̄.

Stage B: We proceed as in the proof of 2.1, but we use C s
ρ(ρ ∈ Ts), which may really

depend on s, and where Ct
ρ, B̄t

ν,β are defined in clauses ⊞1(e),(g),(h),(i), and (j) below

(so the ⊞(e),(g), and (h) from Theorem2.1 are replaced), and depend just on Tt , Āt

and Īt , too3, where:

⊞1 (a)–(d) and (f) as in Theorem 2.1 of course and

(e) •1 as before, i.e., Ā = 〈At
η : η ∈ suc(Tt )〉,

•2 C̄ = C̄t = 〈Ct
η : η ∈ Λt〉, where Λt = {η : η ∈ i2 and i ∈ U0 or

α > 0, i ∈ Uα and η↾(sup(uα)) ∈ Tt or (for Theorem 3.6) η ∈ Tt},

•3 Aη = ∅ if η ∈ T\ suc(T)

(g) as in Theorem 2.1 but replacing C∗
η↾i by Ct

η↾i ,

(h) if i ∈ U0 and ν ∈ Tt ∩
i2 then C s

ν = C∗
i ,

(i) if β ∈ (0, κ) and ν ∈ sup(uβ)2 and both 〈Ct
ν↾i : i ∈ uβ〉 and 〈At

ν↾i : i ∈ uβ〉 are

well defined then we let B̄t
ν,β = 〈Bt

ν,β,n : n < ω〉 be defined by

Bt
ν,β,n =

⋂

{(Ct
ν↾γ(β,k))

[ν(γ(β,k)]\At
ν↾γ(β,k) : k < n},

(j) if β ∈ (0, κ), i ∈ Uβ so i ≥ sup(uβ) and ρ ∈ i2 and B̄t
ρ↾ sup(uβ),β is well

defined, then, recalling stage A, Ct
ρ = C∗

B̄t
ρ↾ sup(uβ ),β ,β,i

.

Note that Tt ,At determine t , i.e., It ,Λt ,Ct , and 〈Bt
ν,β : ν, β as above〉.

Stage C: As in Theorem 2.1 we just add:

⊞4 (h) if s ≤AP t and B̄s
ν,β is well defined then B̄t

ν,β is well defined and equal to it;

(i) if s ≤AP t and C s
ν is well defined then Ct

ν is well defined and equal to it, so

Λs ⊆ Λt ;

(j) C s
ν is well defined when ν ∈ cℓ(Ts) ∩

κ>2.

In the proof of ⊞4(e) use the choice of 〈C s
ν : ν ∈ i2, i ∈ U0〉, i.e., of 〈C∗

α : α ∈ U0〉
in Stage A.

Stages D and E: As in Theorem 2.1.

Stage F: The only difference is in the proof of ⊙2 in subcase (2B). Recall:

Case 2: SPB = ∅, but not Case 1, i.e., SB ⊆ Ts, recall B ⊆ ω,B /∈ Js.

Subcase 2B: ν∗B /∈ SB, where ν∗B =
⋃

{η : η ∈ SB}.

⊙2 there is a set B1 such that

(a) B1 ⊆ B is infinite;

(b) B1 is almost disjoint to every A ∈ A∗

(c) if Λ is finite then ν ∈ Λ ⇒ |B1 ∩ Aν | < ℵ0;

3also here we require η ∈ suc(Ts) ⇒ Aη 6= ∅
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(d) if Λ is infinite then for infinitely many ν ∈ Λ we have |B1 ∩ Aν | = ℵ0.

The rest of the proof is proving ⊙2. If |A∗| < κ then A∗ has cardinality < κ = s

hence by the theorem’s assumption |A∗| < s = a∗; so ⊙2 follows as in the proof

of 2.1. So we can assume |A∗| = κ, but |A∗| ≤ ℵ0 + |ℓg(ν∗B )|, hence necessarily

ℓg(ν∗B ) = κ follows.

Let

W := {α < κ : for some ℓ ≤ n(α) we have A∗
α,ℓ ∩ B ∈ A∗

(equivalently A∗
α,ℓ ∩ B is infinite) but

A∗
α,ℓ /∈ {A∗

α1,ℓ1
: α1 < α and ℓ1 ≤ n(α1)}}.

For α ∈ W choose ℓ(α) ≤ n(α) such that B ∩ A∗
α,ℓ(α) is infinite and A∗

α,ℓ(α) /∈
{A∗

α1,ℓ1
: α1 < α and ℓ1 ≤ n(α1)}. In fact by ⊙1(b) the last condition follows. As

n(α) < ω for α < κ, clearly |W| = κ, because |A∗| = κ, hence by the choice of P

there is u∗ ∈ P such that |W∩u∗| is infinite; let α(∗) ∈ [ω, κ) be such that uα(∗) = u∗

and let ν = ν∗B↾ sup(u∗); recall that otp(u∗) = ω. Note that

⊙2.1 k < ω ⇒ Bs
ν,α(∗),k+1 ⊆ Bs

ν,α(∗),k ⊆ ω,

by their choice in ⊞1(i).

Recall also that 〈γα(∗),k : k < ω〉 list u∗ in increasing order and so:

⊙2.2 v := {k < ω : γα(∗),k ∈ W} is infinite;

⊙2.3 [Bs
ν,α(∗),k]ℵ0 ⊇ Is

ν↾γ(α(∗),k) for k < ω.

[Why? As for k(1) < k, (C s
ν↾γ(α(∗),k(1)))

[ν(γ(α)(∗),k(1))] and ω\A∗
ν↾γ(α(∗),k(1)) belong

to {X ⊆ ω : [X]ℵ0 ⊇ Is
ν↾γ(α(∗),k)} hence by the definition of Bs

ν,α(∗),k in ⊞1(i) it

satisfies ⊙2.3.]

⊙2.4 k ∈ v ⇒ B ∩ Bs
ν,α(∗),k\Bs

ν,α(∗),k+1 is infinite.

[Why? For k ∈ v let β = γ(α(∗), k), n = n(β), and ℓ = ℓ(β). On the one hand

[B ∩ A∗
β,ℓ]

ℵ0 ⊆ [A∗
β,ℓ]

ℵ0 ⊆ Iν∗B ↾β .

On the other hand A∗
β,ℓ is trivially disjoint to (C s

ν∗B ↾β
)[ν∗B (β)]\As

ν∗B ↾β
if A∗

β,ℓ = A∗
β,n,

and is almost disjoint to (C s
ν∗B ↾β

)[ν(β)] otherwise; i.e., as

[(

C s
ν∗B ↾β

) [1−ν(β)]]ℵ0
⊇ I(ν∗β ↾β)ˆ〈1−ν(β)〉 ⊇ {A∗

α,ℓ}.

Hence (C s
ν∗B ↾β

)[ν∗B (β)]\A∗
β,ℓ is almost disjoint to B∩A∗

β,ℓ, an infinite set from Iν∗B ↾β

and hence by ⊙2.3 from [Bs
ν,α(∗),k]ℵ0 . So

B ∩ Bs
ν,α(∗),k\Bs

ν,α(∗),k+1 = B ∩ Bs
ν,α(∗),k\

(

Bs
ν,α(∗),k ∩

(

C s
ν∗B ↾β

) [ν∗B (β)]
\A∗

β,k

)

almost contains this infinite set and hence is infinite as promised.]

So by the choice of PB̄s
ν ,α(∗), i.e., Observation 3.5 and clauses (i) and (j) of ⊞1 for

some β ∈ Uα(∗), so β ≥ α(∗) ≥ ℓg(ν), we have B\(C s
ν∗B ↾β

)[ℓ] /∈ Js for ℓ = 0, 1. Hence
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B1 := B\(C s
ν∗B ↾β

)[ν∗B (β)] /∈ Js. Recalling that for β ∈ Uα, α 6= 0 and ρ ∈ β2, the set C s
ρ

depends just on ℓg(ρ) and ρ↾ sup(uα) (and our s).

Now consider B1 instead of B. Clearly SB1
is a subset of SB and ν∗B↾(β + 1) is not in

it, but B1 ∈ ob(B), hence SB1
⊆ SB, and hence SB1

is ⊆ {ν∗B↾γ : γ ≤ β} and B1 falls

under subcase (2A) as β < κ = ℓg(ν∗B ).

Theorem 3.6 When a∗ < κ = s, J∗ ⊆ ob(ω) is dense and Pr(κ, a), there is a

saturated MAD family A ⊆ J∗; see Definition 3.2(3).

Proof of Theorem 3.6 We imitate the proofs of Theorems 2.1 and 3.1. Note that

b ≤ a∗ < s.

Stage A: Similarly to Stage A of the proof of Theorem 3.1, let (E, P̄∗) be as in Defi-

nition 3.2(3) and Observation 3.4. As b < κ, without loss of generality u ∈ P∗
α ⇒

otp(u) = ω for α ∈ [ω, κ). As we can replace E by any appropriate club E ′ of κ
contained in acc(E) (see Observation 3.4) there, without loss of generality otp(E) =

cf(κ), min(E) ≥ ω and γ ∈ E ⇒ γ + 1 + b < min(E\(γ + 1)). Let 〈γ∗
i : i < cf(κ)〉

list E in increasing order.

Let 〈uγ : γ < κ〉 be such that 〈uγ : γ∗
i ≤ γ < γ∗

i+1〉 list Pγ∗
i+1

(which includes Pγ∗
i

)

and u j = ω for j < γ∗
0 .

Let 〈Uα : α < κ〉 be a partition of {2i + 1 : i < κ} such that min(U1+α) ≥
α + ω, |U1+α| = b, |U0| = κ, 1 ≤ α < γ∗

i ⇒ Uα ⊆ γ∗
i .

Let 〈C∗
i : i ∈ U0〉 list a family of subsets of ω witnessing s = κ. Also J∗ is as in the

proof of Theorem 2.1.

Let PB̄, 〈C
∗
B̄,α,i

: i ∈ Uα〉 be as in Theorem 3.1, Stage A.

Stage B: As in 3.1, i.e., the case s = a∗, but we change ⊞1(f):

⊞1(f) • Aη ∈ Iη ∩ J∗ or Aη = ∅ and

• St := {η ∈ Tt : Aη 6= ∅} ⊆ {η ∈ Tt : ℓg(η) = γ∗
i + 1 for some i < κ}.

Stage C: As in the proof of Theorem 3.1.

Stage D: Here there is a minor change: we replace ⊞7 in Theorems 2.1 and 3.1 by

⊞7,⊞8, and ⊞9 below:

⊞7 if α < 2ℵ0 , s ∈ APα and B ∈ J+
s , then there are a limit ordinal ξ ∈ κ\E and

t ∈ APα+1 such that s ≤AP t and |St
B ∩ ξ2| = 2ℵ0 ; we may add St = Ss.

This is proved in Stage F.

To clarify why this is acceptable, recall ⊞1(f) and note that:

(∗) if s ≤AP t,B ∈ ob(ω), η ∈ Ss
B\Ts and η /∈ Tt , then η ∈ St

B.

Now we need:

⊞8 if ξ ∈ κ\E is a limit ordinal, α < 2ℵ0 , t ∈ APα,B ∈ ob(ω) and |St
B ∩ ξ2| = 2ℵ0 ,

ζ = min(E\ξ), then for every t1 and α+ ζ ≤ β < 2ℵ0 such that t ≤AP t1 ∈ APβ

there is a t2 satisfying t1 ≤AP t2 ∈ APβ+1 and (∃η ∈ suc(Tt2
))[η /∈ Tt1

∧ At2
η ∈

ob(ω) ∧ At2
η ⊆ B].

The proof of ⊞8 is like the proof of Case 1 in Stage F in the proof of Theorem 2.1,

but we elaborate. We are given β, ξ, ζ , and t1 such that t ≤AP t1 ∈ APβ ; now we
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choose ρ ∈ St
B ∩ ξ2\Tt1

which exists since |St
B ∩ ξ2| = 2ℵ0 > |Tt1

|. Recalling (∗),

necessarily ρ ∈ S
t1,1
B . Choose B1 such that B1 ⊆ B,B1 ∈ It1

ρ .

Note that for every ε ∈ [ξ, ζ + 1), either Ct1
̺ is well defined for every ̺ ∈ ε2

such that ρ E ̺ and its value is the same for all such ̺ (when ε is odd), or Ct1
̺ for

ρ E ̺ ∈ ε2 is not well defined (when ε is even). So B = {Ct1
̺ : ρ ⊳ ̺ ∈ ζ+1≥2 and Ct1

̺

is well defined} is a family of ≤ |ζ| < κ = s subsets of B1. Hence there is an infinite

B2 ⊆ B1 such that ρ E ̺ ∈ ζ>2 ∧ (Ct
̺ well defined) ⇒ B2 ⊆

∗ Ct
̺ ∨ B2 ⊆

∗ ω\Ct
̺, and

without loss of generality, B2 ∈ J∗.

We choose η such that ρ ⊳ η ∈ ζ+12: [ℓg(ρ) ≤ γ < ζ + 1 ∧ (Ct
η↾γ is well defined)

∧B2 ⊆∗ (Ct
η↾γ)[ℓ] ∧ ρ ∈ {0, 1} ⇒ η(γ) = ℓ]. Let us define t2 ∈ APβ+ζ+2 := APβ+1

(as α + ζ + 1 ≤ β and |α1| = |α2| ⇒ APα1
= APα2

) as follows:

(a) Tt2
:= Tt1

∪ {̺ : ̺ E η};

(b) At2
̺ is At1

̺ if well defined, is B2 if ̺ = η, and is ∅ if η ∈ suc(Tt2
) but At2

̺ is not

already defined;

(c) Ct2
̺ is Ct1

̺ if ̺ ∈ Tt1
, and we choose Ct2

η↾ε by induction on ε ∈ [ξ, ζ + 2] as follows:

if it is determined by ⊞1 we have no choice otherwise let it be ω[η(ε)].

The other objects of t2 are determined by those we have chosen. So ⊞8 holds

indeed.

⊞9 If s ∈ APα and ρ ∈ cℓ(Ts), then for some t , we have s ≤AP t ∈ APα+3, Ts ⊆ Tt ⊆
Ts ∪ {ρ, ρˆ〈0〉, ρˆ〈1〉}, and Is

ρ 6= ∅ ⇒ ρ ∈ Tt and Is
ρ 6= ∅ ∧ ℓ < 2 ∧ It

ρˆ<ℓ> 6=
∅ ⇒ ρˆ〈ℓ〉 ∈ Tt .

[Why? It is easier than ⊞8.]

Stage E: This is similar to Theorem 2.1 with the changes necessitated by the change

in Stage D.

Stage F: We prove ⊞7, and the proof splits into cases.

Case 1: Some ν ∈ SB is such that ν ∈ cℓ(Ts)\Ts.

Let B1 ∈ ob(B) ∩ Is
ν . Such B1 exists as ν ∈ SB but ν /∈ S

s,2
B as ν /∈ Ts.

Let Cν,n ∈ ob(ω) for n < ω be such that
⋂

{C[̺(n)]
ν,n : n < ℓg(̺)} ∩ B1 is infinite

for every ̺ ∈ ω>2.

We choose Tt = Ts ∪ {νˆρ : ρ ∈ ω>2}. For ρ ∈ ω>2, we choose Ct
νˆρ by induction

on ℓg(ρ): if ℓg(νˆρ) = ℓg(ν) + n is even and n ∈ {2m, 2m + 1}, then Ct
νˆρ = Cν,m,

n odd, (see Stage a), and we act as in the proof of ⊞8. Lastly, let At
νˆρ = ∅.

Easily,

(∗) if s ≤AP s1, |Ts1
| < 2ℵ0 , then |Ss1

B ∩ ℓg(ν)+ω2| = 2ℵ0 .

So we are done with Case 1.

Case 2: SPs
B = ∅, but not Case 1; let ν∗B =

⋃

{η : η ∈ SB}.

Subcase 2A: ν∗B ∈ SB.

This is as in the proof Theorem 2.1, ending in contradiction.

Subcase 2B: ν∗B /∈ SB.

With the exception of ⊙2, which we will be elaborating on, this is as in the proofs

of Theorems 2.1 and 3.1 but in the end replacing “Subcase 1B” by “Case 1”. Recall

from Stage 2B as in the proof of Theorem 2.1, δ := ℓg(ν∗B ) is a limit ordinal and

https://doi.org/10.4153/CJM-2011-057-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-057-1


MAD Saturated Families and SANE Player 1433

ν∗B,α = (ν∗B↾α)ˆ〈1 − ν∗B (α)〉 for α < δ and 〈〈A∗
α,n : n ≤ n(α)〉 : α < δ〉 and

A∗ := {B ∩ A : A = A∗
α,k for some α < δ, k ≤ n(α) and B ∩ A is infinite},

Λ = {ν ∈ Ss : ν∗B E ν and Aν ∩ B is infinite} are as in Stage (2B) of the proof of

Theorem 2.1. We have to prove:

⊙2 there is a set B1 such that:

(a) B1 ⊆ B is infinite;

(b) B1 is almost disjoint to any A ∈ A∗;

(c) if Λ is finite, then ν ∈ Λ ⇒ |B1 ∩ Aν | < ℵ0;

(d) if Λ is infinite, then for infinitely many ν ∈ Λ we have |B1 ∩ Aν | = ℵ0.

Why does ⊙2 hold? If |A∗| < a∗, then as in the proof of Theorem 2.1, the statement

of ⊙2 follows. So we can assume |A∗| ≥ a∗, let

W := {α < κ : for some ℓ ≤ n(α) we have A∗
α,ℓ ∩ B ∈ A∗

(equivalently A∗
α,ℓ ∩ B is infinite)},

and let

W
′
= {α ∈ W : |α ∩W| < a∗}.

Subcase 2B(α): sup(W ′) ∈ acc(E).

For α ∈ W choose ℓ(α) ≤ n(α) such that B ∩ A∗
α,ℓ(α) is infinite, hence A∗

α,ℓ /∈
{A∗

α1,ℓ1
: α1 < α, ℓ1 ≤ n(α1)}. As n(α) < ω for α < κ, clearly |W| = |A∗| ≥ a∗,

hence otp(W ′) = a∗.

So by Definition 3.2(3), i.e., the choice of (E, P̄), there is a pair (u∗, γ
∗
j ) as in

clause (e) there. So u∗ ∈ P∗
γ∗

j
, hence u∗ = uα(∗) for some α(∗) ∈ [γ∗

j , γ
∗
j+1), γ∗

j+1 <

sup(W ′), and W ∩ sup(E ∩ γ∗
j ) = W ′ ∩ sup(E ∩ γ∗

j ) has cardinality < a∗. Let

ν = ν∗B↾ sup(u∗), and recall otp(u∗) = ω.

Recall also that 〈γα(∗),n : n < ω〉 list u∗ in increasing order and so v := {n <
ω : γα(∗),n ∈ W} is infinite. Clearly n ∈ v ⇒ Bs

ν,α(∗),n\Bs
ν,α(∗),n+1 is infinite as in the

proof of 3.1. So by the choice of PB̄s
ν ,α(∗), i.e., Theorem 3.5 and clauses (i) and (j) of

⊞1, for some β ∈ Uα(∗), so β ≥ ℓg(ν), we have B\(C s
ν∗B ↾β

)[ℓ] /∈ Js for ℓ = 0, 1. Hence

B1 := B\(C s
ν∗B

)[ν∗B (β)] /∈ Js, recalling that for β ∈ Uα, α 6= 0 and ρ ∈ β2 the set C s
ρ

depends just on ℓg(ρ) and ρ↾ sup(uα) (and our s).

We finish as in the proof of Theorem 3.1.

Subcase 2B(β): sup(W ′) ∈ (γ∗
i , γ

∗
j ] where j = i+1 so γ∗

i , γ
∗
j ∈ E; let γ∗

= sup(W ′).

Apply Definition 3.2(3)(f) to γ∗
i , γ

∗
j ,W

′\γ∗
j we get u = u∗ ∈ Pγ∗

j
, so u = uα(∗) ⊆

[γ∗
i , γ

∗
j ) for some α(∗) ∈ (γ∗

i , γ
∗
j ).

Let β = sup(u∗), ν = ν∗β ↾β, so by ⊙2.1 and ⊙2.4 in stage 2B of the proof of

Theorem 3.1, and by the choice of PB̄ν,α(∗)
, there is a Q ⊆ PB̄s

ν,α(∗)
of cardinality ℵ0 and

Λ ⊆ Q2 of cardinality 2ℵ0 such that for every ρ ∈ Λ there is Bρ ∈ ob(B) ∩ J+
s such

that

A ∈ Q ⇒ Bρ ⊆
∗ A[ρ(A)], n < ω ⇒ Bη,n := Bn\

⋃

{C
[ν∗B (γα(∗),k)]

ν∗B ↾γα(∗),k
: k < n} ∈ Is

ν∗B ↾γα(∗),n
.

Clearly for some v ⊆ Uα(∗) ⊆ (γ∗
i , γ

∗
j ) of cardinality ℵ0, ν ⊳ ρ ∈ Ts ∧ ℓg(ρ) ≥

sup(v) ⇒ {C s
ρ↾ε : ε ∈ v} = Q.
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For η ∈ Λ analyzing SBη
and recalling γ∗

j+1 < s clearly SBη
∩ {ν ∈ Ts : ℓg(ν) ≤

sup(u∗)} is {ν∗B↾γ : γ < sup(u∗)} and sup(u∗) > γ∗ + 1, so there is no ρ such that

As
ρ is non-empty, ρ ∈ Ts and sup(u∗) ≤ ℓg(ρ) < γ∗

j , so SBη
∩ {ν ∈ Ts : ℓg(s) < γ∗

j }
does not depend on 〈As

η : η ∈ suc(Ts), ℓg(η) ≥ γ∗
j 〉 so we can finish easily as in

case 1.

Case 3: See the proof of Theorem 3.1.

4 Further Discussion

The cardinal invariant s plays a major role here, so the claims depend on how s and a∗

are compared; when s = a∗ it is not clear whether the further hypothesis of Theorem

3.1(2) may fail. If s > a∗ > ℵ1, it is not clear if the hypothesis of Theorem 3.6 may

fail. Recall 2.1, dealing with s < a∗, the first case is proved in ZFC, but the others

need pcf assumptions.

All this does not exclude the case s = ℵω+1, a∗ = ℵ1, hence b = ℵ1, as in [9].

Fulfilling the promise from §0 and the abstract:

Claim 4.1 (1) If there is no inner model with a measurable cardinal (and even the

non-existence of much stronger statements), then there is a saturated MAD fam-

ily, A.

(2) Also if s < ℵω , there is one.

(3) Moreover, if J∗ ⊆ ob(ω) is dense, then we can demand A ⊆ J∗.

Proof These follow from Theorems 2.1, 3.1, and 3.6 (using well known results).

We now remark on some further possibilities.

Definition 4.2 (1) We say S ⊆ ob(ω) is s-free when:

(a) for every A ∈ ob(ω) there is B ∈ ob(A) such that B induces an ultrafilter

on S ; i.e., C ∈ S ⇒ A ⊆∗ C ∨ A ⊆∗ (ω\C).

(1A) We say S ⊆ ob(ω) is s-free in I when I ∈ OB and for every A ∈ I there is

B ∈ ob(A) inducing an ultrafilter on S.

(2) We say S ⊆ ob(ω) is s-richly free when clause (a) holds and

(b) if A ∈ ob(ω) and the set {D ∩ S : D an ultrafilter on ω containing ob(A)}
is infinite, then it has cardinality continuum.

(3) We say S ⊆ ob(ω) is s-anti-free if no B ∈ ob(ω) induces an ultrafilter on S .

(4) Let S be {κ: there is a ⊆-increasing sequence 〈Si : i < κ〉 of s-richly-free

families such that
⋃

{Si : i < κ} is not s-free}.

(5) Recall s = min{|S | : S ⊆ ob(ω) and no B ∈ ob(ω) induces an ultrafilter on

S }.

(6) We say chdim(B) < κ when (∃η ∈ B2)(I = IB,η) ⇒ cf(I,⊆) < κ, recalling

1.7(5).

Observation 4.3 (1) If S is s-free and S ′ ⊆ S , then S ′ is s-free.

(2) If S ⊆ ob(ω) and |S | < s, then S is s-free.

(3) If Sn ⊆ ob(ω) is s-free for n < ω, then
⋃

{Sn : n < ω} is s-free.
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(4) s ∈ S.

(5) κ ∈ S if and only if cf(κ) ∈ S.

(6) κ ∈ S ⇒ ℵ1 ≤ κ ≤ 2ℵ0 .

(7) In the definition of S we can add “
⋃

{Si : i < κ} is s-anti-free”.

(8) cf(s) > ℵ0, in fact κ ∈ S ⇒ cf(κ) > ℵ0.

Definition 4.4 (1) We say A ∈ ob(ω) obeys f ∈ ωω when, for every n1 < n2,

from A we have f (n1) < n2.

(2) Let f̄ = 〈 fα : α < δ〉 be a sequence of members of ωω. We say Ā = 〈Aα : α ∈ u〉
obeys f̄ when u ⊆ δ and A obeys fα for α ∈ A.

(3) a f̄ = Min{|u|: there are B ∈ ob(ω) and Ā = 〈Aα : α ∈ u〉 obeying f̄ such that

{Aα ∩ B : α ∈ u} is a MAD of B}.

Remark 4.5 (1) Also note that in Theorems 2.1, 3.1, and 3.6 we can replace s by a

smaller (or equal) cardinal invariant stree, the tree splitting number.

(2) Let stree be the minimal κ such that there is a sequence C̄ = 〈Cη : η ∈ κ>2〉
such that Cη ∈ ob(ω) for η ∈ κ>2, and there is no η ∈ κ2 and A ∈ ob(ω) such that

ǫ < k ⇒ A ⊆∗ C[η(ǫ]
η . Note that the minimal κ for which there is such sequence

〈Cη : η ∈ κ>2〉 has uncountable cofinality.

(3) Also in Theorem 2.1 we may weaken s < a∗ to s < a ∧ s ≤ a∗.
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