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GENERALIZED EULER NUMBER SEQUENCES: 
ASYMPTOTIC ESTIMATES AND CONGRUENCES 

D. J. LEEMING AND R. A. MACLEOD 

1. Introduction. We define (as in [7]) integer sequences {En }, one for 
each positive integer k ^ 2, by 

/ E(k) = j 

"•" I J ( * " + » r ) " - { £ : > s 
where {<oj }j=\ are the kth roots of unity and (E^)n is replaced by 
En after multiplying out. We note that (1.1) implies En = 0, n ¥= 0 
(mod k). 

In [7], we considered some special properties of these number 
sequences, proved several congruences and conjectured several others. 
This paper is a continuation of the work presented in [7]. 

In Section 2 we demonstrate the asymptotic rate of growth of the 
numbers {Ekn } by showing that 

\E{tt\vkn~ckn (w->oo). 

In Section 3 we present a large number of congruences (modulo 2048), 
some of which are proved or can be proved by the techniques presented 
herein, and other congruences which appear to be true on the basis of 
numerical evidence. 

In Sections 4 and 5 we present two methods for proving such 
congruences. In Section 4, we give a method of successive approximations 
and, in Section 5, a method of undetermined coefficients. In Section 6 we 
use the techniques developed in the previous sections to prove the 
congruences given in Theorem 3.1. 

2. An asymptotic estimate for the growth of \Ekn\. Leeming [6] has 
shown that in the case k = 2, 
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,. \E2n\
]/2" 4 

lim = —. 
n^oo n ire 

We will show here that for each integer k ^ 2 a similar asymptotic growth 
rate of the constants {\Ekn\

x/nk} occurs as n —> oo. 
From ([7], Theorem 3.2) we have 

(2.1) — — = 2 E^—— where Qk(z) = 2 

Since the zeros of an analytic function are isolated, let pk be a zero of 
Qk(z) which is closest to the origin. Using the Cauchy-Hadamard 
theorem, we have 

(2-2> lim [(jk^îJ 
«^>CO 

Therefore, we need to know something about the growth of the sequence 
{\Pk\}k=2> which we prove in the next theorem. 

THEOREM 2.1. Letp^ = \pk\è^2vj),k
9 (j = 0, 1, . . . , k - I) be the 

k zeros of Qk(z) nearest the origin. Then we have 

\pk\ = (i + h) ( ; ) 

where 8k > 0 and lim^oo 8k = 0, hence 

lim ^ = i. 
k^OQ k e 

Proof. Mikusinski [9] has shown that for alternating series of the form 

00 xkv 

(2.3) Mk(x)= % (-\y-— fc = 2 , 3 , . . . 

the real zero qk nearest the origin has asymptotic growth qk/k ~ l/e (k —> 
oo). If k is even, let yk = em/k and we have Qk(z) = Mk(ykz)\ if k is odd, 
we have Qk(z) = Mk(-z), so that qk = \pk\. 

Stirling's formula (see e.g. [5], p. I l l ) yields the inequalities 

(2.4) V^k (l + ^ ) ( ^ ) < U < V^k (l + l ) g ) , * ^ 2. 

Therefore, 
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«2.5, <**,"»(• + Jj)'" (Î) 

<(*,,'« <(2rt,»»(l+J f)"'(t) 

and it is evident that 

(2.6) (1 +Vk)- <{k\fk < ( 1 + £ , ) -
e e 

where T^ —> 0, ek —» 0 as /c —» oo. 
Now Mikusinski [9] gives the estimate 

(2.7) (*!)"* < |/>,| < # 2 (*!)"* 

and combining (2.6) and (2.7) establishes the theorem. 

We now use Theorem 2.1 to obtain an asymptotic estimate for 

\EfJ\]/k" (n^oo). 
THEOREM 2.2. For k ^ 2, we have 

\f(k\ \lkn 
(2.8) 1ÏÏH ^ ^ = c, 

4 
w/z<?r£ — = ĉ  <C 1 and l im^oo ck = 1. 

Proof. From (2.2) and (2.4) we have 

(2.9) l i m ! ^ " i , i m W > i . 

If we set ck = k/\pk\e, then (2.9) becomes (2.8). Now (2.7) is equivalent 
to 

k k 
(2-10) 2 T 7 W 7 1 ^ < Ck < W7^ 
and since Q2(z) = cosh z, we have c^ = 4/7re ~ 0.468. For /c = 3, (2.10) 
gives 0.482 < c3, and hence A/ve ^k ck < \, k ^ 2. 

We note that numerical evidence indicates that ĉ . ? 1 as /c —> oo. 
Selected values of |/?^| and ck are given in Table I below. 
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TABLE I. 

k \pk\ Q k \Pk\ Q 

2 1.571 0.468 10 4.529 0.812 
3 1.850 0.596 20 8.304 0.886 
4 2.221 0.662 30 12.05 0.916 
5 2.607 0.705 40 15.77 0.933 
6 2.994 0.737 50 19.48 0.944 
7 3.380 0.762 60 23.19 0.951 
8 3.764 0.782 70 26.90 0.955 

Added in press. M. E. Ismail has pointed out that using the method of 
Darboux (see Olver, Introduction to Asymptotics and Special Functions, 
Acad. Press, N.Y. 1974), (2.8) can be replaced by 

lim = ck. 

3. Congruences modulo powers of two. We present a collection of 
congruences modulo powers of two, especially 211 = 2048, for the number 
sequences {Ekn}9 0 ^ n < oo, which were defined by (1.1). These 
congruences fall into three categories. 

In the first category, we let k = 2\ t ^ 2, and we are able to prove the 
following theorem. 

THEOREM 3.1. For n = 1, 2, . . . , we have the following congruences'. 

(3.1) E^ = 1 - In + 72(2) + 944(3J ~ 3 8 4 (4 / ~ 768V5J 

+ 1024(g) (mod 2048) 

(3.2) E(l] = 1 - 2/i + 584(2) + 944(3) - 384^5) - 7 6 8 ^ ) 

+ 1024(g) (mod 2048) 

(3.3) E{f\X)
n = E$ (mod 23r+2), t ^ 3. 

In particular, since 3i + 2 â 11 for / ^ 3, (3.2) is valid if 8 is replaced 
by 16, 32, • • • . Certain other congruences are listed which may be proved 
by the same types of extensions of our work in [7] as we use to prove 
congruence (3.2) above. Two examples are given in the following 
theorem. 
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THEOREM 3.2. For n = 1, 2, • • • we have the following congruences (mod 
2048): 

(3.4) E^ = 3 + 156* - 552(2) " 3 2 8 ^ ) + 3 2 n ) + 128(5) 

+ 832(2) - 768(ï) + 5I2(?) - 512(?) 

(3.5) E$ = 3 - 164« - 800(5) - 32(3) - 2 5 ô ( j ) - 5 1 2 ^ V 

In the second category, we consider the case k = 2r — 1, f = 2, 3, • • • , 
and obtain the result 

(3.6) E$Z\\n SE (2' - 1) - 2'/i + 2 / + 1 ( " J *) (mod 2t+1\ t ^ 2. 

In the third category are a number of congruences which have been 
verified for the first 50 or 25 values of n, but have not been proven. 
Representative examples are 

(3.7) E{^ = 7 + 248« + 88o(^) + 112(3) ~ 7 0 4 u ) + 32o(" ) 

- 3 8 4 ( ^ ~" 8 9 6 \ 7 ) + 1 0 2 4 \ 8 ) ( m o d 2 0 4 8 ) ' 1 = n ~ 5 0 

(3.8) E{$ SE 7 - 8/1 + 384(5) + 5 1 2 ( ? ) + 1024(j) 

(mod 2048), I ^ n ^ 50 

(3.9) £(
63

3« = 63 - 64n - 1 2 8 ^ ) - 128(3J + 5 1 2 u ) + 5 1 2 \ 5 ) 

+ 1024(2) + 1024(5) ( m o d 2 0 4 8 ) ' 1 = " = 25. 

Before proving any of the congruences given in this section, we present 
two methods of obtaining such congruences. The first method might be 
termed a method of successive approximations, involving a study of odd 
and even patterns in 

I W ' m fixed, n = 0, 1, • • • ? 

and the second might be termed a method of undetermined coefficients. 

4. Method of successive approximations and patterns for ( ^ h for 
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fixed m. For this particular method, we proceed as follows. Assume we 
have a congruence modulo 1} which is of the type EkJ = ft(n)(mod 2*) 
found to be valid over our numerical checking range (n ^ 25 or n ^ 50). 
We test the same congruence modulo 2 / + 1 . Normally there will be 
differences between EkJ(mod 2t+v) a n d / ^ X m o d 2t+]). We adjust ft{n) 
to remove these differences by adding an appropriate linear combination 
of binomial coefficients to ft(n) to obtain a congruence EkJ = ft+x(n) 
(mod2 ' + 1 ) . 

We illustrate with the case k = 6. Suppose we know that the following is 
valid, 1 ^ n ^ 50. 

(4.1) Efn EE 3 - 164« + 224(2) " ^(f) + 156\A)
 ( m o d 5 1 2 ) -

Upon testing this same congruence modulo 1024, we find errors of 512 for 
n = 4, 6, 12, 14, 20, 22, 28, 30, 36, 38, 44 and 46. These are the integers ( a 
50) which are congruent to 4 and 6 modulo 8. As we shall see below (Table 

II) the binomial coefficient I <- ) is odd precisely when n is congruent 

to 4 and 6 modulo 8, and even otherwise. Therefore, if we add the term 

512( n
 5 I to the congruence (4.1) we remove all of the errors modulo 

1024. Since I r I = I <-I + I ^ ), our congruence becomes 

(4.2) Efn s 3 - 164, + 2 2 4 ^ ) - 32(5) - 2 5 6 ^ ) + 512(5) 

(mod 1024). 

Upon testing congruence (4.2) modulo 2048 (1 ^ n ^ 50) we find 

errors of 1024 for n = 2, 3, 5, and 6 (mod 8). Since the binomial coeffi

cient ( nr I is odd if and only if n = 6 (mod 8) or n = 7 (mod 8), we add the 

term 1 0 2 4 ^ + M + 1024^ £ 4 ) and note that 

( " Î , ) + ( " Ï 4 ) - ( ( ; ) + (5))<-« 
so (4.2) becomes 

(4.3) 46« = 3 - 164/i - 8 0 0 ^ ) - 32(5) - 2 5 6 \ 4 ) ~ 5U\5) 

(mod 2048) 

https://doi.org/10.4153/CJM-1983-030-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-030-x


532 D. J. LEEMING AND R. A. MACLEOD 

which is indeed valid for 1 Si n Si 50, and can be proved for all values of n 
using the methods presented in [7]. 

We list below a collection of congruences which were obtained by the 
method described above. As will be seen, some we have been able to prove 
for « = 1, (see Section 6), some could be proved by the methods of our 
paper [7] (marked with an asterisk), for some we can prove partial results, 
while for the rest we are unable to construct proofs. All congruences have 
been checked for "small" values of n, as listed, and all congruences are 
modulo 2048 = 2 " . 

(4.4) £&> s 3 + 156* - 552(5) - 328(5) + 32(;) + 128(g) 

+ 832(j) - 768(5) + 5 1 2 (s) " 512(<0' ] - n - 50; * 

(4.5) E® = 3 - 164* - 800(^) - 3 2 ( " ) " 2 5 6 ( ï ) - 5 1 2 ( s ) < 

1 Si n Si 50; * 

(4.6) El$ = 3 - 228« - 800(5) + 928(^ - 768(j) 

+ 512(A 1 Si n g 50; * 

(4.7) £™ s 3 - 740« - 800(5) + 416(5) " 7 6 8 ( ï ) 

+ 512(5), * = " - 4 0 ; 

(4.8) *£> =X-2n + ll{l) + 944(5) - 384(3) - 768^) 

+ 1024( j ) , 1 Si n Si 50; * 

(4.9) £<£> s 1 - 21, + 584(5) + 944(5) - 384(3) - 768(5) 

+ 1024(5), k i= 3; 

248* + 880(5) + 112(5) - 704(3) + 3 2 0 ( s ) 

- 384(2) - 890(5) + 1 0 2 4 ( s ) ' ] = n - 50 ; 

(4.10) £ # = 7 + 
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(4.11) E\\4j = 7 - 8K + 3 8 4 ^ j + 512^ ) + 1024^), 

1 ^ n ^ 50; 

(4.12) E(2u s 7 - 8« - 8 9 6 m + 768^J + 5 1 2 ^ j + 1024^), 

1 g n S 25; 

(4.13) E\]^ = 15 - 16K - 32(2) + 992(3) ~~ 3 8 4 u ) ~ ^ l ? ) 

- 256(g) + 768("J, 1 S n ^ 50; 

(4.14) E{$ s 31 - 32« + 960(2) + 9 6 0 ( 3 ) ~ 7 6 8 u ) ~ 7 6 8 ( 5 / 

- 512(g) - 512(c), 1 g n s 22; 

(4.15) 4 ^ ^ 63 - 64/7 - 128(5) ~ 1 2 8 ( " ) + 5 1 2 ( î ) + 5 1 2 ( ? ) 

+ 1024(2) + 1 0 2 4 ( " ) ' 1 = « = 20. 

We note that (4.10), (4.11) and (4.12) generalize parts (i), (iii) and (iv) of 
Conjecture 4.1 in [7]. 

In order to use the method of successive approximations we must 

determine precisely when I " I is even and when it is odd, for fixed m and 

varying n, n sï 0. We make use of the following theorems. 

THEOREM 4.1. ([8]). Ifp is prime and m — b0 + bxp + • • • + bkp
k, n = 

«o + a\P + • • ' + akp
k, then 

( : ) - fe ) (2 ! )" fe) <•"»"* 
In particular, ( ) is odd if and only if at = bi9 i = 0, 1, • • • , k in the 

base 2 representation of m and n. 

THEOREM 4.2. ([11], [10]). The length of the period modulo t = p\x • • • 

At)) p/ °f \\™)\is %iven by 
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<PÎ-PÎ' 

where each /?,- (1 = i = /) satisfies 

Pi ^ m < p? . 

In particular the length of the period modulo 2 is 2^ where 2^ = m < 
2^ + 1 . 

Suppose now that we have determined the pattern of odd and even 
blocks up to a power of two. The next theorem shows how to extend up to 
the following power of two. 

THEOREM 4.3. 

dr.')•{":')<•»*» 
f o r 0 ^ a ^ 2 r ~ 1, 0 ^ (3 ^ 2l - a. 

Proof ( 2 ' J J + £ ) = ( 2 ' + « + /*) . Now, the period of (™) is 

2 7 + 1 where 2Y ^ £ < 2 7 + 1 . Suppose first that 2 ' - 1 ^ /? < 2l - a. Then 

the period (mod 2) of I ^ 1 is 2r. Hence 

(4.16) (2Î + « + P) s ( « J * ) (mod 2), which equals ( « + /*) . 

If, on the other hand, 0 â j8 < 2 ' - 1 , then the period of f ^ J is < 2r, 

and a power of 2, so that (4.16) holds again. 

We now use Theorem 4.3 as follows. 

Case i. a = 2 ' " 1 4- 8, 0 â S â 2 / _ 1 - 1. 

/ 2 ' + 2 / _ 1 + 5 + j8\ _ f '̂"1 + 5 + p\ 
\ 2l + 2 ' " 1 + 8 / = V 2 ' " 1 + 8 / ' 

0 g j8 < 2 / _ 1 - 8 (i.e., 0 < a). 

That is, the remaining pattern for ( ~t . I, after its 2r + a initial evens 

(zeros), is the same as the pattern for ( ) remaining after its a initial 

evens (zeros). 

Case ii. a = 8, 0 g 8 g 2 / _ 1 - 1. 
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(l* + a + $\ _ (ll + S + j8\ _ /S + M 
V 2' + a / ~ V ? + ô / = \ 8 / 

(here, ft can be large in terms of a). That is, the remaining pattern for 

( 2* + ) ' a^ t e r ^ts 2r + « initial evens (zeros), is a repeated version of the 

pattern for ( I, including its a initial evens, where the repeating is 

backwards from 2r, the symmetrizing discussed in the theorem. 

The following table of patterns of even and odd blocks for 1 ^ m ^ 32 
shows how Theorem 4.3 is applied. 

TABLE II 

Patterns of even and odd blocks for I n I, fixed m, (1 = m = 32), n = 0. 

m even-odd block lengths m even-odd block lengths 

1 1, 1 17 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
2 2, 2 18 18, 2, 2, 2, 2, 2, 2, 2 
3 3, 1 19 19, 1, 3, 1, 3, 1, 3, 1 
4 4, 4 20 20, 4, 4 ,4 
5 5, 1, 1, 1 21 21, 1, 1, 1, 5, 1, 1, 1 
6 6, 2 22 22, 2, 6, 2 
7 7, 1 23 23, 1, 7, 1 
8 8, 8 24 24, 8 
9 9, 1, 1, 1, 1, 1 , 1, 1 25 25, 1, 1, 1, 1, 1, 1, 1 

10 10, 2, 2, 2 26 26, 2, 2, 2 
11 11, 1, 3, 1 27 27, 1, 3, 1 
12 12, 4 28 28, 4 
13 13, 1, 1, 1 29 29, 1, 1, 1 
14 14, 2 30 30, 2 
15 15, 1 31 31, 1 
16 16, 16 32 32, 32 i 

For example, I g I is even for n in the residue class 0, 1,2, 3, 4, 5, 6, 7, 8, 

10, 12, and 14 and odd for n in the residue class 9, 11, 13 and 15 (mod 
16). 

5. Undetermined coefficients. From Theorem 2.1 in [7], we have 

(5... i (2) *£'-{£::;• 
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< G 

- I 

+ 

+ 

^ - ^ 

? "- | en " " ^ ^ + 1 
—^^tr~^^—^ 2 ^7"^' 
^ - ^ J ^ ^CN + ^ ^ s (N * 

<N <T"^ <̂  ^ 1 ^ 2 O 

+ J2_" ' ^ L ^ i '~' + J2_" ' ^ L ^ i 1 
^ ^ ' " ^ " ^ t - a ^ ^ " ^ ^ " " ^ ^ 

S ^ ^ ( N ^ V ^ ĉ  ^ ^ < N ' (N * 

n ^ _ un (N *r ^ I n ^ _ un (N *r ^ I *- -, 

I 

+ —' + 

»0 <N 

• + I 
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Suppose we write 

(5.2) ^ = oo,(j) + fll,(ï) + --- + 4;)= io«4ï)-
Then we have, by the usual inversion procedure, 

= 2 akh)(-\)%,m = ( - i r ^ . 
Therefore, 

(5.3) fl|ffi, = (-i)« f ^ ( ^ ( - i r . 
/i = 0 V / ï / 

We give in Table III the first six values of Efs , that is, valid for all / ^ 2 
and 5- = 0, 1, • • •, 5 and the first six values of amt determined respectively 
by (5.1) and (5.3). 

We shall be using Table III for the case t = 2a. To this end, we require 
the residues modulo 2048 of each of the binomial coefficients occurring in 
Table III. 

THEOREM 5.1. For k = 3, 4, • • • 

(5.4) f 2 ^ 1 ) = 582 (mod 4096). 

Proof. The result is easily verified for k = 3. Assume (5.4) is true for k. 
Then we have 

(5.5) f 2 ^ 1 ) = 4096ak + 582. 

By a result of [3], 

(fkVi) - (22**) = 23k + 3Hh Hk = 1 (mod 2). 

Hence we have 

$;:) = {*;<) +n 
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= 4096ak + 582 + 23k + 3Hk 

= (4096)(û* + 23k~9Hk) + 582. 

The following generalization of Fjeldstad's result is a special case of a 
more general result of Jacobsthal [4]. 

LEMMA 5.1. Let \^s^qyk^\be integers. Let m = 2kq, n = 2ks and 
let a, /}, y, S be respectively the largest power of 2 dividing q, s, q — s, and 

( : ) • 

Then 

fe) - ( « ) = 2>k+*+°+l>+y+»Hk (Hk an integer). 

In Table IV below, we give, for various values of positive integers s and 
q, s ^ q, the power of 2 dividing/(& + 1) — f(k) and the residue modulo 
2048 of/(A:), where 

/ ( * ) - m 
TABLE IV 

s q f(k) a + fi + y Ô power of 2 residue mod 2048 

1 2 (v) 1 1 3A: + 3 582 

1 3 (V) 1 0 3k + 2 239 

1 4 
('/) 

2 2 3k + 5 1820 

2 4 (3:?) 4 1 3^ + 6 582 

1 5 ( V ) 2 0 3Â; + 3 237 

2 5 
(2 • 2*) 

1 1 3A: + 3 1554 

1 6 (V) 1 1 3k + 3 898 (A: ^ 3) 

2 6 
l2 • ÏJ 

4 0 3 A; + 5 239 

3 6 
IS '• t) 

1 2 3^ + 4 1820 (k ^ 3) 
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The evaluations of 8 depend upon the formula 

5 = Sm,n = s2(n) + s2(n - m) - s2(m), 

where s2(m) is the sum of the digits of m in base 2. The entries in the 
residue column are obtained as in the proof of Theorem 5.1. We note that 
the fourth and eighth entries could also be proven from the first and 
second by replacing k by k + 1. 

From Tables III and IV we are now in a position to establish our 
congruences for E*J where n = 2k, k = 3. The terms amt, 0 = m ^ 5, are 
computed as follows; 

ao,t = 1; au = - 2 ; 

a2j = 582 + 2 = 584 (mod 2048); 

aXt = -239(582) + 2(239) - 3(582) - 2 
= 944 (mod 2048); 

aAj = 1820(239)(582) - 2(1820)(239) - (582)(582) + 582 
+ 2(1820) + 4(239)(582) - 8(239) + 6(582) + 2 

= 1664 = - 3 8 4 (mod 2048); 

a5j = -237(1820)(239)(582) + 2(237)(1820)(239) 
+ 237(582)(582) + 1554(239)(582) - 237(582) 

- 2(237)(1820) - 1554(582) - 2(1554)(239) + 2(237) 
+ 2(1554) - 5(1820)(239)(582) + 10(1820)(239) 

+ 5(582)(582) - 5(582) - 10(1820) + 20(239) 
- 10(239)(582) - 10(582) - 2 

= - 7 6 8 (mod 2048). 

The fact that a6t = 1024 (mod 2048) would be established similarly. We 
also note that, for k = 2, we have 

(5) *2,, = {4) + 2 = 72. 

Since, for any choice of q and s (s ^ q) in Lemma 5.1, we have a + fi + 
y ^ 1, we obtain the following lemma. 

LEMMA 5.2. Let 1 ^ s ^ q, k ^ 1 be integers. Then 23k^2 is a divisor of 

(Pi) - (&)• 
6. Proof of theorem 3.1. We prove parts (ii) and (iii) of Theorem 3.1. 
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Part (i) is proved in a similar manner to part (ii), although the proof is 
somewhat simpler. In order to prove the validity of (3.2), we require the 
following. 

LEMMA 6.1. For n = 2, 3, • • • we have the following identities: 

In 
\ 08/7 — 3 j _ o4ft — 2 j _ / i \n i2n—\ 

85 
(6.1) 2 

s=0 

(6.2) 2 
s = 0 

n 

(6.3) 2 
n 

(6.4) 2 
5 = 0 

(6.5) 2 
5 = 0 

(6.6) 2 
5 = 0 

(6.7) 2 
5 = 0 

(6.8) 2 
5 = 0 

8« - 21 _ 08n-5 , / 

8n - 3 

) = 28»-3 + 24""2 + (-1)" 22""1 2 2'(*j), 

8Wg- 1 j = 28„-4 + 24„-3 + ( _ 1 ) B 22„~2 | ^ 4 ^ 

) = 28""5 + (-1)" 22"~2 2 2'(4,I
27 *), 

) 

) = 28" 

_ ( _ i r 2 2 ^ 3 2 ' 2 2
2 / ( 4 « 2 y 3^ 

) = 2 8 « - 9 _ ( _ 1 ) n 2 2 „ - 3 2 " 2
2

 2 ' ( 4 " ~ 3 ) , 

7 J = 28«—IO + 24"~6 

ir 2-3 Y 2'($ ; ?) 

8« - 4 ' 
85 

in - 5 
85 

in — 7 _ ^ 4 n - 4 

•)4« —5 

8n - 6 
85 

- ( " 
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Proof. Identity (6.1) is proved and (6.3) is stated in [7, Lemma 4.1.4]. 
Identity (6.2) can be proved using (6.1) and [7, Lemma 4.1.3(i)] after 
observing that 

2C"b- ,)- i2<«-->(S)-
Identity (6.5) follows by setting / = 0 and j = 8 in [7, Lemma 4.1.2(H)] 
after replacing n by %n — 4. Identities (6.6) - (6.8) can be proved in a 
similar manner. 

COROLLARY 6.1. For n = 2, 3, • • • we have 

(6.9) 2 (£)-0(mod22-- ') 

âCv) (6.10) Z O J ) = 0 (mod 2Z"~Z), j = 1, 2, 3 

V /8« - 4 \ 
(6.11) 2 , ^ ° " 8 5 " j = 0 (mod2 4 " - 4 ) 

(6.12) 2 ( 8 w
8 ; •>') s 0 (mod 22""3), j = 5, 6, 7. 

Proof. These are an immediate consequence of Lemma 5.1. It is also 
evident from (6.1) — (6.8) that the power of two on the right hand side of 
(6.9) — (6.12) is the largest possible. 

LEMMA 6.2. We have for positive integers n and k 

(6.13) 2 sA(kA = nk-H{kn - \){kn - 2)(kn - 3) 2 (kn^ 4 ) 
s=Q ^ ' * 5 = 0 ^ ' 

+ 6(kn - \)(kn - 2) 2 (k"k~
 3 ) 

^•>-»i(fato2) + i,|0(S)} 
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+ 10(7 - kV)(kn - 1) £ (k\- 2 ) 
s = 0 

s = 0 

\0(kn - \)(kn - 2)(kn - 3) 
s = Q 

+ 60(kn - \){kn - 2) 2 (kn
ks

 3 ) 

.?„(*"* 4)} 
(6.15) ± / ( £ ) - i*"5 [ikn-l)- (kn - 5) ± (*" J 6) 

+ 15(fc« - 1) •••(*» - 4 ) 2 ( ^ 5) 

+ 65(kn - l)(kn - 2)(kn - 3) ^ (kn ~ 4) 

+ 90(kn - \)(kn - 2 ) 2 ( ^ 3 ) 

+ 3.(*.-.)i(*"j2) + Î2(£)}-
Proof. To obtain (6.13) we write 

(6.16) / = 5fe"3[(fe - l)(fcs - 2)(fcs - 3) + 6(ks - \)(ks - 2) 

+ l(ks - 1) + 1] 

and use (6.16) in the left hand member of (6.13). Observing that for j = 1, 
2, • • • , k - 1 

(6.17) 2 (ks)(ks - 1) • • • (ks - j + 1 ) ( ^ ) 

= (**)(** - 1) • • • (kn - j + 1) 2 ( f c \7 7 j , 

and using [7, Lemma 4.1.3], yields (6.13). A similar argument proves (6.14) 
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and (6.15). 

Proof of Theorem 3.1(h). We now show that for n = 1, 2, • • • , 

(3.2) Efn s 1 - In + 5 8 4 ^ ) + 944(3) - 384^ ) 

- 768^J + 1024(jj (mod 2048). 

From [7, Lemma 4.1.1] we need only show that 

(6.18) 2 (\")f(s) = - 1 + /(0) (mod 2048). 

In this case 

(6.19) /(s) = —(45 - 9,342s + 15,916s2 - 13,080s3 + 7,600s4 

1,248s5 + 64s6) 

so/(0) = 1, and (6.18) becomes 

(6.20) 2 ( g j ) / ^ ) = ° ( m o d 2 0 4 8 ) -
5 = 0 

Since the denominator in (6.19) is odd, the numerator of each term will 
contain all powers of two for the quotient. From (6.19) we have 

(6.21) 2 o f e ) / ( , ) = ~ 2 0 ( £ ) « 5 - 9,342, + 15,916^ 

- 13,080s3 + 7,600s4 - 1,248s5 + 64s6) 

= T5 2 r,(«). 
4!) / = 0 

We thus consider the expansion of 
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one term at a time. We show here in detail the case / = 4, with 

r4(„) = 7,600 2 / f e ) . 

Setting k = 8 in (6.13) we have 

7,600>? 
T4(n) = (in - l)(8w - 2)(8« - 3) 

6(8« - l)(8w - 2) 2(«V) 

+ 7 ( 8 n - 1 , ; 2( 8 V 2 ) + i2fe) 
Thus, 

(6.22) T4(n) = 950n[al(n) + a2(n) + a3(w) 4- Û4(W) ]• 

Using (6.4) and (6.5) and observing that 2|(8« — 1)(8« — 2), we have 
2*"~3\ax(n) and 22n~~l\a2(n). From (6.1) and (6.3) we get 22n'2\a3(n) and 
22n~2\a2(n). Therefore, from (6.22) we have 22n~l\T4(n). Similarly, we can 
show that 22n~]\T0(nl 22n~x\Tx(n\ 22n~x\T2(n\ 22n"3\T3(nl 22n~1\T5(n), 
22n~~u\T6(n). Now, In - 11 ^ 11 when n ^ 11, so using (6.21) we have 
shown (6.20) for n ^ 11. A direct calculation confirms (6.20) for I ^ n ^ 
10. Therefore we have 

2 (ln
s)f(

s) = 0 (mod 2048), n ^ 1 

which proves (3.2) and hence part (ii) of Theorem 3.1. 

Proof of Theorem 3.1(iii). We now show that, for t ^ 3, 

(3.3) 4 ? ' ^ = E$ (mod 23( + 2 ) . 
Write 

( -1) - ( -1) = 0 

g„(/) = E{fll F(2 ' ) 

Then we have 

g,(0 = £(
2-V

} - £2/ 

(2 rM) 
£2(0 = ^ + 1 2 

77(2') 
~ ^2 '2 *»-{(?")-'}-{ft')-'} 
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= 2 3 ' + 3 H2(t) 

by Fjeldstad's result ([1], p. 47 or [3]). Suppose now that gr{t) = 0 (mod 
23/ + 2) for r = 1, 2, • • • , w - l ; / S 3 , o r equivalently that 

£^ '"^ = E^r + 23/ + 2 A:n r = 1, 2, • • • , n - 1; / ^ 3. 

Then by (5.1) we have (for n ^ 2) 

n - l 

gn(t) = - 1 + ^ 2r+i J - 2 . \ 2 r + V / £2'Mr 

- (?:) *£'} 

-(p)-(?)-;?;^'{(^)-(?;)} 
AZ — 1 / . i i \ 

ly + 1 K„. 

COROLLARY 6.2. For all t i£ 3 

(4.9) £ ^ = 1 - 2/i + 584(5) + ^ l ? ) " 3 8 4( î ) ~ 768(?) 

il) + 1024 " (mod 2048). 
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Proof. Since for / ^ 3, 2 3 r + 2 ^ 211 - 2048, it suffices, from (3.3), to 
consider the case / = 3. But this is precisely (3.2) from Theorem 3.1. 

Remark. For t = 2, the congruence is similar except that the coefficient 

of ( 2) is 72 instead of 584 (see (4.8)). Also, Corollary 6.2 verifies 

Conjecture 4.1(vi) in [7] for k = 3 (the result for k = 1 and k = 2 is given 
in [2]). 
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