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BOUNDARY VALUE PROBLEMS FOR HARMONIC 
FUNCTIONS ON THE HEISENBERG GROUP 

CHARLES F. DUNKL 

Analysis on the Heisenberg group has become an important area with 
strong connections to Fourier analysis, group representations, and partial 
differential operators. We propose to show in this work that special 
functions methods can also play a significant part in this theory. There is a 
one-parameter family of second-order hypoelliptic operators Ly, (y e C), 
associated to the Laplacian L0 (also called the subelliptic or Kohn 
Laplacian). These operators are closely related to the unit ball for reasons 
of homogeneity and unitary group invariance. The associated Dirichlet 
problem is to find functions with specified boundary values and 
annihilated by Ly inside the ball (that is, Ly-harmonic). This is the topic of 
this paper. 

Gaveau [9] proved the first positive result, showing that continuous 
functions on the boundary can be extended to L0-harmonic functions in 
the ball, by use of diffusion-theoretic methods. Jerison [15] later gave 
another proof of the L0-result. Hueber [14] has recently obtained some 
results dealing with special values of the Poisson kernel for L0. Greiner 
[10] suggested that the Ly-problem be treated by means of decomposition 
according to the unitary group action. This is the approach used here. The 
Poisson kernel associated to each irreducible unitary group module will be 
found, and an L2-type convergence theorem will be proved, for all values 
of y satisfying —N<y<N (on the Heisenberg group HN, N = 1 ,2 , . . . ) . 
It remains, as yet, to establish the convergence of the summation over all 
the modules, but the Poisson kernel is at least formally known. 

The operator Ly is a prototype of homogeneous differential operators on 
nilpotent Lie groups, and there is a general theorem of Helffer and 
Nourrigat [12] that such an operator is hypoelliptic if and only if all of its 
images under continuous irreducible representations (of the group) are 
injective. This occurs for Ly for all y G C with the non-hypoelliptic 
exceptions y = ±N, ±(N + 2), zt(N + 4), . . . . This was first shown by 
Folland and Stein [6] who also constructed the fundamental solution. It is 
striking that the Dirichlet problem can not be solved in general on the 
ball, for Ly when y ^ - iV or y ^ iV, a much larger set than 
the exceptional values for hypoellipticity, as will be shown in this paper. 
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HEISENBERG GROUP 479 

The unitary group decomposition of the Dirichlet problem leads to a 
boundary value problem on the upper half of the unit disk in the complex 
plane. Our method is to conformally map the disk to a strip and to 
transform the associated differential operator into one which commutes 
with translation along the strip. This allows the use of Fourier transforms 
and it becomes possible to determine the Fourier transform of the Poisson 
kernel; indeed it is a ratio of entire functions both of which are 
representable as Laplace transforms of compactly supported functions. 
We will also discuss the relationships between the Poisson kernel and the 
harmonic polynomials introduced by Greiner, and finally we will mention 
areas for further investigation, especially complex values of y, and the 
problem of continuous boundary values. Certain hypergeometric func
tions and a family of Meixner-Pollaczek orthogonal polynomials form a 
fundamental part of the analysis. 

1. The differential operator and its Fourier transform. The Heisenberg 
group HN is the space C^ X R furnished with the group operation 

(z, 0 • (w, s) : = (z + w, t + s + 2 Im (z, w) ), 

where N = 1 ,2 , . . . and 

N 

<z, w) := 2 Z:Wi9(z,w G C*) . 

The left-invariant tangent fields are spanned by 

7 3 - 3 
Z, := h iZj—, 

1 dzj Jdt 

Z, : = — - iz,--, 1 s _/ g JV, 

and 

dt 

and the subelliptic Laplacian is 

1 N 

L:= - - 2 (ZJZJ + ZJZJ) 
2 7 = 1 

(see [6] ). For y G C define the operator 

Ly:= L + iyT, 

(this arises f or y = ~N+2, —N + 4, ...,N~2 when applying £2h to 
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forms [6] ). We say a twice-differentiable function/on an open subset of 
HN is Ly-harmonic if Lyf = 0. 

The unitary group U(N) acts on HN by w(z, t) : = (uz, t), u e U(N), 
(z, /) G HN, and the action induced on functions commutes with Ly. The 
U(N)-oTbits of HN can be indexed by 

c(z, t) := t + i\z\2. 

Important £/(7V)-invariant sets are the ball 

B:= { ( z , 0 e HN:\c(z,t)\ < 1} 

and its boundary 

W:= {(z,t):t2 + \z\4 = 1}. 

The Dirichlet problem for Ly on B consists of extending functions on dB 
to Ly-harmonic functions on B. This problem can be decomposed into 
[/(iV)-modules and the trivial U(N) component is actually typical. We will 
first present the solution to the Dirichlet problem for [/(Af)-invariant 
functions (that is, depending only on c(z, /) ), and then show how any 
other U(N)-modu\e can be treated. 

In terms of c(z, t) we are considering the upper half of the complex 
plane, which we will conformally map onto a strip, with the half-disk 
being mapped onto a narrower strip. We will find a transformed version of 
the original differential equation which is invariant under the action 
of translation parallel to the axis of the strip. We begin with the 
half-disk. 

1.1 PROPOSITION. Let g be a twice differentiable function on an open 
subset of{Ç G C:Im f ^ 0}, 

W ) ) _ a ( t t _ f ) M > _ f c i ) 9g(f) 
3£3£ V 2 / 8? 

where f = / + /|z|2, (z, /) G {an open subset of) HN. 

1.2 Definition. Let a, fi e C and define a differential operator on 
functions on C by 

Thus our Dirichlet problem reduces to finding functions on 

{S e C:|f| â U m U O } 

annihilated by Dap in { |f| < 1} with specified boundary values on 
{If I = 1}, where 
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a := (N - y)/2, fi : = (N + y)/2. 

The homogeneous polynomials annihilated by Dao are already known: 
namely the Heisenberg polynomials 

j=oj\(n - j)\ 

(introduced by Greiner [10] with a different notation; Gasper [8] found a 
complex orthogonality on the entire circle). Greiner and Koornwinder [11] 
pointed out that the hypoellipticity of Ly implies that any function 
Ly-harmonic in a neighborhood of (0, 0) <E HN must be real-analytic, and 
if it is also £/(JV)-invariant, then it has an expansion 

oo 

2 anC^\t + i\z\2) 

at least locally at (0, 0). 
From our work [4] on the limiting case a = (1 — /z)*>, /? = (1 + JU)Ï>, /x 

fixed, v —» 0 + , we are led to study the effect on Dap of the Môbius group 
fixing the upper half disk. This group consists of the transformations 

l + ?(th 0 

note that 

Define the conformai map 

which maps the open unit disk to the strip 

{ _ 77 77 1 

a + ir:o e R, — < T < - ? 
4 4 J 

Then 

pG^tf)) = p(f) + f, ( { ^ ± U e R). 

In the sequel we only require a > 0 and /? > 0 and let *> : = (a + /})/2 
(that is, it is not necessary for N = 2v to be an integer). 

Applying the map p to Dap we get: 

DaB8(p(Ç) ) = * s i n 2 T c h P c h P r ^ - a ch2 p — + /? ch2 p —, 
dpdp op dp 
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where r = Im p. We try an integrating factor of the form 

(chp)A(chp)B 

to get a differential operator commuting with translation, that is, with 
coefficients independent of o = Re p; indeed A = a, B = /? works. 

1.3 PROPOSITION. 

Daf/i (ch p)"(ch p / g ( P ) ) = ^(ch p)a + 1(ch pf^iy^ip), 

where 

( 82 82 \ 

do OT ' 

+ 2COS2T(2 Ï ' i(fi - a ) — ) , 

p = a + h; and Dapg = 0 if and only if 

D'a/i( (ch p)" a(ch p)-^g) = 0 

for functions on the strip. 

Since D'ap commutes with translation (in a) we will solve the associated 
Dirichlet problem by a convolution integral, on the upper edge of the 
strip S. 

We reduce the equation to an ordinary differential equation by taking 
Fourier transforms in a. 

For smooth functions g on the strip let 

,r):= jRg(o,T)e-iy°do 

(y G R, for each T for which /R |g(a, T) \do < oo). Then D'apg = 0 
implies 

(sin 2T) —^g + 4*<cos 2T) — g 
or or 

- ( (sin 2r)(4a/3 + y1) - 2(0 - a)>> cos 2r)g = 0. 

Under the change of variable t = 1 — e~4lT the equation becomes 

3^ 

3?2 " 3 / ' 
s«(i - o~,/2('(i - tf^g - (i - oe - K2 - o)^g 

• *G• £) - ( ^ M - ° 
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This turns into the hypergeometric equation by use of the integrating 
factor (1 - t)h{y) where 

h(y) = - - — or — h —. 7 2 4 2 4 

The unique solution of D^k = 0, up to multiplication by functions in y, 
which is regular at T = 0 (t = 0) is 

(1.4) kafi(y, r) : = e-^-y\Fx[
V ~ £ / 2 ' a; 1 - e'4lT), 

normalized by kap(y, 0) = 1; and the hypergeometric function is given by 
the series in 

|1 - e~4lT\ < 1. 

Since this function is fundamental in all that follows, especially at 
T = 77/4, we need a better representation; indeed for real r the series only 
converges for |T| < ml 12. 

1.5 THEOREM. For a, p > 0, y e C, 0 < T ^ m 14, 

K£y> T) = " ( s i n 2T)1 _ a~^ 

X JT_re
yt(sm(r + O f ^ C s m O - t)f~Xdt\ 

also 

(//ere 5 denotes the beta-function) 

Proof. By the Euler integral formula 

ka^y,r) = e-2iTa-yTB(a,H)-] 

X fQ ta-\\ - / / - 1 (1 - t{\ - e"4iT))~v+'y,2dt, 

(note this integral becomes singular at t = 1/2 as T —» (-n/A) — ). Make the 

substitution 7 = -(1 — th x) to obtain 
2 

M * T> = - è - 4 X exP( ̂  " a*x + 'T> )(ch *r'~°"2 

X (ch(x + 2/V) )~'+/> /2dx. 

This is an integral of an analytic function whose singularities nearest to R 
are 
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77 77 

x = ± - / and x = ± z - — 2/T, 
2 2 

and so the path of integration can be deformed to R — ir (by the usual 
large rectangular contour method). This gives 

kJy, T) = t e^-a)x(ch(x - ir))-"-»'2 

X (ch(jc + ir)yv+iy/2dx. 

This formula shows that 

M ^ ~ T) = Kfk~y>T) = kpa(y>T)-

Now make the substitution 

e2x = sin(T - /)/sin(T + t\ -r < t < r 

to get the required form kap. 

Note that in the proof, as in the sequel, we always use the principal 
branch of complex power functions. 

1.6. COROLLARY. For a, ft > 0, -77/4 ^ T ^ TT/4, y e R, ka^y, T) > 0, 

/«deed, 

0 < « T ^ A ^ O , T) ^ kap(y, T) ^ « W y O , T). 

Further for each r ¥* 0, fca0 w # convex function of y, that is 

( £ ) * , , a£y> T) > o. 

The relevance of kap to the Dirichlet problem is as follows: suppose g is 
a function on the strip 

{ _ 77 ^ 77 I 

a + /Via G R, — < T S - # 
4 4J which is reasonably well-behaved and such that D'apg = 0, then 

g(y, T) = h(y)kap(y, r) for some A; 

further 

g(y, 77/4) = h(y)kap(y, 77/4) 

implying that 

g ( ^ T) = g(y, v/4)(kaf£y9 T)/kaf£y, 77/4) ), 

and so g(a, T) is the convolution of g(o, IT/4) with the kernel Ka^o, r) 
where 
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To establish the existence and necessary properties of Ka^ we will develop 
some bounds and asymptotic expressions for kap. However, first we 
consider some immediate consequences of the theorem. 

The special case a = /? = v allows a more explicit formula. 

1.7 THEOREM. 

KVv\y> T) - 2*\\ v + i/2 > S m V2r) J 

— 77/4 ^ T ^ 7T/4, y <= C, and 

A-•IK> 
T( (*> + l)/2 + />/4)T( 0 + l)/2 - z>/4) 

an entire function with zeros at 

y = ±2i(v + In + 1), n = 0, 1, 2, . . . . 

Proof. The expression for &w(j, T) comes from applying a quadratic 
transformation ([5], vol. 1, p. 112, #26) to 

Iv - iy/2, v. _ -4IT) 

The Gauss sum can be used for hvl\y9 - I. 

Later we will state the explicit form of Kvv(o, r). 

1.8 PROPOSITION. For a, fi > 0, — 77/4 ^ r ^ 77/4, 

Mo^) = 2^1(:
/+'f/

/
2
2;sin22T). 

Proof. Use the same quadratic transformation as in 1.7. 

We can find an upper bound for \/kan(y, 77/4) which appeared to be 
fairly sharp when tested in several numerical experiments. 

1.9 THEOREM For a, ft > 0, — 77/4 ^ r ^ 77/4, 

ka/£y, T) ^ (r(^)2/(r(a)r(i8)))fcw(0, T); 

/« particular 

k^y, 77/4) g ( r ( ? + ^ ) r ( , ) 2 77 1 / 2 ) / ( r ( a ) r (^ ) r ( ( . + \)/if), 

(y e R). 
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v+s~Xdt 

Proof. Fix v, T and let 

F(y,s) := jT_Teyt(sm(r + t)Y~s~\sm(r - t))1 

= /__T eyt+sg(t)w(t)dt 

where 

w(t) = (sin(r -h O s m ( T ~ 0 ) " _ 1 a n d 

g(0 = log(sin(T + 0/sin(T - t) ). 

We will show F (y, s) ^ F(0, 0), for y e R and — v < s < v. Indeed g is an 
odd function, and w is even implying that y = 0, s = 0 is a critical point of 
i7. Then by the Cauchy-Schwarz inequality 

d2F I /a2 / r \ l /2/a2/7\ i /2 
< 

/ ^ p \ l / 2 / 9 2 ^ \ l / 2 
1dyds ' \ dy / \ds 

Thus F has a global minimum at (0, 0). Finally we note that 

Kaf£y, T) = 5(a , j S ) " 1 / ^ , (/? - a)/2). 

We get F(0, 0) from Theorem 1.7. 

By use of distributions we can extract a family of solutions of D'apf = 0 
from kafi. 

1.10 Definition. For y = 0, 1, 2, . . . let 

^ y ( T ) : ^ 5 ( a , ) S ) - 1 ( s i n 2 T ) 1 - 2 ï ' 

/ : , X / _ ^(sin(T + 0) a _ 1(s in(T - t)f~xdt 

77 
for 0 < T ^ - , and 

4 

^ A / - T ) = ( - l ) ^ a A y ( T ) , ^ 0 ( 0 ) = 1, A ^ / 0 ) = 0 

for y > 0. That is, 

1.11 THEOREM. For « = 0, 1, 2, . . . 

Proof. We must show 
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Vai>((°-if)nK4y>r)\y-o) =0 
9y 

(as a function of a, r). Because kap is annihilated by the Fourier transform 
of D'ap, this is a consequence of the identity 

when jy = 0, where F is a function of y. But 

(a - /l)"o>)mF(j) 
dy 

m 

j = maxi 

and at y = 0 the sum reduces to 

n\ ( 3 V _ m 

\a - i — J F(0), (Oif « < m), (« — m)! V 9y 

which is the same as 

(£)"(-4)-«* 3y-

Thus we have found a family of Z)^g-harmonic functions which are 
polynomial in a. They are unbounded at a = ±oo but are of relatively 
slow growth. 

2. Bounds for the Poisson kernel. The next task is to show that 

is a Fourier transform for each T, 0 ^ T < 77/4, and to establish uniform 
upper bounds for this function in y e R, 0 ^ T ^ 77/4. 

2.1 PROPOSITION. There is a constant Cap depending only on a, /? such 
that 

ka^r)^Capmin[- ^ ) e ^ 

for y ^ 0, and 

M * r) Î Ca, m i n ( I , ^ s ) * _ T V 

for y ^ 0, 0 ^ T ^ 77/4. 
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eyy 

Proof. It suffices to consider j ^ O . Assume first a =£ 1 and fi ^ 1. In 
the formula of 1.5 use the bounds 

(sin(r + O f - ' = (sin 2 T ) " " ' and 

(sin(r - t)f~x ^ (T - tf~x 

to obtain 

k^y9 T) ^ *(a , ^ - ^ s i n 2 r ) ^ f \ r evt(r - tf~Xdt. 

The integral ^ eyT(2r)^/fi and also equals 

3 / r ^ ^ _ 1 * = e^y-HTtf). 
Thus we require 

Ca* è sup B(a, fi)~l(2r/(sin 2r) f = B(a, p)-\ir/lf. 

If 0 < fi < 1 then 

(sin(r - t)f~X g ( ( T - / ) ( s in2T) / (2 r ) / " 1 

and we proceed similarly with a slightly different bound for Cap. If 
0 < a < 1 then split up the integral into two parts to get 

kaf£y, T)^B(a,py\sm2r)l-2v 

X I J (sin(r + t))a"\sin(r - t)f~Xdt 

+ (sin 2 r ) a _ 1 J ^ e^(sin(T - f ) / " 1 * ] . 

The first integral is less than some constant (depending on a and fi) times 
'^_1, and the secon 

2.2 PROPOSITION. 

T " , and the second integral is treated similarly to the above. 

i / M / x Z7 /«> P> v "" '>/2. ? + *>/2 • 20 ^ 
M ^ ^ ) M ~ ^ T) = 4̂ 3 { 2v, v^v+ m ' s m 2TJ> 

> r a, fi > 0, -ir/A ^ r ^ 77/4, j G C. 

Proof. For T near 0 ( |T| < 77/12) we use the 2F\ form of kao given in 
(1.4). By the identity (see [18], p. 80, #2.5.32) 

„ (a, b \ (a, c - b \ 
2 F \ C ; Z ) 2 F \ c ;z) 

— n — \~a
 P (a> b, c — a, c — b z \ 

~ U Z) 4^\c,c/2,(c+ l ) / 2 ' 4(1 - z)f 

(with a = a, b = v — iy/2, c = 2v9 z = 1 — e~4lT), the stated formula 
holds. Both sides are analytic in r and entire in y. 
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2.3 COROLLARY. For —IT/4 ^ T ^ IT/4, y e R, 

K4y> Wafk-y, T) § (r»2/(r(«)r(/?) ) )^,(j, T)2. 

Proof. For y e R each term of the 4F3-series is positive (for T T̂  0), and 
it suffices to show 

(a)n(fi\ = (T(v)2/(T(a)T^))(v)n(v)n 

(using the formula with a = /? = v). But if 

t ,_(<*)„(/?)„ 

" ' (")„(")„ 
then 

V H = 1 ( ( £ - « ) / 2 ) 2
 < t 

r„ (v + nf 
(if a, /? > 0), so {7„} is a decreasing sequence; further 

_ I » 2 T(q + w)rp8 + n) 
n ~ T(a)T(fi) T(v + « ) I > + w) 

which is asymptotic to r(*>)2/(r(a)r(£) ). 

We need a lemma to establish the key bound on kap(y, r). 

2.4 LEMMA. For v > 0, i7zere w a constant C'v depending on v such that 

\T( (p + l)/2 + z>/4) |2 ^ c ; (4(*> + l)2 4- y2y/2e~lyl7T/4 

for all y e R. 

Proof. We use the asymptotic expression for log T, to get 

log(r( (v + l)/2 + z>/4)I\ (? + l)/2 - (y/4) ) 

= log 2TT + (zV2)log((*> -f l)2/4 + j>2/16) 

- (*> + 1) - - arctan(>7(2(*> + 1) ) ) 

+ J((v + l)/2 + z>/4) + / ( ( ? + l)/2 - iy/4) 

where J is the Binet function (for example, see [13], p. 457). The Binet 
function has an asymptotic development and using one term we obtain 

1 1 f°° BXt) f 

J(z) = + - / 3-^dt 
W 12z 3 J ° (t + z)3 

(valid for z e C\[ —oo, — 1] ), where B% is the Bernoulli function of order 
3, a function of period 1 equal to 
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1 3 9 1 
r - -r + -t on 0 ^ / ^ 1, 

2 2 
thus |£f(0 I = V3/36. From this bound, 

J{{y 4- 1/2 4 z>/4) 4- / ( ( y 4- l) /2 - z>/4) 

+ ̂  (_uj. 
36 Vy 4- 1/ 

by use of 

|r 4 z\ 3 ^ (f 4 R e z ) - 3 . 

Next we use the elementary inequality 

77 

x arctan x = —IJCI — 1 for x e R 
2 

and obtain 

- - arctan S (? + 1) - - | v|. 
2 2(? 4 1) 4 

These bounds suffice to establish the lemma. 

2.5 THEOREM. For a, ft > 0 //zere is a constant C'ap such that 

for 0 < T g TT/4, anJ |^| â 2(j> + 1), awJ 

(i/^(>,j))sc^(i + wV1*'4, 

w/iere Ô = ji for y > 0 a«c? Ô = a for y < 0. Further 

< oo. 

Proof. It suffices to consider _y > 0. By Proposition 2.1 and Corollary 
2.3, 

^ftlv, T) = ^ j , T)kapj-y, ir/4)kpp(y, IT/4)2 

Kfky> w / 4 ) M ^ ' vtWafk-y* ">r/4)kyp(y, w/4)2 

I » 2 kjy, 77/4)2 
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^ T(a)T(fi) 2 / l r ( j 8 ) \ / l T ( a ) \ 
= T— <-«/? mini —, * I mini - , I 

X e^+^k„(y, */4)-2. 

By Lemma 2.4 and Theorem 1.7 

kjy, mIA)'1 â C'XM.v + l)2 + y1)^'^'2 

for some constant C". Thus if y ê ZC? + 1) then 

(kap(y, r)/ka^y, 77/4) ) 

= Q V ^ A 1 + (2(" + l ) / ^ ) 2 ) ^ " ^ " 7 4 " ^ , (0 < T â 77/4); 

when T = 0 

(\/ka/}(y,ir/4)) ^ C;>/((2(r + \)/yf + \)ve^'\ 

The stated inequalities follow from these bounds. 
To show kap(y9 r)/kap(y, 77/4) is uniformly bounded we argue separately 

for T < 7T/8 and r ^ 77/8. 
For 0 ^ T ^ 77/8, the function is bounded by 

c^^{l^)^ + ^ + ̂ e' (2y)° 

which is bounded on y ^ 0. For 77/8 ^ r ^ 7r/4, the function is bounded 
by 

C'^iv + l)2 + y2f 

onO ^ y ^ 2(v + 1) and by 

on 7 ^ 2(V + 1). (C^0 denotes constants depending only on a and /? which 
may be different in different contexts.) 

It is relatively easy to obtain asymptotic results for y —» ±00. 

2.6 PROPOSITION. For 0 < T ^ 7r/4, 

TV} \ 

M ^ ' T) ~ ( s i n 27)~^-^rzy~^eTy <*sy-+ +00, 

M ^ T) ~ ( s i n 2 r ) ~ a ^ b r V 1 ^ 1 a ^ -» - 0 0 . 

i<wr/7zer 
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(kap(y, r)/kap(y, m 14) ) ~ (sin 2 T ) - 5 < T W * 7 4 ^ as y -> ± 0 0 

with S = fi for y > 0, 8 = a for y < 0. 

Proof. Consider the case j > 0 so that the integrand in the expression 
1.5 for kap in a neighborhood of / = T determines the asymptotic 
behavior. Indeed kap(y, T) is asymptotic to 

fi(a, i8)_1(sin 2T)1-2"(sin 2 r ) a - 1 • J *>*(T - f ) * " 1 * 

(as y —» + oo), and the integral is asymptotic to 

y-^nn), 
by Watson's lemma. A similar argument applies to y —> — oo. 

2.7 COROLLARY. For a, /? > 0, a«J —77/4 E T < 0 , 

\ sgny 

(M^ ^ M * ^/4) ) ^ (ë?< Wsin 2rf~a) * |VI(W/4 + T) 
, 1 |/| d i n z-i 1 i t : 

1 » 
Proof. Use the relation 

Note that kap(y, — 7r/4)/kap(y, 7774) is unbounded for a ¥= /3. 

2.8 COROLLARY. For —77/4 < T < 77/4, A:ayg( ,̂ r)/kap(y, 77/4) te a rapidly 
decreasing function of y, that is, 

sup y e R V3J7 v M > ' ' , r / 4 ) / 

/ôr eac/î m, « = 0, 1 , 2 , . . . . 

/ 3 V 
Proo/". For 0 < T ^ IT/4, I— I ka^y, T) is a multiple of 

v3y> 

/V(s in(T + 0) a - 1 (s in(T ~ t)f~Xdt 

so the same asymptotic relations as in 2.6 hold for each derivative, with a 
factor of (— 1)" for y —» — oo. This shows that 

has exponential decay as y —•> ±00, for each «. 

2.9 THEOREM. TTzere existe # smooth function Kap(o9 r) o« //*e s/rz/? 

£ = {a + /V:a G R, -77/4 < T < 77/4} 
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such that 
1) Kfky> T) = kaf£y, r)//cay8(j, 77/4); 
2) Kap(o, T) W a rapidly decreasing function of a e R û/îd /s analytic in 

a G C WJÏ/Ï 

|Im a| < 77/4 - |T|, 

/or eac/z T, —77/4 < T < 77/4; 
3) Kap(o, T) W positive definite in a e R. 

Proof. The existence of a rapidly decreasing function Kap(o, T) satisfying 
condition (1) comes from Corollary 2.8. From the exponential decay 
established in Proposition 2.6 we see that 

Ka/£o, T) = (1/277)^ eiya(kap(y, r)/ka^y9 TT/4) )dy 

is analytic in 

|Im a\ < TT/4 - \T\. 

Property (3) of course is a consequence of kap(y, T) > 0. 
Next we have to show 

( ^ ) " ( M J , T ) / V > ^ / 4 ) ) 

is a Fourier transform for each n. This follows from the expression 

where g(t, T) is infinitely differentiable in T for — 1 ^ / ^ 1 ; indeed 

g(t, T) = 5(a, ^)_ 1(T/sin2r) 

x /sin(r(l + t))y-Usm(r(\ - t))y~l 

V(l + / ) s in2r / \(1 - / ) s in2r / 

( d v 
Thus I— I Kap(o, T) exists for all «. 

3. The Poisson integral. We have enough information about Kap 
to define the Poisson integral for the differential operator D^g. We use 
LP(R + z'77/4) to denote the space of measurable functions on R + /TT/4 
(the upper edge of S) such that 

i ,0 \f(o + m/4) fdo < 00, 1 ^ /> < 00. 

3.1 Definition. F o r / e Z/(R 4- MT/4), 1 ^ /? < 00, let 

(O + IT G 5 ) . 
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3.2 THEOREM. For f e LP(R + in/4), 1 ^ /? < oo, P ^ [ / ] w « smo6>//z 
function on S such that 

jy^aiin = o. 
Further if\\f\\2 < oo r7ze/7 

/ | / ( a + m 14) - P ^ / K a + IT) |2Ja -> 0 OJ T -» (TT/4)_. 

Proo/l The fact that P'a0] is smooth follows from Kap(o, r) being 
rapidly decreasing in a, and smooth in (a, T). Similarly we can apply D'ap 
to P'ap[f] and interchange the integration with D'ap. The function 

a + i V H ^a/?(tf ~~ w, T ) 

is annihilated by D'ap for each w e R, because we can map Z)̂ # to its 
Fourier transform acting on 

If/ G L2(R + Z77/4), l e t / b e its Plancherel transform; then 

i fR | / ( a + zW4) - P^ [ / ] ( a + IT) \zdo 

277 ' V kap(y,7r/4)/ 

by the dominated convergence theorem. Here we use the uniform 
boundedness of kap(y, T)/ka^(y, 77/4) from Theorem 2.5. 

We note the uniqueness and reproducing properties for P'an. If / is 
smooth on the open strip and continuous on the half-closed strip (union 
with upper edge), annihilated by D'ap, and i f /has a Fourier transform on 
every line a + ir, —ml4 < T ^ 7774, then 

where fb = / | (R + zV/4), the boundary value. To see this, note that 
/ ( y , T) must be a multiple (depending on y) of kaJy, T). 

We apply these results to the original differential operator Da^ still 
considered on the strip. 

3.3 Definition. For a measurable function/on R + im/4 with 

i JR \f(a + iff/4) f(ch 2aypvda < oo 

for some p, \ Si p < oo, let 

3,/rf/Ko + IT) : = (ch(o - IT) )"(ch(a + IT) / 
x ^ / ( w + w/4)(ch(w - iw/4) ) ' 

X (ch(w + i«r/4) )"^](a + IT), 

a + IT e S1. 
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3.4 THEOREM. For a function f as in 3.3, Pap[f] is smooth on S and is 
annihilated by Dao. Further if 

JR \f(o + iv/4) P(ch 2o)~lvdo < oo 

then 

fR \(f(a + m/4) - Pa0](o + h) |2(ch 2a)"2"do -> 0 

as T —-> (TT/4)_. 

Pr^o/. This follows from Theorem 3.2 and the relationship between Dap 
and Uap established in Proposition 1.3. Further 

|ch(w - m/4)~a ch(w + iir/4)~p\ = I- ch 2w) \ 

The L2-convergence is a consequence of Theorem 3.2 and the uniform 
convergence of 

ch(a - ir)~a ch(a + ir)"^ 

to 

(ch(a - zW4) )~a(ch(a + /TT/4) ) - / ? 

as T -> 77/4, (a, /? > 0). 
We can find Kap explicitly when a = /? = v. 

3.5 THEOREM. For v > 0, 

# „ > , T) = 2~vJrXB(v + 1/2, 1/2) -1 

cos IT 
X 

(ch 2a + sin 2T)"(C1I 2a — sin 2T) 

X F ("' " ~~ *• 2 s i n 2 T ) 
2 ]V 2*> ' C h2a + s in2T/ ' 

Also Kvv(o, T) > 0 and the 2Fx-function assumes only values between 1 
and 

Y(2v)/(T{v)Y(v + 1) ), a G R, 0 ^ r < TT/4. 

/Voo/. When a = /? the operator Z>a)8 becomes the operator associated to 
the ultraspherical polynomials, and the Poisson integral for the half-disk is 
known, namely 

ré*^B(v + 1/2, 1/2)"1 flf(eie) f (^-^V 
J u „=o v y ' 

X C^cos 0)Cj(cos $)C^(l)_1(sin 0)2"d6 
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(where/is an appropriate function on the upper half circle and Cv
n is the 

ultraspherical polynomial of index v, degree n), 0 ^ r < 1, 0 ë <J> ̂  77. 
But the sum over n in the integrand equals 

(1 - r2)(l - 2r cos(0 + <j>) + r2)~v-\F] ("' ^ *; *(r, 0, 4>)J, 

where 

X(r, 0, <j>) = 4r sin » sin <J>/(1 - 2r cos(0 + <*>) + r2), 

from the sum found in [3], Corollary 3.7. Now we set 

re1* = th(a + ZT), ^ = th(w + /V/4), dO = -2 sech(2w)dw, 

and get 

*(/•, 0, 4>) = 2 sin 2T/(ch 2(a - w) + sin 2T). 

A transformation of the 2F\ series gives the stated formula. By Gauss's 
sum 

2̂1 ("' V ^ 0 = r(2")/(rWr(" + 0) 
and the 2^, -function is increasing, resp. decreasing, on 0 ^ Jf ^ 1, when 
v > 1, resp. 0 < *> < 1, because 

We observe that for each T with 0 ^ T < 77/4, 

tf„„(a, T ) ~ V 2 1 * * 1 * a s a - > ± o o 

(some constant AT depending on v and r). Even in the general case 
Kap(o, T) has exponential decay in a. The reason for this is the 
meromorphic nature of 

M-y» T)/ka^ 7 7 / 4) ' 
By a theorem of Titchmarsh [19], kap(y, T) is an entire function of order 
1, type |T|. In particular, kap(y, ml4) has infinitely many zeros 
{zf.j = 1 , 2 , . . . } with 0 < |z,| ^ |z2| ^ |z3| ^ . . . such that 

1) card{zy:|zy| < r} ~ r/2 as r —> 00; 

2) M-^ */4> = M0' ^/4) n ((1 - - V/z'); 
y = l ^ Z y / 

CO 

3) 2 Re(l/z ) is absolutely convergent. 
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In this situation we know more since 

R e f ^ j , 77/4) ) > 0 in |Im^| ê 2; 

indeed 

Ar/4 
Re(ka^y, 77/4) ) = J _^/4 e'^ cos(r Im y)W{t)dt 

where W(t) ^ 0 on —IT/4 ^ t ^ IT I A. Thus the zero set 

{Zj} c {y e C:|Im^| > 2 } . 

If a = ft = v the zeros of kvv(y, 77/4) are exactly the points ±2/(1 + v -f 
In). 

By a theorem of Cartwright [1] there is a region of the form 

{y e C:\y\ ^ r0, and |arg j | ^ 0O or | a rg ( - j ) | ^ 0O} 

for some r0 > 0, 0 < 00 < IT/2, that is zero-free. Thus any horizontal line 
(Im y = constant) has at most finitely many zeros of kap(y, 77/4). 

Let 

5 = min{lm y:kap(y, 77/4) = 0, Im y > 0}. 

From the above we know ô > 2, (we conjecture S ^ 2(1 + Va/?) )• The 
experimental evidence is strong that there is a unique zero a + z'ô, but 
regardless, a useful statement can be made. 

3.6 THEOREM. Let y- = # + iS, j = 1,. . . , m be all the zeros y of 
kap(y, 77/4) with Im y = S, then 

m 

Kap(o, T) ~ 2 (AMe10^-80 as o -> +oo, 
7 = 1 

where the A AT) are continuous complex functions of T, {note 

Z?y Theorem 2.9(3); to be used for o —» — oo). If for some T, #// ^4.(T) = 0 

*«/*<>> T) = o(e~m) aso-^ ±oo. 

Proof For notational convenience let 

7(7 , T) - /ca/?(.y, T)/kap(y, ml A). 

We use residue calculus to find 
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Ka^,r) = ^-fRf(y,r)e^dy. 

Assume o > 0, and integrate f(y, r)eiyo over the contour consisting of the 
rectangle with vertices at ztR, ±R 4- bi which contains all the points 
a- + iS but no other zeros of kap(y, IT/A), (thus b > S). We know 

f(±R 4- it, T) -» 0 

exponentially a s i ^ - ^ 4 - o o o n 0 ^ / ^ / > b y Theorem 2.5 (extend to 
complex arguments). Let R —> +oo to obtain 

/

OO foO 

_„ eiy°f{y, r)dy = e-h° J _ e^f{y + ib, r)dy 
+ 2m S elo{a^l8) Res(/(j>, r); 

y 

7 = a.• 4- iS) (the residues). 

The function^ •—»/*(}> 4- z'6, T) is analytic in a neighborhood of R and has 
exponential decay as y —» ±oo, thus its Fourier transform is uniformly 
bounded (in a). This part contributes 0(e~bo) = o(e~ °) as a —» -foo to 

4. Relation to Heisenberg polynomials. We will consider the problem of 
expanding the kernel Kap(o, T) as a series of Heisenberg polynomials, and 
also the question of density of these polynomials in a weighted 
L -space. 

The generating function is 

oo 

(1 - r?)-"( l - / * ) " * = 2 ^ C ^ ( f ) , |tf| < 1. 

Recall from Section 1 that 

0^:^(0 = o. 
Since Dap\ = 0 and D'ap is translation-invariation we have that 

D'afA(ch(o ~ s - ir)ya(ch(a - s 4- I T ) ) " * ) = 0 

for each fixed s e R (see Proposition 1.3). Each such function (of a 4-
ir G S) has a Fourier transform for fixed T, and hence is reproduced by 
P'afi. That is, 

JR(ch(w - s ~ i7T/4)ra 

X (ch(w - s 4- iw/4))~fiKa^a - w, T)JW 

= (ch(a - J - /V))~a 

X (ch(a - J 4- /V) )~^ , ( -77 /4 < T < 77/4). 
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We can use this to find the Fourier transform of 

4.1 PROPOSITION. 

2 2 , - l 

1 (2*>) 

/or -77/4 ^ T ^ 77/4, y e R (or |Im >> | < 2v). 

Proof. Since the Poisson integral P'ap reproduces the values of hap we 
have 

Kp(y>T) = Kp(y> vt^Ktky* T)/kap(y> ^ / 4 ) 

for —77/4 < T < 77/4; in particular 

M ^ 0) = M ^ vMVKLfky* fn,A\ 
But we can directly find 

kfky* 0) = JL ( * a ) " 2 ^ - ^ a = —— I> H- (y/2)I> - ,>/2) 

(a standard integral). Thus 

kp(y>T) = ^ J * o ) * ^ » *'*)Kpf<y> T)/kap(y>7T/4)' 
A 

(Indeed Aa^ can be found directly by using Barnes' type integrals, which 
led the author to the method of solution of the differential equation for 

The function kap can be viewed as the generating function for C^„\ and 
allows us to find their Fourier transforms. First we outline some facts 
about a family of Meixner-Pollaczek polynomials (due to Pollaczek [17], 
see also [4] for more details). 

4.2 Definition. For each A > 0 the Meixner-Pollaczek polynomials 
pn(x; A) are given by the generating function 

oo 

(i - itfx~A)/\\ + ity(ix+Ay2 = 2 fpn(x\A\ 

for |/| < 1; equivalently 

oo 

(ch s)Aeisx = 2 (i th s)"pn(x; A), |th s\ < 1, 
n = 0 

(this family is denoted by p„(x; A, 0) in [4] and by P^/2\x/2; 77/2) in 
[17]). 
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4.3 Properties of pn(x\ A). 
(\)pn{x\ A) is a real polynomial in x of degree n with leading coefficient 

\/n\, and 

pn(-x;A) = (-l)\(x;A); 

(2) (2A/(4*T(A) ) j [ />„(*; ,4)/>„(*; ^ ) UX (^ + ix)/2) \2dx 

the orthogonality relation, ra, « = 0, 1, 2 , . . . ; 
(3) for each fixed r with 0 < r < 1, and x e R, 

|/?„(JC; .4) | g r~"(l - r2)_ / [ / 2exp( |JC| arctan r); 

(this is proved by applying Cauchy's bounds to the generating function as 
an analytic function in /, integrating around the circle t = re1 , 0 ^ 6 ^ 
277, and using 

| (1 - it)ix/\\ + it)~ix/2\ ^ exp( |JC| arctan |/| ), x e R). 

4.4 PROPOSITION. 

oo 

/ra/3(a - w, T) = Aay8(a, r)(ch w ) - 2 " 2 (th w)"C(„a^(th(a + IT) ) , 
n=0 

with absolute convergence in |th w\ < 1, a + zV G S*. Further 

M Ma> r)C!,a'ft(th(a + IT) )e~;>"Va 

2 2 r - l 
= ( - / ) V r t ( j ; 2 . ) — — T(p + iy/2)T(v - iy/l)ka^y, T), 

for —mlA ë T ë w/4. 

Proof. We note 

M a ~ w, T) = (ch(a - IT) )"a(ch(a + IT) ) " p 

X (ch w)"2"(l - th w th(a - /T) ) ~ a 

X (1 - th w th(a + n))~p 

OO 

= hafto, r)(ch H O " 2 " 2 (th W ) W C^ ffi(th(a + IT) ) , 

(generating function). Now fix w, multiply both sides by e~lya and 
integrate over a G R. The result is 

oo 

e~iywha/3(y, T) = (ch w)-2' 2 (th vv)" 
n=0 
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X X V a > T)C^' f t(th(a + IT) )e-i>"da; 

the summation and integration may be interchanged by the absolute 
convergence and the bound 

2 |th w\n\C{«^\ ^ (1 - |th iv th(o + IT) I ) ~ l v . 
n 

Thus the required integral is the coefficient of (th w)" in the expansion 
of 

namely 

see 4.1. 

4.5 THEOREM. {ha^a9 *r/4)C(
w

tt'ft(th(a + ITT/4) ):n ^ 0} S/JUAW « dense 
set in L2(R + wr/4). 

iVotf/. Let g G L2(R) with 

X g(-o)ha/{p, 77/4)C (^(th(a + m/4))do = 0 

for each n. Then by the Parseval theorem 

JR g(y)P„(r, 2v)T(v + iy/2)T(v - iy/2)kaf£y, 7r/4)dy = 0 

for each «. 
Thus 

fR g(y)p(yW(y)dy = o 

for each polynomial /?, where 

W(y) = \T(v + i>/2) \2kaf£y, 77/4) > 0 

and 

W{y) = 0 ( | # e ^ ' 7 4 ) 

for some c > 0, by the bounds from 2.4 and 2.5. By a theorem of 
Hamburger (see [7], p. 84), polynomials are dense in 

L2(R, W(y)dy) D L2(R), 

thus g = 0. 

The theorem answers a question posed by Greiner [10]. 
We will use the orthogonality structure of the Meixner-Pollaczek 

polynomials to produce the biorthogonal set for {hapC^®:n ^ 0}. 
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4.6 Definition. For n = 0, 1, 2 , . . . , a, /? > 0, let 

an analytic function of w in |Im w| < 77V4. Note 

W . y ) = fyA-y; 2v)/kap(-y, m/A\ 

by the inversion theorem. 

4.7 PROPOSITION. The function >̂„ a^(w) w rapidly decreasing on w e R, 

W " ) = 0(e~'M)> 
(where 8 = min{Im>>:/;a£(j>, 7r/4) = 0, Im j> > 0} ). 

Proof. This follows from the asymptotic behavior of ka^(y, 7r/4), and the 
fact that <£„ ^ is the Fourier transform of a meromorphic function, and an 
argument similar to that of Theorem 3.6. 

4.8 THEOREM. For w e R, a G C VW7/Ï |Im a| < 77/4, 

a0 < oo. 

(ch a)2X/}(<> " w, 0) 

2 W / R " w ) ( c h a ) \ ^ > f f / 4 ) - > 

#ay8(a - w, 0) = (ch a )" 2 " 2 (th a»„ a / 8 (w) , 

vv/7/z absolute convergence, uniform for all w G R a«d a e R, |a| = a0; eac/z 
< oo. 

Proof Indeed 

(ch o)2'Ka 

1 f °° 
= 7 " JL *~,JW 2 < * t h a ^ ^ ; 2")M* ^r 'rfy, 

(using the generating function for pn(y; 2v), see 4.2). To justify the 
interchange of summation and integration, fix a and let |th o\ < r < 1. 
Then 

r oo 

JR 2 |thanA(j;;2,)|^(3;,77/4)-> 

/• CO 

(1 - ^ ) " " J R 2 ( |th o|/r)Bexp( blarctan r)kafi(y, v/4yldy < 
v ' / U 

«=0 
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L 

= (1 - ^ " " ( l - I tha l / r )" 1 fR(elylc/ka/i(y,-n/A))dy, 

where c = arctan r < IT/A. The integral is finite because 

log ^ ( j , 7T/4) ~ 77|j|/4 

(Theorem 2.5). 

4.9 THEOREM. 

C^'ft(th(w + m/4) )(ch(w - ml A) ) ~ a 

X (ch(w + ml A) )~^m^w)dw 

= 8mn(2p)n/n\, m, n = 0, 1, 2, 

Proof. By the Parseval theorem the integral equals 

1 /* 22 v~' 

- iW-'X-ov .^)— 
x n > +1>/2) i 2 * ^ , w/4>fy 

from 4.4. By definition of <£m a/8 the integral is a multiple of 

fRPm(y, 2v)pn(y, 2v) | I > + iy/2) \2dy 

for which see 4.3(2). 
(«,fli The functions {<#>„ ^ } are thus the biorthogonal set for {haf$CK„} 

and themselves span a dense set in L (R). 

4.10 PROPOSITION. The span of {<$>nap\n ^ 0} is dense in L2(R). 

Proof. By the Plancherel theorem we need to show {$n ap} is dense in 
L2(R). Suppose g e L2(R) and 

for all n, then 

x for each polynomial p. But the weight kap(—y, 7r/4)_1 satisfies the 
hypotheses of Hamburger's theorem and thus g = 0. 

In the special case a = /? = v we can show that 

* „ , , » = 21 ""£(»> + 1/2, 1/2)"1 

X ( (n + v)/v)Cn(th 2w)(ch 2w)~'~\ n â 0, 

(this is implied by the classical theory of ultraspherical polynomials, but it 
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can be proved directly by using generating functions and the Fourier 
transform of |T(^ + iy/2) |2)- One should note the asymptotic behavior of 
<t>nvv(

w) as w ^ ±00, namely 

(-\)"Ane-2lM(v+l); 

the influence of the zeros of kvv(y, IT/A) at ±2i(y + 1) (constants An). 
The Poisson kernel can be expanded in terms of {Cy^} and {<t>map}. 

4.11 THEOREM. 

Ka^o -w,r) = (ch(a - IT) )_ a(ch(a + ,Y) ) " " 

OO . 

«=0 (2v)n 

for a, w e R, —77/4 < T < TT/4; the convergence is absolute, and uniform in 
every region 

{(a,r):|th(a 4- IT) | ^ r) 

for r < 1, all w e R. 

Proof We showed in Theorem 4.8 that 

00 

SUp 2 ^|<|>„ao(>) I < OO 

for each r satisfying 0 < r < 1. Further 

|C^>(th(<T + /T) ) I =i ^ | t h ( a + /T) |". 

This gives the stated convergence, and thus the sum is continuous in a, T 
and w. We must show the function defined by the right hand side of the 
formula equals Kap(o — w, T). We do this by proving that both sides are 
in L as functions of w and give the same inner product with each 
hafiCm (suffices by 4.5). All that is needed is to show that the summation 
converges in the L2(R)-sense. 

Thus fix r with 0 < r < 1 and consider 

00 /• .. 00 /• 

2 r2" JR I W W ) l2^ = 7" 2 r2" ] \$n^(y) \2dy 

= — /„ 2 r2"|/>„(>,; 2*0 | \ ^ , 77/4)~2<fy 
277 • / K „ = 0 

ITT 

< * / I _ ^2^-2^/! _ / „ / , ^ 2 X - l 
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x JR e x P ( 2 M a r c t a n ro)kap(y>7r/4) 2dy < °° 

for r < r0 < 1 by the bound 4.3(3). 

5. The Poisson integral for other [/(TV)- types. First assume TV è 2. For 
each /c, / = 0, 1, 2 , . . . there is an irreducible [/(TV)-module Vkl consisting 
of polynomials/? in z , z", (1 = j = TV) satisfying 

p(cz) = ckclp(z\ (c G C, z G C*) and 

N d2p 
2 3 = 0 (harmonic). 

Further 

dim Vu = - . 
*' kill (N - 1) 

5.1 Definition. For fc, / = 0, 1, 2 , . . . , to £ C, parameter À > — 1 let 

R£)(o)) ; = (X + 1),+/ ^ / -*, - / J_\ 
k (X + 1)*(A + 1); 2 ] V - ^ - / - A' w 5 / 

These are called disk polynomials. 

The function # ( J " 2 ) i s t h e (U(N)/U(N- 1) )-spherical function for K*, 
(see [2] for details). Also if p G Vkl then 

Ly(p(z)g(t + /|z|2)) = 0 

(for (z, /) G 7/y) if and only if 

(as in Section 1, a : = (TV — y)/2, /? : = (TV + y)/2). This result is due to 
Greiner [10] for TV = 1 and was extended to TV ^ 2 in [2], and in another 
way by Korânyi [16]. 

Since the Poisson integral for Dap acts on the strip we will adopt a 
polar-strip coordinate system for HN\{ (0, / ) : / = 1 or t = — 1}. Let 

SN:= {z e c " : 2 | z / = l } 

and let 

£ : = {a + IT e C:a e R, 0 ^ T < TT/2}, 

then map SN X E into HN by 

(z, a, T) -> (z(Im th(a + /V) )1 /2 , Re th(a -f /Y) ). 
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The points with 0 ^ r < m 14 correspond to B (the unit ball), and those 
with r = 77/4 to dB\{ (0, ± 1 ) }. 

Proposition 1.3 in this context asserts that for p e Vkl the function 

(z, a, r)\->p(z sgn(ch(a + ir) ) ) 

X (sin 2r)( /c+/) /2(ch(a - ZT))a(ch(a + ir)fg(o, T) 

is Ly-harmonic if and only if 

The calculation, as well as others in the sequel, use the identity 

(Im th(a + /r))(/c + /)/2(ch(a - ir) /(ch(a + ir)f 

= (l/2sin2rf+/) / 2? /^, 

where 

£ = sgn(ch(a + ZT) ) and 

sgn(co) := co/|(o| for <o G C\{0}. 

We will find the Poisson integral for functions of this type defined on 
3£, (T = IT/4). 

To use harmonic analysis on U(N) let m denote the normalized 
£/(7V)-invariant measure on SN, and let {\pj'A ^ j ^ dim Vkl) be an 
orthogonal basis for Vkl with 

JsN 
tj(zWn(z)dm(z) = Sjn/(dim Vkl). 

er functions on dB of the form 

(5.2) / ( z , w) = 2 (dim K^ . ( z ) ( Im th(w + zV/4) f+ / ) / 2 / ; . (w); 
y 

note 

f.(w) = (Im th(w + Mr/4)) _ (*+ / ) / 2 J 5 / ( * , w)^(i)rf/w(z). 

5.3 Definition. 

PaW/[/](z,a,T):=(ch(a - /T))" 

X (ch(a + h) f js jR /(*', w) 

X (ch(w - z W 4 ) ) - a 

X (ch(w 4- m/4))"p • Ka+ltP+k(o - w, r) 

X ^ " 2 ) ( s g n ( c h ( a + rr)/ch(iv + ZTT/4) ) 

X (z, z'> )dwdm(z'). 
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5.4 THEOREM. 

vw/i= ° and 

is an L -sense (namely, for (ch 2o)~Ndodm), for f of the form (5.2). 

Proof Convergence follows from properties of Pa+l^+k (Theorem 3.4) 
applied to J^/-valued functions on the strip (and Vkl is finite-dimensional). 
So it suffices to show that the definition actually implements the Poisson 
integral from 3.3. Indeed applying Pa+l^+k to the given/(as in 5.2) we 
obtain 

(ch(a - zV))a(ch(a + IT) / ( s in 2r) (^+ / ) / 2 

X 2 (dim K„ty(sgn(ch(a + h))z) 

X JsN X / ( Z ' ' W)(0h(w ~ ^ /4))"a(ch(w + m/4)yp 

X ify(sgn(ch(w 4- Î7T/4) )z')Ka + lj3+k(o - w, r)dwdm(z'). 

(Note we are using the homogeneity properties of $• e Vkl.) Combine this 
with the spherical function identity 

2 (dim V^iz^jiz') = 4 r 2 ) ( <*, z') ) 
j 

to establish the formula of 5.3. 

For N = 1 these formulas still hold, but only V0i, Vk0 occur, and 

4ô'V) = «*, 4",)(«) = "'• 
To define the Poisson integral for all measurable functions on dB 

satisfying 

1 L "<*• w) |2(ch 2w) Ndwdm(z) < oo, 

we would need to bound 

sup^R(sin 2T){k+l)/\ka+l^k(y, r)/ka+ltfi+k(y9 ir/4) ) 

over all k, /; each T < -77-/4. This remains to be done. 

6. Further problems. 

6.1. Complex values of a, ft. We mean the situation a + ft = 2v > 0 but 
a, ft allowed to be complex. The original definition (1.4) for kao(y, T) is 
meaningful for all a e C, but with restricted T, while the formula of 
Theorem 1.5 requires Re a > 0 and Re ft > 0. We can, however, use 
Proposition 4.1 as a definition for all a e C: 
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(6.2) kap(y, T) = 2x-lvY(2v)(T{v + iy/2)T(v - iy/2)) ] 

X JR e~lvo(ch(a - IT) )_ a(ch(a + ir))~fido, 

( - 7 T / 4 ^ T ^ 77/4). 

We will show that ka^{y, IT/4) has real zeros when a < 0 or /? < 0 so 
that the Dirichlet problem cannot be solved in general. However 

{hafiC^:n ^ 0} 

is still dense in L2 (in other words, density of boundary values of 
Ly-harmonics does not imply extendibility). 

Here is a sketch of the density argument: for a G C and g e L (R) such 
that 

fR g(-°)hap(°> 7r/4)C^}(th(a + i7T/4))do = 0 

for each n we deduce that 

JR g{-°)Kpka ~ w> n/4)do = 0 

for all w G R by using Proposition 4.4 and the bound 

|C<, a '%)l=i |f |"(|a| + m )„/«!; 

but then 

g(yAfAy> ^ / 4 ) = o 
and hap is analytic in a neighborhood of R, thus g = 0. 

First we consider the exceptional (non-hypoelliptic) values of y, namely 
±(N + 2m), m = 0, 1 , 2 , . . . . Then a or /? = —m. Because of the 
symmetry 

V ^ ' T ) = k«p{-y>T) 
we will discuss only a = —m. From (1.4) we see that 

M ^ > T ) = e~yrp(y>T) 

where /? is a polynomial of degree m in j so that 

kapty> T) "^ ° asj^ -> + oo. 

In fact we can show 

M*w/4) = (-Dm^ /4(:ff K^; 2,); 
and this has m real zeros because pm is one of a family of orthogonal 
polynomials. 
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We now proceed to non-integral values of a < 0. For this we establish a 
three-term recurrence for kap. 

6.3 PROPOSITION. For any a, ft with a + /? = 2v > 0, y e C, —77/4 ^ 
T â 7T/4, 

= ( ( / } - <x)cos 2T - .y sin 2r)kap(y, T). 

Proof. It suffices to establish this identity for Aaj8 by Proposition 4.1. 
The identity follows from 

6.4 THEOREM. For a, fi e R, a 4- £ = 2v ^ 1, 

M * * / 4> - ^ J - ^ M a* J - +00; 

M * ^/4> - ~ \y\-«e-^ asy-> -00. 

Proof. This has been established in 2.6 for a > 0, and /} > 0, and for a 
or /? = 0, — 1, — 2, . . . at the beginning of this section. We introduce 
auxiliary functions for € = 1 or — 1 by 

fa^(y) : = cfi(a, /J)"1 / " ' * ^ ( s i n ( ^ + * ) ) " ' 

X (s inf - - r) I du 

The integral is valid when fi > 0 and £ = 1, or a > 0 and c = — 1 ; but we 
use the identity 

kafif,y^/4) =fap,\(y) + fap,-\(y) 

to define/ay8e for all values of a, /? satisfying a + /? > 0, (at least one of 
the integrals must work). We claim for e = zbl and a + /? ^ 1, a G R, 
that 

(6-5) fifa-ltfi+Uy) ~ <*fa+l^u(y) + #^£(j) = - d 1 " ' / ^ * , 0). 
Indeed one of a ^ 1 or /? ^ 1 must hold, say /? ^ 1, then the identity 
can be verified for e = 1 by integration by parts. Then (6.5) must hold for 
c = — 1 by using 6.3 with T = 7r/4. 

Now by Watson's lemma 

r(«) 
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as y —» +00, when fi > 0. Also 

fa(3,-\(y) = 0(\) as.y —> 00 when a > 0. 

We prove the theorem for the values a = a0 — n, n = 1, 2, 3, . . . , for 
fixed a0 with 0 < a0 < 1. Then 

and 

0 ° r(«0 - «) 
as ^ —> -f 00. We claim 

fao-nA+n,-i(y) = 0(f) 

as _y —> +00. We prove this inductively from the recurrence (6.5) which 
starts w i t h / ^ _ , ( ; ; ) and 7^+1,^-1 ,_ i ( j ) both of which are 0(1) as 
y —> 00 . 

For y —> — 00 we will again use the recurrence starting with fca ^ and 
/ca +lwg _ j . Both of these satisfy the prescribed asymptotic relationship; if 
fi0 < 1 then use the above argument with a, fi reversed. Inductively we 
show that the dominant term as y —> — 00 in ka _n o +n(y, 77/4) is 

(~y)" T ^ I y |-«o^bl/4 =
 r ^ 2 y ) I m-«o^l-vl/4 

(A))* r(A)) r()80 + *) 
6.6 THEOREM. Let a0 + /?0 = 2*> ̂  1 <z«d 0 < a0 < 1, fAew 

/i<zs a/ /easf <2«e real zero, n = 1, 2, 3, . . . . 

Proof. Let 

By Theorem 6.5, #„(>>) -» 00 as y —» — 00 for n = 1 , 2 , . . . . Further 

as j> —» -f 00, that is qx(y) —> —00. We inductively construct a real 
sequence {yn} such that 

ft» Ok) = 0 , ^ + 1 <>>,, and 

>>„ = inf{^ G R : ^ ) = 0}. 

Since qx changes sign on R we assert the existence of yx. Also q0(y) > 0 
for all y e R. Assuming that 7,, . . . , ym have been constructed the 
recurrence 6.3 shows that 
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(A) + ™)qm+\(ym) = («o - m)qm-\(ym\ 
that is 

sgn(^m + 1(^m)) = -sgn(^ m _ 1 (^ m ) ) (m â 1). 

But by hypothesis ym < ym_] and qm_](y) —> +00 as y —» —00 thus 

4m-\(ym) > °> a n d ^m + iCJm) < °- T h u s ^m + i h a s a s i g n change in 
(-°°>ym)' 

6.7 COROLLARY. If N ^ 1 a«rf y ^ — TV or y ^ N then the Dirichlet 
problem for Ly on the ball B in HN can not be solved for all L boundary 
values. 

Proof For these parameter values ka^y, 77/4) has real zeros (or —> 0 at 
±00 when a = 0 or ft = 0). Thus the Poisson kernel Kap(o, 0) can not 
exist, or else \/kap(y, TT /4) would be a Fourier transform. 

We will leave the problem of zeros of Kap(y, IT/4) for complex a 
open. Theorem 6.4 is still valid for y —» ±00, but there are technical dif
ficulties in bounding l/kap(y, IT/4) above. 

6.8 Convergence properties of Pap for continuous functions. One needs 
to find bounds on 

JR \Kap(°> T) \do in 0 ^ T < 77/4; 

one would expect 

fR IK^O, T) \do ^ fR \Ka/£o, 0) \da 

in many cases; (guess: 2v ^ 1). Such bounds should lead to a maximum 
principle; technical difficulties comes from the singularity of Dap on 
T = 0, and the unboundedness of the strip. 
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