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Abstract

Second order necessary and sufficient conditions are given for a class of optimization
problems involving optimal selection of a measurable subset from a given measure
subspace subject to set function inequalities. Relations between twice-differentiability at £
and local convexity at § are also discussed.

1. Introduction

Let (X, &/, u) be a finite measure space and F, G,,...,G,, be real-valued set
functions on 7. The problem considered in this paper is to find a measurable set
Q* € & which minimizes F(£2) subject to constraints G,(2)< 0, i =1,...,m.
This type of optimization problem has received attention lately due to its diverse
applications and theoretical interest. These include applications in fluid flow [1],
electrical insulator design [3], optimal plasma confinement [12], first order neces-
sary and sufficient optimal conditions {11], and duality theories set functions [6]
and [7].

The difficulty of the above problem, as pointed out by Morris in [11], lies in the
poorly structured feasible domain which is not convex, not open, and actually
nowhere dense. Morris [11] overcame these difficulties and derived several neces-
sary and sufficient optimality conditions with properly defined notions of first-
order differentiability and convexity of set functions. By continuing to work in
the setting of Morris [11] and Luenberger 8], Lai, Yang and Hwang [7] proved
the Fenchel duality theorem for set functions.
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The purpose of this paper is to obtain second-order necessary and sufficient
optimality conditions for the above problem. In Section 2, we begin with a
definition of second differentiability of a set function on a measure space. This is
followed by several theorems concerning properties of a set function with second
differentiability. Section 3 contains the main results of this paper, in which
sufficient conditions are presented in a way close to that in [4], [10].

Numerous results on necessary and sufficient optimality conditions in optimi-
zation problems for point functions under second order differentiability assump-
tions have been given by many researchers; some recent ones include [2] and [5].

2. Second differentiability of set functions

Throughout this paper, we assume that the measure space (X, &, p) is finite
and atomless with L,(X, &, u) = L,(p) separable. Let p be a pseudometric on &
defined by p(£2,, Q,) = pn(£,4%9,) for £,, €, € o, and we identify any set @ € &/
with its characteristic function xg € L,(p). Thus &7 can be regarded as a subset
X = {Xal$? € &} of Li(p). Note that p(Qy, ;) = |Ixg, — Xg,|l.,- Forf € Li(p)
and w € L (p; X ;) we denote the integral f,f by the functional notation
(/s Xa)» Ja,xa,¥ BY (W, Xq, X Xq,)- The diagonal of w, denoted by diag w, is
defined as a function on /in the following way:

diag w(Q) = (w, xg X Xg)» Qe
Moreover, diagw is said to be w*-continuous if xo — “*xq implies that
diag w(Q,) — diag w(Q) where xoq —"'xq means (f, xg ) = {f, xq) for all
f € Ly(p)

DEFINITION 1 [11]. A set function F: s — R is said to be differentiable at Q, € &/
if there exists DFg € L,(p), called the first derivative of F at §,, such that
F(Q) = F(Qy) + (DFg, Xa — Xa,> + E(Q, Q).
where E(§,, Q) = o[p(8,, Q)] i.e., limp(no,n)~0[E(Qo’ 2)/p(2g, )] = 0.

REMARKS. Definition 1 differs from that of the usual Fréchet derivative [8] in
that @ — Q, passing through only points of the subset x ,, which is not even a
linear subspace. However, if F is a Fréchet differentiable functional on L,(x) and
if we define a set function F on &by F(2) = F( Xg), then Fis a differentiable set
function. In this case, note that the Fréchet derivative of F at  coincides with
DF,, due to the uniqueness of the derivative of a set function {11}.

LemMa 1 [11]. For any @ € &/ and « € [0, 1] there exists a sequence {,} with
R, C Qforallnand xg —"axg.
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LEMMA 2. For Q,Q, € & and a € [0,1] there exists a sequence {Q,(a)} in &/
such that Xa,(a) ~ Xgg —’w'a(Xn - Xno)-

PROOF. Let Q%= @ ~ Qg and Q™= €, ~ Q. Then
Xe ™~ Xg, = Xo+— Xe--
By Lemma 1 there exist sequences { 2 f(«)} satisfying

w*

Xz ™ Xgx-

Let Q,(a) denote (2, () U ;) ~ €;(a), then
X2, () ~ X2, = X2 ) ~ X0 (a)

and
w‘
Xa,@ — XSa, ~ @(Xa+— Xo-) = a(xe — Xo,)- Q.E.D.

DEFINITION 2. A set function F: o/ — R is said to be twice differentiable at
Q, € L if it has a first derivative DFy at Q, and there exists DZFﬂo € Li(pXp)
such that the function defined by qo () = diag DZFQO( Xq — Xg,)» called the second
derivative of F at Q, is w*-continuous, is o[ p(, Q,)), and satisfies

F(Q) = F(2) + <DFno, Xa~ X00> + <D2Fno’(Xn - Xno)2> + E(Q,9)
where E(Q, 2,) = o[p*(2, Q)), i.e. limpm,ﬂo)_,o[E(Q, Q,)/0%(2, 24)] = 0.

LeMMA 3. If F is twice differentiable at Q, then for any Q € o/ and a € [0, 1]
there exists a sequence {Q,(a)} in o such that

W.
Xa,a)~ Xg, a(xg — Xno)

and
lim F(9,(a)) = F() + a(DFy,, Xa = Xa,)
+a*(D?Fy , (xq — Xoo)2> +o(a?).

Proor. Fix Q. For a € {0,1], let {2,(a)} be the sequence in Lemma 2
satisfying

Xa, (o)~ Xg, a(XQ - Xno)-
Then
nl;lfl:o F(Qn(a)) = F(QO) + a<DF0°7 Xa — x00>
+aX(D*Fyy (Xa = Xa,)") + lim E(2,(a), %).
We need only to show that lim,_, _ E(2,(a), 2,) = o(a?).
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It suffices to show that, given & > 0, there exists § > 0 such that 0 < a < §
implies lim,_, | E(2,(a), 2,)| < ea?. Since E(’, ;) = o[ p*(2’, Q)] there exists
vy > 0 such that |E(®, Q,)| < ep®(', Q,) for @ € o satisfying p(Q', 2,) < v.
Now let 8§ = y/p(Q, Q,). Then

P(Qn(a), 9o) = "Xn,,(a) - Xno”Ll - a”Xn - sto”Ll =ap(Q, Q)

implies that for a < 8 and for all large n’s we have p(Q,(a), 2,) < y. Hence
E(Q,(a), )| < e0*(,(a), Q,) and therefore lim,_, . E(Q,(a), ) < ea®
Q.E.D.

THEOREM 1. If F is twice differentiable at Q, then both the first and second
derivative are unique.

PROOF. Let f and f both be the first derivatives of F at Q; and 4 and h the
second derivatives. Set g=f—f and y=h —h. Then (g Xxg — Xg,) =
o[p(2, Q)] and y(2) = o[p*(2, ;)] where ¥(2) = (w,(xg — Xg,)?) for some
w & L,(n X p). Given €&, by Lemma 2, for any a € [0,1] there exists a
sequence {2,(a)} with

Xe, ()~ Xg, ™ a(xq — sto)-
Then
(8 Xa,@ — Xa,) — *8& Xa ~ Xa,)

and

(w, (XQ,,(a) - Xno)2> - aXw,(xq — Xno)2>-

Since p(2,(a), 2y) = ap(R, Q,), by a similar argument as used in the proof of
Lemma 3 we have

"l;l'?;ln <g’ xﬂ"(a) - xﬂo> = a(g’ xﬂ - x00> = O(a)

and

a*(w,(xq — Xno)2> = o(a?).

This implies that (g, xq = Xg,) = 0 and (W, (xq — Xg,)?) = 0 for any £ € «.
Let ©,=g7'([0, )] and @_= g7}((-,0]). Then (g, xg,) = (8, Xa,) >0
and (g, Xxg,) = {8 Xa_) < 0 which implies (g, xq,» = 0. Therefore, (g, xq) =
0 for all @ € «/. Hence, g = 0, a.e. on X. Similarly,y = 0ae.on X. Q.E.D.

REMARKS. (i) If F is twice differentiable at §,, then F is differentiable at Q.
Since gq (£2) € o[p(L, 2,)] by assumption, hence DF,_is unique by Proposition
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2.2 [10]). The first derivative of F is a linear functional on & defined by
2 = (DFy, xq — Xq,) rather than just DFy , an L,-function. However, we may
identify the first derivative with DFy [10]. For the second derivative g () =
(D Fﬂo (Xe — Xxa, )2), it is the quadratic form defined by DZF‘Z We may always
assume D*Fg_is symmetric in Definition 2, i.e., D2Fy (X, y) = D*Fy (, x),Yx, y

€ &/, since 2(DZFQ (x, y)+ DZFQ (y. x)) is symmetric and defmes the same
quadratic form.

(ii) If F is countably additive and absolutely continuous with respect to y, then

DF, is simply the Radon-Nikodym derivative Df/du, and the second derivative
go =0forall @ € .

(iii) Another example of a twice differentiable set function is F() =
h(fqu dp,..., [qv,dn) where h: R" - R is differentiable and v,,...,v, are in

L,(p). Then its first derivative
Eh(f ...,j;zv,,d“)ui

i=1

and its second derivative

D, = 3 Zhu(f ..,fﬂu,,d,,)u,uj

J=1i=1

where h, denotes the ith first partial derivative, and 4, is the ijth second partial
denvatlve of h.

(iv) If F and G are differentiable (twice differentiable) at ,, then for ¢ € R,
¢ - F,and F t G are differentiable (twice differentiable) at £,,.

In order to obtain sufficient conditions for a constrained local minimum,
Morris [11] introduced the concept of local convexity of a set function as follows.

DEFINITION 3 [11]. A differentiable set function F: of — R is locally convex at
if there exists € > 0 such that p(£,, @) < € implies

F() > F(Q,) + (DFy,, xa — Xa,)-
The following lemmas give relationships between local convexity of a set

function and its second derivative.

LEMMA 4. Let F: o/ — R be a set function which is twice differentiable at Q. If F
is locally convex at X, then there exists € > 0 such that p(Q,, Q) < ¢ implies
(D?Fy,(xa = Xa,)%) = 0, i.e, D’Fy_is locally positive semidefinite.

ProOOF. Using the sequence {{,(«a)} given in Lemma 3, the proof of this lemma
is similar to that of Theorem 1 in [9, page 89]. Q.E.D.
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LEMMA 5. Let F: o/ — R be a set function which is twice differentiable at Q. If
there exists y > 0 such that

<D2Fno, (xq - Xno)2> > (2, Q)

for all @ with p(, Q) < € for some ¢ > 0, then F is locally convex at Q.

PROOF. The result follows directly from Lemma 3 and the definition of “o”.
Q.E.D.

3. Optimality conditions of second order

In this section we consider the problem mentioned at the beginning of Section
1:

Min F(Q) subjectto G,(R)<0,i=1,...,m. (1)

2, € #is a local minimum for problem (1) if there exists ¢ > 0 such that for Q
satisfying p(£,, @) <& G(R) < 0,i = 1,...,m, it follows that F(Q2) > F(Q,).
The first-order necessary condition to this problem was given by Morris in [11].

THEOREM 2 [11]. Suppose

() F,Gq,...,G, are differentiable at Q% with first derivatives
DFg., DG}.,...,DGL., respectively.

(ii) Q* is a local minimum of problem (1), and

(iii) £* is regular, i.e., there exists a set @, € o with G (@*) + (DG, g, —
Xg+) <0,i=1,...,m. Then there exists nonnegative reals A,,. . . ,A ,, such that

<DFQ. + Y N\,DGj., xq — Xn'> >0 forallQ e, and
=1

A, =0 ifG,(2%) <0.

)

A set of nonnegative reals A,,...,A , for which (2) holds is called a Lagrangian
multiplier for problem (1) at 2* and the associated Lagrangian function is defined
as L(2) = F(2) + L. A,G,(). We denote the feasible region of problem (1) by
S={QeH|G(2)<0,i=1,...,m}, the index set of active constraints at Q*
by I(2*) = {i|G,(2*) = 0}, and the first derivative of L at £ by DL, = DF, +
7.\ DGy

THEOREM 3 (Second-Order Necessary Condition). Let F,G,,...,G,, be twice
differentiable at Q*. Suppose Q* is a local minimum of problem (1) and suppose
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L(Q)=F(Q)+ X" A,G,(R) is a Lagrangian function associated with a set of
Lagrangian multipliers \,,. ..\, for problem (1) at Q*. Then
(DLg.,(xa — Xa+)") 2 0
for all @ € § satisfying
(DLg., X9~ Xa+) =0,
(DGge, Xg = Xgo) <0, i€ 1(Q*), (3)
andAG,()=0,i=1,...,m.
PROOF. For any @ € § satisfying (3) we have F(2) = L() and it follows that
F(Q) — F(2*) = L(Q) - L(2%)
= <D2L(2" (XQ - XQ‘)2> + E(Q’ 9*) (4)
where E(2, Q*) = o[p*(2, O%)].
A sequence {Q,(a)} can be constructed as in Lemma 3 so that
lim G,(Q,(a)) = G,(2*) + a(DGhe, xq — X+ + 0(a), i=1,...,m.

(5

If i € I(Q*) then G,(22*) = 0. By the definition of o(a), there exists 8’ > 0 such
that |o(a)| < 3(DGg., xq — Xg-)la for a < &". Therefore from (3), (5) becomes

lim G,(2,(a)) < 5(DGje, Xg — Xg:) <0 fora <¥

n— oo
and hence, for any a < 8’ there exists M, > 0 such that G,(£,(a)) <0 for all
n>M,.

If i € I(2*) then G,(2*) < 0, and (5) becomes lim,,_, , (2,(a)) > G,(2*) <0
as a — 0. Therefore, there exists §8” > 0 so that for any a < 8” there exists
M, > 0 such that G,(2,(a)) < 0foralln > M,

We have shown that there exists § = min(é8’, §”’) > 0, such that for any a < §
there is N, > 0 so that G,(R,(a)) <0, foralln > N,,i=1,...,m. Since Q* is a
local minimum we have, for any a < §,

F(2,(a)) > F(Q*) foralln> N,.
Therefore
lim F(Q,(a)) > F(Q*) fora <38.
n— oo
Applying the sequence {2,(a)} to (4), we obtain
lim F(Qn(a)) = F(O*) + a2<D2L9',(Xn - Xn')2> + o(a?).
n— oo
Dividing both sides by a2 and letting « — 0 we have

(D*Lg.,(xq — Xn~)2> >0
for all @ € S satisfying (3). Q.E.D.
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The following theorem gives first-order sufficient conditions for optimality. The
theorem follows the spirit of Theorems 5.3 and 5.6 in [10] and can be proved by a
similar argument.

THEOREM 4 (First-Order Sufficient Condition). Suppose Q* € S and suppose
L(Q) = F(Q) + X ,A () is a Lagrangian function for problem (1) at Q*. If there
is vy > 0 such that

(DLge, Xg — Xg»y = Y- P(Q,9%) forallQe S
then there exist o« > 0 and B > 0 such that
F(Q)> F(2*) +a-p(R,9*) forallQe S
with p(8, Q%) < B.
If we relax the first-order sufficient condition in the above theorem then we

need to impose a second-order condition on the set Q@ for which the first-order
condition is violated, that is,

(DLge, Xg — Xg+) <7 - p(2,9%).

THEOREM 5 (Second-Order Sufficient Condition). Suppose

(i) Q* € S,

(i) L(2) = F(Q) + L7, X,G,(Q) is a Lagrangian function for problem (1),

(iii) L is twice differentiable at Q, and

(iv) there exists v > 0 such that (D?Lg.,(xg — Xa+)>) = v0*(R,Q*) in a
neighborhood of Q* in S. Then Q* is a local minimum of F in S.

Proor. The proof is straightforward by using Lemma 5. Q.E.D.
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