J. Austral. Math. Soc. Ser. B 26, (1985), 284-292

SECOND ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMMING WITH SET FUNCTIONS

J. H. CHOU, WEI-SHEN HSIA AND TAN-YU LEE¹

(Received 24 May 1983; revised 5 March 1984)

Abstract

Second order necessary and sufficient conditions are given for a class of optimization problems involving optimal selection of a measurable subset from a given measure subspace subject to set function inequalities. Relations between twice-differentiability at Ω and local convexity at Ω are also discussed.

1. Introduction

Let (X, \mathscr{A}, μ) be a finite measure space and F, G_i, \ldots, G_m be real-valued set functions on \mathscr{A} . The problem considered in this paper is to find a measurable set $\Omega^* \in \mathscr{A}$ which minimizes $F(\Omega)$ subject to constraints $G_i(\Omega) \leq 0$, $i = 1, \ldots, m$. This type of optimization problem has received attention lately due to its diverse applications and theoretical interest. These include applications in fluid flow [1], electrical insulator design [3], optimal plasma confinement [12], first order necessary and sufficient optimal conditions [11], and duality theories set functions [6] and [7].

The difficulty of the above problem, as pointed out by Morris in [11], lies in the poorly structured feasible domain which is not convex, not open, and actually nowhere dense. Morris [11] overcame these difficulties and derived several necessary and sufficient optimality conditions with properly defined notions of first-order differentiability and convexity of set functions. By continuing to work in the setting of Morris [11] and Luenberger [8], Lai, Yang and Hwang [7] proved the Fenchel duality theorem for set functions.

¹Department of Mathematics, The University of Alabama, University, Alabama 35486, U.S.A. © Copyright Australian Mathematical Society 1985, Serial-fee code 0334-2700/85

The purpose of this paper is to obtain second-order necessary and sufficient optimality conditions for the above problem. In Section 2, we begin with a definition of second differentiability of a set function on a measure space. This is followed by several theorems concerning properties of a set function with second differentiability. Section 3 contains the main results of this paper, in which sufficient conditions are presented in a way close to that in [4], [10].

Numerous results on necessary and sufficient optimality conditions in optimization problems for point functions under second order differentiability assumptions have been given by many researchers; some recent ones include [2] and [5].

2. Second differentiability of set functions

Throughout this paper, we assume that the measure space (X, \mathscr{A}, μ) is finite and atomless with $L_1(X, \mathscr{A}, \mu) = L_1(\mu)$ separable. Let ρ be a pseudometric on \mathscr{A} defined by $\rho(\Omega_1, \Omega_2) = \mu(\Omega_1 \Delta \Omega_2)$ for $\Omega_1, \Omega_2 \in \mathscr{A}$, and we identify any set $\Omega \in \mathscr{A}$ with its characteristic function $\chi_{\Omega} \in L_1(\mu)$. Thus \mathscr{A} can be regarded as a subset $\chi_{\mathscr{A}} = \{\chi_{\Omega} | \Omega \in \mathscr{A}\}$ of $L_1(\mu)$. Note that $\rho(\Omega_1, \Omega_2) = \|\chi_{\Omega_1} - \chi_{\Omega_2}\|_{L_1}$. For $f \in L_1(\mu)$ and $w \in L_1(\mu_1 \times \mu_1)$ we denote the integral $\int_{\Omega} f$ by the functional notation $\langle f, \chi_{\Omega} \rangle$, $\int_{\Omega_1 \times \Omega_2} w$ by $\langle w, \chi_{\Omega_1} \times \chi_{\Omega_2} \rangle$. The diagonal of w, denoted by diag w, is defined as a function on \mathscr{A} in the following way:

diag $w(\Omega) = \langle w, \chi_{\Omega} \times \chi_{\Omega} \rangle, \quad \Omega \in \mathscr{A}.$

Moreover, diag w is said to be w*-continuous if $\chi_{\Omega_n} \to {}^{w^*}\chi_{\Omega}$ implies that diag $w(\Omega_n) \to \text{diag } w(\Omega)$ where $\chi_{\Omega_n} \to {}^{w^*}\chi_{\Omega}$ means $\langle f, \chi_{\Omega_n} \rangle \to \langle f, \chi_{\Omega} \rangle$ for all $f \in L_1(\mu)$.

DEFINITION 1 [11]. A set function $F: \mathscr{A} \to R$ is said to be differentiable at $\Omega_0 \in \mathscr{A}$ if there exists $DF_{\Omega_0} \in L_1(\mu)$, called the first derivative of F at Ω_0 , such that $F(\Omega) = F(\Omega_0) + \langle DF_{\Omega_0}, \chi_{\Omega} - \chi_{\Omega_0} \rangle + E(\Omega_0, \Omega).$ where $E(\Omega_0, \Omega) = o[\rho(\Omega_0, \Omega)]$, i.e., $\lim_{\rho(\Omega_0, \Omega) \to 0} [E(\Omega_0, \Omega)/\rho(\Omega_0, \Omega)] = 0.$

REMARKS. Definition 1 differs from that of the usual Fréchet derivative [8] in that $\Omega \to \Omega_0$ passing through only points of the subset $\chi_{\mathscr{A}}$ which is not even a linear subspace. However, if \tilde{F} is a Fréchet differentiable functional on $L_1(\mu)$ and if we define a set function F on \mathscr{A} by $F(\Omega) = \tilde{F}(\chi_{\Omega})$, then F is a differentiable set function. In this case, note that the Fréchet derivative of \tilde{F} at Ω coincides with DF_{Ω} due to the uniqueness of the derivative of a set function [11].

LEMMA 1 [11]. For any $\Omega \in \mathscr{A}$ and $\alpha \in [0, 1]$ there exists a sequence $\{\Omega_n\}$ with $\Omega_n \subset \Omega$ for all n and $\chi_{\Omega_n} \to {}^{w^*} \alpha \chi_{\Omega}$.

LEMMA 2. For Ω , $\Omega_0 \in \mathscr{A}$ and $\alpha \in [0, 1]$ there exists a sequence $\{\Omega_n(\alpha)\}$ in \mathscr{A} such that $\chi_{\Omega_n(\alpha)} - \chi_{\Omega_0} \to {}^{w^*}\alpha(\chi_{\Omega} - \chi_{\Omega_0})$.

PROOF. Let $\Omega^+ = \Omega \sim \Omega_0$ and $\Omega^- = \Omega_0 \sim \Omega$. Then $\chi_\Omega - \chi_{\Omega_0} = \chi_{\Omega^+} - \chi_{\Omega^-}$. By Lemma 1 there exist sequences $\{\Omega_n^{\pm}(\alpha)\}$ satisfying $\chi_{\Omega_n^{\pm}(\alpha)} \xrightarrow{w^*} \alpha \chi_{\Omega^{\pm}}$.

Let $\Omega_n(\alpha)$ denote $(\Omega_n^+(\alpha) \cup \Omega_0) \sim \Omega_n^-(\alpha)$, then $\chi_{\Omega_n(\alpha)} - \chi_{\Omega_0} = \chi_{\Omega_n^+(\alpha)} - \chi_{\Omega_n^-(\alpha)}$

and

$$\chi_{\Omega_n(\alpha)} - \chi s_{\Omega_0} \stackrel{w^*}{\to} \alpha(\chi_{\Omega^+} - \chi_{\Omega^-}) = \alpha(\chi_{\Omega} - \chi_{\Omega_0}). \qquad Q.E.D.$$

[3]

DEFINITION 2. A set function $F: \mathscr{A} \to \mathbb{R}$ is said to be twice differentiable at $\Omega_0 \in \mathscr{A}$ if it has a first derivative DF_{Ω_0} at Ω_0 , and there exists $D^2F_{\Omega_0} \in L_1(\mu \times \mu)$ such that the function defined by $q_{\Omega_0}(\Omega) = \text{diag } D^2F_{\Omega_0}(\chi_\Omega - \chi_{\Omega_0})$, called the second derivative of F at Ω_0 , is w*-continuous, is $o[\rho(\Omega, \Omega_0)]$, and satisfies

 $F(\Omega) = F(\Omega_0) + \langle DF_{\Omega_0}, \chi_{\Omega} - \chi_{\Omega_0} \rangle + \langle D^2 F_{\Omega_0}, (\chi_{\Omega} - \chi_{\Omega_0})^2 \rangle + E(\Omega, \Omega_0)$ where $E(\Omega, \Omega_0) = o[\rho^2(\Omega, \Omega_0)], i.e. \lim_{\rho(\Omega, \Omega_0) \to 0} [E(\Omega, \Omega_0)/\rho^2(\Omega, \Omega_0)] = 0.$

LEMMA 3. If F is twice differentiable at Ω_0 , then for any $\Omega \in \mathscr{A}$ and $\alpha \in [0,1]$ there exists a sequence $\{\Omega_n(\alpha)\}$ in \mathscr{A} such that

$$\chi_{\Omega_n(\alpha)} - \chi_{\Omega_0} \stackrel{w^*}{\to} \alpha(\chi_{\Omega} - \chi_{\Omega_0})$$

and

$$\lim_{n\to\infty} F(\Omega_n(\alpha)) = F(\Omega_0) + \alpha \langle DF_{\Omega_0}, \chi_{\Omega} - \chi_{\Omega_0} \rangle + \alpha^2 \langle D^2 F_{\Omega_0}, (\chi_{\Omega} - \chi_{\Omega_0})^2 \rangle + o(\alpha^2).$$

PROOF. Fix Ω . For $\alpha \in [0,1]$, let $\{\Omega_n(\alpha)\}$ be the sequence in Lemma 2 satisfying

$$\chi_{\Omega_n(\alpha)}-\chi_{\Omega_0}\stackrel{w^*}{\to}\alpha(\chi_\Omega-\chi_{\Omega_0}).$$

Then

$$\lim_{n \to \infty} F(\Omega_n(\alpha)) = F(\Omega_0) + \alpha \langle DF_{\Omega_0}, \chi_{\Omega} - \chi_{\Omega_0} \rangle + \alpha^2 \langle D^2 F_{\Omega_0}, (\chi_{\Omega} - \chi_{\Omega_0})^2 \rangle + \lim_{n \to \infty} E(\Omega_n(\alpha), \Omega_0).$$

We need only to show that $\lim_{n\to\infty} E(\Omega_n(\alpha), \Omega_0) = o(\alpha^2)$.

It suffices to show that, given $\epsilon > 0$, there exists $\delta > 0$ such that $0 \le \alpha < \delta$ implies $\lim_{n \to \infty} |E(\Omega_n(\alpha), \Omega_0)| \le \epsilon \alpha^2$. Since $E(\Omega', \Omega_0) = o[\rho^2(\Omega', \Omega_0)]$ there exists $\gamma > 0$ such that $|E(\Omega', \Omega_0)| \le \epsilon \rho^2(\Omega', \Omega_0)$ for $\Omega' \in \mathscr{A}$ satisfying $\rho(\Omega', \Omega_0) < \gamma$. Now let $\delta = \gamma / \rho(\Omega, \Omega_0)$. Then

$$\rho(\Omega_n(\alpha),\Omega_0) = \left\|\chi_{\Omega_n(\alpha)} - \chi_{\Omega_0}\right\|_{L_1} \to \alpha \left\|\chi_{\Omega} - \chi_{\Omega_0}\right\|_{L_1} = \alpha \rho(\Omega,\Omega_0)$$

implies that for $\alpha < \delta$ and for all large *n*'s we have $\rho(\Omega_n(\alpha), \Omega_0) < \gamma$. Hence $|E(\Omega_n(\alpha), \Omega_0)| \leq \epsilon \rho^2(\Omega_n(\alpha), \Omega_0)$ and therefore $\lim_{n \to \infty} E(\Omega_n(\alpha), \Omega_0) \leq \epsilon \alpha^2$. *Q.E.D.*

THEOREM 1. If F is twice differentiable at Ω_0 , then both the first and second derivative are unique.

PROOF. Let f and \bar{f} both be the first derivatives of F at Ω_0 ; and h and \bar{h} the second derivatives. Set $g = f - \bar{f}$ and $\gamma = h - \bar{h}$. Then $\langle g, \chi_{\Omega} - \chi_{\Omega_0} \rangle = o[\rho(\Omega, \Omega_0)]$ and $\gamma(\Omega) = o[\rho^2(\Omega, \Omega_0)]$ where $\gamma(\Omega) = \langle w, (\chi_{\Omega} - \chi_{\Omega_0})^2 \rangle$ for some $w \in L_1(\mu \times \mu)$. Given $\Omega \in \mathscr{A}$, by Lemma 2, for any $\alpha \in [0, 1]$ there exists a sequence $\{\Omega_n(\alpha)\}$ with

$$\chi_{\Omega_n(\alpha)}-\chi_{\Omega_0}\stackrel{w^*}{\to}\alpha(\chi_\Omega-\chi_{\Omega_0}).$$

Then

$$\langle g, \chi_{\Omega_n(\alpha)} - \chi_{\Omega_0} \rangle \rightarrow \alpha \langle g, \chi_\Omega - \chi_{\Omega_0} \rangle$$

and

$$\langle w, (\chi_{\Omega_n(\alpha)} - \chi_{\Omega_0})^2 \rangle \rightarrow \alpha^2 \langle w, (\chi_\Omega - \chi_{\Omega_0})^2 \rangle.$$

Since $\rho(\Omega_n(\alpha), \Omega_0) \to \alpha \rho(\Omega, \Omega_0)$, by a similar argument as used in the proof of Lemma 3 we have

$$\lim_{n\to\infty} \langle g, \chi_{\Omega_n(\alpha)} - \chi_{\Omega_0} \rangle = \alpha \langle g, \chi_{\Omega} - \chi_{\Omega_0} \rangle = o(\alpha)$$

and

$$\alpha^2 \langle w, (\chi_{\Omega} - \chi_{\Omega_0})^2 \rangle = o(\alpha^2).$$

This implies that $\langle g, \chi_{\Omega} - \chi_{\Omega_0} \rangle = 0$ and $\langle w, (\chi_{\Omega} - \chi_{\Omega_0})^2 \rangle = 0$ for any $\Omega \in \mathscr{A}$. Let $\Omega_+ = g^{-1}([0, \infty)]$ and $\Omega_- = g^{-1}((-\infty, 0])$. Then $\langle g, \chi_{\Omega_0} \rangle = \langle g, \chi_{\Omega_+} \rangle \ge 0$ and $\langle g, \chi_{\Omega_0} \rangle = \langle g, \chi_{\Omega_-} \rangle \le 0$ which implies $\langle g, \chi_{\Omega_0} \rangle = 0$. Therefore, $\langle g, \chi_{\Omega} \rangle = 0$ for all $\Omega \in \mathscr{A}$. Hence, g = 0, a.e. on X. Similarly, $\gamma = 0$ a.e. on X. Q.E.D.

REMARKS. (i) If F is twice differentiable at Ω_0 , then F is differentiable at Ω_0 . Since $q_{\Omega_0}(\Omega) \in o[\rho(\Omega, \Omega_0)]$ by assumption, hence DF_{Ω_0} is unique by Proposition 2.2 [10]. The first derivative of F is a linear functional on \mathscr{A} defined by $\Omega \to \langle DF_{\Omega_0}, \chi_\Omega - \chi_{\Omega_0} \rangle$ rather than just DF_{Ω_0} , an L_1 -function. However, we may identify the first derivative with DF_{Ω_0} [10]. For the second derivative $q_{\Omega_0}(\Omega) = \langle D^2F_{\Omega_0}, (\chi_\Omega - \chi_{\Omega_0})^2 \rangle$, it is the quadratic form defined by $D^2F_{\Omega_0}$. We may always assume $D^2F_{\Omega_0}$ is symmetric in Definition 2, i.e., $D^2F_{\Omega_0}(x, y) = D^2F_{\Omega_0}(y, x), \forall x, y \in \mathscr{A}$, since $\frac{1}{2}(D^2F_{\Omega_0}(x, y) + D^2F_{\Omega_0}(y, x))$ is symmetric and defines the same quadratic form.

(ii) If F is countably additive and absolutely continuous with respect to μ , then DF_{Ω} is simply the Radon-Nikodym derivative $Df/d\mu$, and the second derivative $q_{\Omega} \equiv 0$ for all $\Omega \in \mathscr{A}$.

(iii) Another example of a twice differentiable set function is $F(\Omega) = h(\int_{\Omega} v_1 d\mu, \dots, \int_{\Omega} v_n d\mu)$ where h: $\mathbb{R}^n \to \mathbb{R}$ is differentiable and v_1, \dots, v_n are in $L_1(\mu)$. Then its first derivative

$$DF_{\Omega} = \sum_{i=1}^{n} h_i \left(\int_{\Omega} v_1 d_{\mu}, \dots, \int_{\Omega} v_n d_{\mu} \right) v_i$$

and its second derivative

$$D^{2}F_{\Omega} = \sum_{j=1}^{n} \sum_{i=1}^{n} h_{ij} \left(\int_{\Omega} v_{1} d_{\mu}, \ldots, \int_{\Omega} v_{n} d_{\mu} \right) v_{i} v_{j}$$

where h_i denotes the *i*th first partial derivative, and h_{ij} is the *ij*th second partial derivative of h.

(iv) If F and G are differentiable (twice differentiable) at Ω_0 , then for $c \in R$, $c \cdot F$, and $F \pm G$ are differentiable (twice differentiable) at Ω_0 .

In order to obtain sufficient conditions for a constrained local minimum, Morris [11] introduced the concept of local convexity of a set function as follows.

DEFINITION 3 [11]. A differentiable set function $F: \mathscr{A} \to R$ is locally convex at Ω_0 if there exists $\varepsilon > 0$ such that $\rho(\Omega_0, \Omega) < \varepsilon$ implies

$$F(\Omega) \geq F(\Omega_0) + \langle DF_{\Omega_0}, \chi_{\Omega} - \chi_{\Omega_0} \rangle.$$

The following lemmas give relationships between local convexity of a set function and its second derivative.

LEMMA 4. Let $F: \mathscr{A} \to R$ be a set function which is twice differentiable at Ω_0 . If F is locally convex at Ω_0 then there exists $\varepsilon > 0$ such that $\rho(\Omega_0, \Omega) < \varepsilon$ implies $\langle D^2 F_{\Omega_0}, (\chi_\Omega - \chi_{\Omega_0})^2 \rangle \ge 0$, i.e., $D^2 F_{\Omega_0}$ is locally positive semidefinite.

PROOF. Using the sequence $\{\Omega_n(\alpha)\}$ given in Lemma 3, the proof of this lemma is similar to that of Theorem 1 in [9, page 89]. Q.E.D.

LEMMA 5. Let $F: \mathscr{A} \to R$ be a set function which is twice differentiable at Ω_0 . If there exists $\gamma > 0$ such that

$$\langle D^2 F_{\Omega_0}, (\chi_\Omega - \chi_{\Omega_0})^2 \rangle \ge \gamma \rho^2(\Omega, \Omega_0)$$

for all Ω with $\rho(\Omega, \Omega_0) < \varepsilon$ for some $\varepsilon > 0$, then F is locally convex at Ω_0 .

PROOF. The result follows directly from Lemma 3 and the definition of "o". Q.E.D.

3. Optimality conditions of second order

In this section we consider the problem mentioned at the beginning of Section 1:

Min
$$F(\Omega)$$
 subject to $G_i(\Omega) \leq 0, i = 1, \dots, m.$ (1)

 $\Omega_0 \in \mathscr{A}$ is a local minimum for problem (1) if there exists $\varepsilon > 0$ such that for Ω satisfying $\rho(\Omega_0, \Omega) < \varepsilon$, $G_i(\Omega) \leq 0$, i = 1, ..., m, it follows that $F(\Omega) \ge F(\Omega_0)$.

The first-order necessary condition to this problem was given by Morris in [11].

THEOREM 2 [11]. Suppose

(i) F, G_1, \ldots, G_m are differentiable at Ω^* with first derivatives $DF_{\Omega^*}, DG_{\Omega^*}^1, \ldots, DG_{\Omega^*}^m$, respectively.

(ii) Ω^* is a local minimum of problem (1), and

(iii) Ω^* is regular, i.e., there exists a set $\Omega_1 \in \mathscr{A}$ with $G_i(\Omega^*) + \langle DG'_{\Omega^*}, \chi_{\Omega_1} - \chi_{\Omega^*} \rangle < 0, i = 1, ..., m$. Then there exists nonnegative reals $\lambda_1, ..., \lambda_m$ such that

$$\left\{ \left\langle DF_{\Omega^*} + \sum_{i=1}^m \lambda_i DG_{\Omega^*}^i, \chi_{\Omega} - \chi_{\Omega^*} \right\rangle \ge 0 \quad \text{for all } \Omega \in \mathscr{A}, \text{ and} \\ \lambda_i = 0 \quad \text{if } G_i(\Omega^*) < 0. \end{cases} \right.$$
(2)

A set of nonnegative reals $\lambda_1, \ldots, \lambda_m$ for which (2) holds is called a Lagrangian multiplier for problem (1) at Ω^* and the associated Lagrangian function is defined as $L(\Omega) = F(\Omega) + \sum_{i=1}^{m} \lambda_i G_i(\Omega)$. We denote the feasible region of problem (1) by $S = \{\Omega \in \mathscr{A} | G_i(\Omega) \leq 0, i = 1, \ldots, m\}$, the index set of active constraints at Ω^* by $I(\Omega^*) = \{i | G_i(\Omega^*) = 0\}$, and the first derivative of L at Ω by $DL_{\Omega} = DF_{\Omega} + \sum_{i=1}^{m} \lambda_i DG'_{\Omega}$.

THEOREM 3 (Second-Order Necessary Condition). Let F, G_1, \ldots, G_m be twice differentiable at Ω^* . Suppose Ω^* is a local minimum of problem (1) and suppose

 $L(\Omega) = F(\Omega) + \sum_{i=1}^{m} \lambda_i G_i(\Omega)$ is a Lagrangian function associated with a set of Lagrangian multipliers $\lambda_1, \ldots, \lambda_m$ for problem (1) at Ω^* . Then

$$\langle D^2 L_{\Omega^*}, (\chi_{\Omega} - \chi_{\Omega^*})^2 \rangle \ge 0$$

for all $\Omega \in S$ satisfying

$$\langle DL_{\Omega^*}, \chi_{\Omega} - \chi_{\Omega^*} \rangle = 0,$$

$$\langle DG_{\Omega^*}^i, \chi_{\Omega} - \chi_{\Omega^*} \rangle < 0, \qquad i \in I(\Omega^*),$$
 (3)

and $\lambda_i G_i(\Omega) = 0, i = 1, \ldots, m$.

PROOF. For any $\Omega \in S$ satisfying (3) we have $F(\Omega) = L(\Omega)$ and it follows that $F(\Omega) - F(\Omega^*) = L(\Omega) - L(\Omega^*)$

$$= \langle D^2 L_{\Omega^*}, (\chi_{\Omega} - \chi_{\Omega^*})^2 \rangle + E(\Omega, \Omega^*)$$
(4)

where $E(\Omega, \Omega^*) = o[\rho^2(\Omega, \Omega^*)].$

A sequence $\{\Omega_n(\alpha)\}$ can be constructed as in Lemma 3 so that $\lim_{n \to \infty} G_i(\Omega_n(\alpha)) = G_i(\Omega^*) + \alpha \langle DG_{\Omega^*}^i, \chi_{\Omega} - \chi_{\Omega^*} \rangle + o(\alpha), \quad i = 1, \dots, m.$ (5)

If $i \in I(\Omega^*)$ then $G_i(\Omega^*) = 0$. By the definition of $o(\alpha)$, there exists $\delta' > 0$ such that $|o(\alpha)| < \frac{1}{2} |\langle DG_{\Omega^*}^i, \chi_{\Omega} - \chi_{\Omega^*} \rangle |\alpha$ for $\alpha < \delta'$. Therefore from (3), (5) becomes

$$\lim_{n\to\infty}G_i(\Omega_n(\alpha))<\frac{\alpha}{2}\langle DG'_{\Omega^*},\chi_{\Omega}-\chi_{\Omega^*}\rangle<0\quad\text{for }\alpha<\delta'$$

and hence, for any $\alpha < \delta'$ there exists $M_{\alpha} > 0$ such that $G_{i}(\Omega_{n}(\alpha)) < 0$ for all $n > M_{\alpha}$.

If $i \notin I(\Omega^*)$ then $G_i(\Omega^*) < 0$, and (5) becomes $\lim_{n \to \infty} (\Omega_n(\alpha)) \to G_i(\Omega^*) < 0$ as $\alpha \to 0$. Therefore, there exists $\delta'' > 0$ so that for any $\alpha < \delta''$ there exists $M_\alpha > 0$ such that $G_i(\Omega_n(\alpha)) < 0$ for all $n > M_\alpha$.

We have shown that there exists $\delta = \min(\delta', \delta'') > 0$, such that for any $\alpha < \delta$ there is $N_{\alpha} > 0$ so that $G_i(\Omega_n(\alpha)) < 0$, for all $n > N_{\alpha}$, i = 1, ..., m. Since Ω^* is a local minimum we have, for any $\alpha < \delta$,

$$F(\Omega_n(\alpha)) \ge F(\Omega^*)$$
 for all $n > N_{\alpha}$.

Therefore

$$\lim_{n\to\infty}F(\Omega_n(\alpha)) \ge F(\Omega^*) \quad \text{for } \alpha < \delta.$$

Applying the sequence $\{\Omega_n(\alpha)\}$ to (4), we obtain

$$\lim_{n\to\infty}F(\Omega_n(\alpha))=F(\Omega^*)+\alpha^2\langle D^2L_{\Omega^*},(\chi_{\Omega}-\chi_{\Omega^*})^2\rangle+o(\alpha^2).$$

Dividing both sides by α^2 and letting $\alpha \to 0$ we have

$$\langle D^2 L_{\Omega^*}, (\chi_{\Omega} - \chi_{\Omega^*})^2 \rangle \ge 0$$

for all $\Omega \in S$ satisfying (3). Q.E.D.

[7]

The following theorem gives first-order sufficient conditions for optimality. The theorem follows the spirit of Theorems 5.3 and 5.6 in [10] and can be proved by a similar argument.

THEOREM 4 (First-Order Sufficient Condition). Suppose $\Omega^* \in S$ and suppose $L(\Omega) = F(\Omega) + \sum_{i=1}^{m} \lambda_i(\Omega)$ is a Lagrangian function for problem (1) at Ω^* . If there is $\gamma > 0$ such that

$$\langle DL_{\Omega^*}, \chi_{\Omega} - \chi_{\Omega^*} \rangle \ge \gamma \cdot \rho(\Omega, \Omega^*) \quad \text{for all } \Omega \in S$$

then there exist $\alpha > 0$ and $\beta > 0$ such that

$$F(\Omega) \ge F(\Omega^*) + \alpha \cdot \rho(\Omega, \Omega^*)$$
 for all $\Omega \in S$

with $\rho(\Omega, \Omega^*) \leq \beta$.

If we relax the first-order sufficient condition in the above theorem then we need to impose a second-order condition on the set Ω for which the first-order condition is violated, that is,

$$\langle DL_{\Omega^*}, \chi_{\Omega} - \chi_{\Omega^*} \rangle < \gamma \cdot \rho(\Omega, \Omega^*).$$

THEOREM 5 (Second-Order Sufficient Condition). Suppose (i) $\Omega^* \in S$, (ii) $L(\Omega) = F(\Omega) + \sum_{i=1}^{m} \lambda_i G_i(\Omega)$ is a Lagrangian function for problem (1), (iii) L is twice differentiable at Ω_0 , and (iv) there exists $x \ge 0$ such that $(D^2 L - (x - x_0)^2) \ge x o^2(\Omega, \Omega^*)$

(iv) there exists $\gamma > 0$ such that $\langle D^2 L_{\Omega^*}, (\chi_{\Omega} - \chi_{\Omega^*})^2 \rangle \ge \gamma \rho^2(\Omega, \Omega^*)$ in a neighborhood of Ω^* in S. Then Ω^* is a local minimum of F in S.

PROOF. The proof is straightforward by using Lemma 5. Q. E. D.

Acknowledgment

The authors greatly appreciate helpful comments and suggestions received from the referee which led to a considerable improvement of the original version of this paper.

References

 D. Begis and R. Glowinski, "Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés", Appl. Math. Optim. 2 (1975), 130-169.

- [2] A. Ben-Tal and J. Zowe, "A unified theory of first and second order conditions for extremum problems in topoological vector spaces", in *Mathematical programming study* 19 (ed. M. Guignard), (North-Holland, Amsterdam, 1981).
- [3] J. Cea, A. Gioan and J. Michel, "Queques résultats sur l'identification de domaines", Calcolo 10 (1973), 133-145.
- [4] M. R. Hestenes, Optimization theory—The finite-dimensional case (Wiley, New York, 1975).
- [5] A.D. Ioffe, "Necessary and sufficient conditions for a local minimum. 3: Second order conditions and augmented duality", SIAM J. Control Optim. 17 (1979), 266-288.
- [6] H. L. Lai and S. S. Yang, "Saddle point and duality in the optimization theory of convex set functions", J. Austral. Math. Soc. Ser. B 24 (1982), 130-137.
- [7] H. L. Lai, S. S. Yang and G. R. Hwang, "Duality in mathematical programming of set functions: On Fenchel duality theorem", J. Math. Anal. Appl. 95 (1983), 223-234.
- [8] D. G. Luenberger, Optimization by vector space methods (Wiley, New York, 1969).
- [9] O. L. Mangasarian, Nonlinear programming (McGraw Hill, New York, 1969).
- [10] H. Maurer and J. Zowe, "First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems", Math. Programming 16 (1979), 98-110.
- [11] Robert J. T. Morris, "Optimal constrained selection of a measurable subset", J. Math. Anal. Appl. 70 (1979), 546-562.
- [12] P. K. C. Wang, "On a class of optimization problems involving domain variations", in International symposium on new trends in system analysis, Versailles, France, (Dec. 1976), Lecture Notes in Control and Information Sciences 2 (Springer-Verlag, Berlin, 1977), 49.