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Abstract

Second order necessary and sufficient conditions are given for a class of optimization
problems involving optimal selection of a measurable subset from a given measure
subspace subject to set function inequalities. Relations between twice-differentiability at Q
and local convexity at Q are also discussed.

1. Introduction

Let (A', s?,ii) be a finite measure space and F,Gi,...,Gm be real-valued set
functions on sf. The problem considered in this paper is to find a measurable set
0* e j / which minimizes F($l) subject to constraints G,(&) < 0, / = 1,... ,m.
This type of optimization problem has received attention lately due to its diverse
applications and theoretical interest. These include applications in fluid flow [1],
electrical insulator design [3], optimal plasma confinement [12], first order neces-
sary and sufficient optimal conditions [11], and duality theories set functions [6]
and [7].

The difficulty of the above problem, as pointed out by Morris in [11], lies in the
poorly structured feasible domain which is not convex, not open, and actually
nowhere dense. Morris [11] overcame these difficulties and derived several neces-
sary and sufficient optimality conditions with properly defined notions of first-
order differentiability and convexity of set functions. By continuing to work in
the setting of Morris [11] and Luenberger [8], Lai, Yang and Hwang [7] proved
the Fenchel duality theorem for set functions.
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The purpose of this paper is to obtain second-order necessary and sufficient
optimality conditions for the above problem. In Section 2, we begin with a
definition of second differentiability of a set function on a measure space. This is
followed by several theorems concerning properties of a set function with second
differentiability. Section 3 contains the main results of this paper, in which
sufficient conditions are presented in a way close to that in [4], [10].

Numerous results on necessary and sufficient optimality conditions in optimi-
zation problems for point functions under second order differentiability assump-
tions have been given by many researchers; some recent ones include [2] and [5].

2. Second differentiability of set functions

Throughout this paper, we assume that the measure space (X, s?, ju) is finite
and atomless with LX(X, si', n) = L^/x) separable. Let p be a pseudometric ons&
defined by p(S21; fi2)

 = M(^iAfl2) for Qlt J22 e s/, and we identify any set B e s?
with its characteristic function XQ

 e
 ^I(M)- Thus sf can be regarded as a subset

X^ = {xolG e j * } of LX(M). Note that p ^ . f l j ) - Hxo, - X o 2 l k - F o r / e Li0*>
and w e L1(fi1 X /it) we denote the integral fQf by the functional notation
</. Xa>, JaiXa2

w by (w> Xa, x Xa2>- The diagonal of w, denoted by diag w, is
defined as a function ons/in the following way:

diagw(fi) = (w, X Q X X B ) , fl e s/.
Moreover, diagw is said to be w*-continuous if Xa ~*w'Xa implies that

(Bn) -» diagvf(fi) where x c ^""'Xa means </, Xa > -» (f, Xa> f ° r all

DEFINITION 1 [11]. A set function F:J&-* R is said to be different table attioesf
if there exists DFQo e Lx(p), called the first derivative of F at fi0, such that

F(Q) = F(Q0) + (DFao, xB - XOQ> + ^(O0. «)•

where E(Q0, 0) = o[p(00, 0)], i.e., limp(ao>0)^0[£(fl0, fl)/p(fio> «)] = 0.

REMARKS. Definition 1 differs from that of the usual Frdchet derivative [8] in
that $2 -» fi0 passing through only points of the subset XJ* which is not even a
linear subspace. However, if F is a Fr6chet differentiable functional on Lx(n) and
if we define a set function F on j^by F(Q,) = F(xQ), then F is a differentiable set
function. In this case, note that the Frechet derivative of F at Q coincides with
DFQ due to the uniqueness of the derivative of a set function [11].

LEMMA 1 [11]. For any Q £ s? and a e [0,1] there exists a sequence {fin} with
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LEMMA 2. For SI, fi0 ̂ sf and a e [0,1] there exists a sequence (QM(a)} in s?

such that xam(a) ~ Xa0 "•"""(Xc - Xo0)-

PROOF. Let fi+= fi ~ fi0 and ° r= fi0 ~ fi. Then
X Q ~ XOO = Xc+~Xfi-

By Lemma 1 there exist sequences {Q±(a)} satisfying

Let Qn(a) denote (fin
+(a) U £20) ~ fi;(a), then

Xfl,(a) ~ Xa0
 = Xfi + (a) ~ Xfi;(a)

and

XQ.(«) - X-ya0 -» « ( X a + - Xc-) = «(Xn ~ Xoo)- Q.E.D.

DEFINITION 2. A set function F: s/-+ R is said to be twice differentiable at
J20 e s/if it has a first derivative DFQ at fl0, and there exists D2Fa G Z-i(ju X p.)
such that the function defined by ?B()(fl) = diag D2FQo(xa - Xa0). called the second
derivative of F at J20, is w*-continuous, is o[p(S2, fl0)], and satisfies

F(Q) = F(OO) + (DF,,,,, xn " Xco> + <D2FBo, ( X o - Xno)
2> + E(Q, Oo)

, Oo) = o[p2(fi, 00)], i.e. l imp ( O > 0 Q )^0[^(0, ^o) /P 2 (« . fio)l = 0.

LEMMA 3. If F is twice differentiable at fi0, then for any S2 esfand a e [0,1]
w/j a sequence (S2n(a)} in s/such that

lim F(f i n («)) = F(OO) + a( / )F a o , X c - XQO>
n-»oo

PROOF. Fix S2. For «£ [0 , l ] , let {fln(a)} be the sequence in Lemma 2
satisfying

Xo,(o)-Xo0^«(Xo- Xoo)-

Then

lim F(Qm(a)) = F(Q0) + a(DFQo, X o - XOo>
n — ao

+ <*2(D2FQo,{Xa-Xao)
2) + lim E(QH(a), 00) .

n-»oo
We need only to show that limn^00£(S2n(a), fi0) = o(a2).
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It suffices to show that, given e > 0, there exists 8 > 0 such that 0 < a < 8
implies l imB^ J £ ( Q n ( a ) , Qo) | < ea2. Since E{Q', Qo) = o[p\Q,', Qo)] there exists
y > 0 such that |£(Q' , £20>| < ep2(Q', S o ) for Q' e j ^ satisfying p(Q', Qo) < y.
Now let 5 = y /p( f i , Qo)-

n ( « ) , O0) = | |xo . ( a ) " Xso||Li -» «llxa - XOOIIL,

implies that for a < 8 and for all large n's we have p(fin(a), Qo) < y. Hence
|£(0B(o), Qo)| < ep2(fin(a), 00) and therefore limII^00£(011(a), 00) < ea2.
Q.E.D.

THEOREM 1. / / F is twice differentiable at fi0, then both the first and second
derivative are unique.

PROOF. Let / and / both be the first derivatives of F at fi0; and h and Ji the
second derivatives. Set g = / - / and y = h - ~h. Then (g, X n ~ X n o ) =

o[p(Sl, O0)] and y(B) = o[p2(fi, Oo)] where y(Q) = (w,(Xa ~ Xno)2> for some
w e Lx(n X /x). Given fiej/, by Lemma 2, for any a e [0,1] there exists a
sequence (Q n (a )} with

Xa,(«) ~ Xa0 ~* a\Xa ~ Xa0)-

Then

(g, Xo.(«) - Xao> ^ «<g> Xa ~ Xao>

and

(w> (xB,(«) ~ Xao)2> -> a2<w> (Xa ~ Xao)2>-

Since p(Qn(a), fl0) -» ap(Q, J20), by a similar argument as used in the proof of
Lemma 3 we have

11111 <£> Xcn(a) - Xso> = a(g, Xa ~ Xno> = o(a)
n—*oo

and

a2<^.(Xa-Xc0)2> = o ( a 2 ) .

This implies that (g, xa - Xao> = 0 and <w,(x0 - Xao)
2> = ° for any J2 e j / .

Let fi + =g-1([0,«))] and Q_-r x ( ( -«>,0]) . Then <g, xBo> = <g,Xfi+> > 0
and <g, xOo> = (g, Xa_> < 0 which implies (g, Xa0) = 0- Therefore, <g, Xa> =
0 for all £2 e j / . Hence, g = 0, a.e. on X Similarly, y = 0 a.e. on X. Q. E. D.

REMARKS, (i) If F is twice differentiable at S20, then F is differentiable at fl0.
Since <?0o(fi) £ o[p(Sl, J20)] by assumption, hence DFQB is unique by Proposition

https://doi.org/10.1017/S0334270000004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004513


288 j . H. Chou, Wei-Shen Hsia and Tan-Yu Lee is]

2.2 [10]. The first derivative of F is a linear functional on sf defined by
fi -» (DFQg, XQ — Xo0) rather than just DFQo, an Lj-function. However, we may
identify the first derivative with DFQf> [10]. For the second derivative qao(&) =
(D2FQO, (x f l — Xao).

2>» it is the quadratic form defined by D2Fa<). We may always
assume D2FQo is symmetric in Definition 2, i.e., D2FQo(x, y) = D2FQo(y, x), Vx, y
e j ^ , since ^ ( D ^ ^ x , / ) + D2FQJy. x)) is symmetric and defines the same
quadratic form.

(ii) If F is countably additive and absolutely continuous with respect to JU, then
DFQ is simply the Radon-Nikodym derivative Df/dp, and the second derivative
qQ = 0 for all fl e J ^ .

(iii) Another example of a twice differentiable set function is F(Q) =
d\i,... ,fQvn dp) where h: /?"->/? is differentiable and vl>...,vn are in

). Then its first derivative

DFQ

and its second derivative

where h, denotes the ith first partial derivative, and htJ is the yth second partial
derivative of A.

(iv) If F and G are differentiable (twice differentiable) at fi0, then for c e R,
c • F, and F ± G are differentiable (twice differentiable) at Qo.

In order to obtain sufficient conditions for a constrained local minimum,
Morris [11] introduced the concept of local convexity of a set function as follows.

DEFINITION 3 [11]. A differentiable set function F:s/^R is locally convex at fi0

if there exists e > 0 such that p(fi0, Q) < e implies

The following lemmas give relationships between local convexity of a set
function and its second derivative.

LEMMA 4. Let F:s/->Rbea set function which is twice differentiable at £20- If F
is locally convex at fl0 then there exists e > 0 such that p(fl0, J2) < e implies
(D2FOo,(xa ~ Xo0)2) > 0, i.e., D2FQois locally positive semidefinite.

PROOF. Using the sequence (fin(a)} given in Lemma 3, the proof of this lemma
is similar to that of Theorem 1 in [9, page 89]. Q. E. D.
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LEMMA 5. Let F: s/-* R be a set function which is twice differentiable at fl0. / /
there exists y > 0 such that

for all fl with p(S2, Bo) < Efor some e > 0, then F is locally convex at fi0.

PROOF. The result follows directly from Lemma 3 and the definition of "o" .
Q.E.D.

3. Optimality conditions of second order

In this section we consider the problem mentioned at the beginning of Section
1:

Min.F(fi) subject to G,(fl) < 0, i = l,...,m. (1)

fl0 G jj^is a local minimum for problem (1) if there exists e > 0 such that for il
satisfying p(fio>

 fl) < £> G,W < 0, / = 1, . . . ,w, it follows that F(B) > F(QQ).
The first-order necessary condition to this problem was given by Morris in [11].

THEOREM 2 [11]. Suppose
(i) F, Gx,. . . ,Gm are differentiable at Q* with first derivatives

DFa., DGQ,,... ,DGQ., respectively.
(ii) S2* is a local minimum of problem (1), and
(iii) fi* is regular, i.e., there exists a set Q,1 ^stwith G,{Q*) + (DG'Q., Xn, -

X Q . ) < 0, i = 1,. ..,m. Then there exists nonnegative reals Xr,.. .,Xmsuch that

~ Xa* \ > 0 for all B G sf, and

A set of nonnegative reals Xv... ,Xm for which (2) holds is called a Lagrangian
multiplier for problem (1) at fl* and the associated Lagrangian function is defined
as L(fi) = F(fi) + L^XfiiiQ). We denote the feasible region of problem (1) by
S = {fl G j^ |G,(Q) < 0, / = 1, . . . ,m], the index set of active constraints at fl*
by /(fi*) = {i|G,.(fi*) = 0}, and the first derivative of L at B by Z)LB =

THEOREM 3 (Second-Order Necessary Condition). Let F,Gv...,Gm be twice
differentiable at 0*. Suppose fi* is a local minimum of problem (1) and suppose
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Z,(S2) = F(£l) + Y.™.l\iGi(Q) is a Lagrangian function associated with a set of
Lagrangian multipliers \x,... ,Xmfor problem (1) at $2*. Then

for all fl e S satisfying

(DLQ.,XQ- Xa-) = 0 .

(DG'O.,XQ-XQ*)<0, i e / ( O » ) , (3)
,(Q) = 0, * = l,...,m.

PROOF. For any $2 <= 5 satisfying (3) we have i^fl) = L(Q) and it follows that

= <£>2La., (X o - Xa.)
2> + E(Q, «•) (4)

where £(Q, Q*) = o[p2(S2, fi*)].
A sequence (fin(a)} can be constructed as in Lemma 3 so that

lim G,.(an(a)) = G,(O*) + o<DGi., Xa ~ Xa-) + o(a), i = l,...,m.
n —* oo

(5)
If i e /(S2*) then G,(Q*) = 0. By the definition of o(a), there exists 8' > 0 such

that |o(a)| < W^DG'Q., XQ ~ Xn«>l« for a < 8'. Therefore from (3), (5) becomes

lim <?,(&„(«)) < j(DG^,Xa ~ Xn>) < 0 fora < 8'

and hence, for any a < 8' there exists Ma > 0 such that G,(fln(a)) < 0 for all
n> Ma.

If i £ /(S2*) then G,(fi*) < 0, and (5) becomes l im^ M (a n («)) -» G,(fi*) < 0
as a -» 0. Therefore, there exists 8" > 0 so that for any a < 8" there exists
Ma > 0 such that G,(Qn(a)) < 0 for all n > Ma.

We have shown that there exists 8 = min(8', 8") > 0, such that for any a < 8
there is A^ > 0 so that G,(fin(a)) < 0, for all n > Na, i = 1,... ,m. Since fi* is a
local minimum we have, for any a < 8,

F(Qn(a)) > F(Sl*) for all n > Na.

Therefore
lim F(Qn(a)) > F(fi*) fora < 8.

n—*oo

Applying the sequence {Qn(a)} to (4), we obtain

lim F(QH(a)) = F(Q*) + a2(D2LQ.,(xa ~ Xa-)1) + o(a2).
n—* oo

Dividing both sides by a2 and letting o -»0we have

for all Q e 5 satisfying (3). Q.E.D.
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T h e following theorem gives first-order sufficient condi t ions for optimali ty. T h e

theo rem follows the spirit of Theorems 5.3 and 5.6 in [10] and can be proved by a

similar argument .

T H E O R E M 4 (First-Order Sufficient Condition). Suppose Q * e S and suppose

L(fl) = F($l) + E^LjX^B) is a Lagrangian function for problem (1) at fl*. If there
is y > 0 such that

(DLQ., X n - Xa-> > 1 ' p(G, «*) for all Q e S

then there exist a > 0 and /? > 0 such that

*) forallQ(=S

If we relax the first-order sufficient condition in the above theorem then we
need to impose a second-order condition on the set fl for which the first-order
condition is violated, that is,

(DLQ., XB - Xa«> < y-p(0 ,Q*) .

THEOREM 5 (Second-Order Sufficient Condition). Suppose
(i) fi* e S,
(ii) L(S2) = F(fl) + E ^ X ^ Q ) « a Lagrangian function for problem (1),
(iii) L w ftv/ce differentiable at Qo, and
(iv) f/iere exwfj y > 0 SMC/I that (D2LQ.,(xa — Xo«)2> > YP2(S, Q*) »« a

neighborhood of SI* in S. Then fi* « a /oca/ minimum of F in S.

P R O O F . T h e proof is straightforward by using L e m m a 5. Q.E.D.
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