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Existence and uniqueness regions

for solutions of nonlinear equations

A.L. Andrew

A refinement of the Newton-Kantorovich Theorem, which has many-

potential applications in existence - uniqueness theory, is used

to strengthen a result of Lancaster and Rokne concerning

existence and uniqueness regions for zeros of operator

polynomials.

Most of the recent developments following from Kantorovich's analysis

of Newton's method [5] have been concerned with properties of numerical

algorithms. However Kantorovich's results have also proved useful for

establishing local existence and uniqueness results for solutions of non-

linear equations in Banach space. Special cases include differential

equations, integral equations, and finite systems of algebraic equations.

It is the purpose of this note to point out that some existence-

uniqueness results derived from Kantorovich's Theorem can be strengthened

by using Theorem 1 below. As an illustration, Theorem 1 is used to prove

two apparently new theorems concerning nonlinear operator equations which

strengthen results proved by Lancaster and Rokne using a classical "Newton-

Kantorovich" Theorem (Theorem 1 of [7]). Henceforth the notation "Theorem

7.n" will denote Theorem number n of [7]. Theorem 1 is an immediate

consequence of Theorem 1 of [2] although existence and uniqueness questions

were not emphasised in [2]. The solutions whose existence is established

in Theorems 2 and 3 may be computed by the modified Newton's method [2]

using the null operator as initial approximation. This may easily be

proved and error bounds for successive approximations established using
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results of [2] but this is not done here.

Theorem 3 is related to but not implied by a result deduced from the
contraction mapping theorem by Eisenfeld [3, Theorem 2.1]. A comparison
between the Kantorovich and contraction mapping approaches in a related
context is made in [2], The quantities

occurring in Theorem 3 also arise in a related existence theorem of Isaev
[4] which requires a l l these quantities to be less than a certain number
which unfortunately is generally difficult to compute. Isaev did not give
simple bounds for the solution or any uniqueness results. As explained in
[3], [4], and [7], equation (2) below is important in the theory of eigen-
value problems in which the eigenvalue parameter occurs nonlinearly. These
problems, called nonlinear eigenparameter problems in [3], often arise in
physics and engineering [?] . Solution of (2) is also required in some
methods of numerical solution of nonlinear eigenparameter problems [6].

THEOREM 1. Let F be a continuously Frichet differentiable mapping

of an open subset Q of a Banach space B into B . Let V = \F'[x )]~ 3

the inverse of the Friahet derivative of F at x , exist and be bounded,

and let Q. = {x 6 B : \\x-x || 5 r] c Q . Let

\\I-T0F'(x)\\ S K\\XQ-X\\ for all x in QQ ,

where I is the identity operator. Let 0 < h = K\\r F(x ) || S % and

r 2 r where

r± = [l±( 1-2

Then the equation F(x) = 0 has a solution x* in
Q = {x Z B : \\x-x || £ r } c fl . If also r < r or r = r = r then

x* is the only zero of F in ft .

Although the fact that i* ED is not explicitly stated in [2] it

follows immediately on setting r = r in Theorem 1 of [2].

THEOREM 2. Let Q be an open subset of L , the noncommutative
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Banaah algebra of all bounded linear operators on a Banaah space B 3 with

the operator norm. Let ft = {X € L : \\X\\ 5 r} c ft . Let F : ft -»• L be

defined by

Ftt) = AQ + A^X + P(X) ,

where A , A f L , A~ exists, and P : ft -*• L satisfies

(i) A~ P is continuously Frechet differentiable on ft 3

(ii) P(0) = 0 ,

(Hi) P'(0) = 0 ,

(iv) there exists p > 0 such that M^-P'(x)\ £ p||X|| , for

all X € ftQ . i

Let h = p U~ A S % and let r > t where

t± =

Then F has a zero in S = {X € L -. \\X\\ 5 t } and if r < t or

t = r = t then that zero is unique in ft .

The proof of Theorem 2 is ident ical with the proof of Theorem 7.7 in

[7] except that Theorem 1 is used instead of Theorem 7 .1 .

THEOREM 3. Let AQ, ..., ^ € L , n > 2 , where L is as in

Theorem 2,and let A~ exist. Let

(1) £ = 1 - Y. 2m-1rn\\A-XA if" I L - ^ 1 > 0 .

27zew the equation

(2) ? X / = OA
m

has a solution in
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5 =

Which,ich, is unique in \x € L : \\X\\ 2 2 kC^JI} .

Proof, in Theorem 2 take P(X) = Y A f and r = 2|Lr14 II . Then
rrto m 111 0||

n m
(3) P'(X)H= ? Y

m=2 i=l m

Clearly P satisfies conditions (i), (ii), and (iii) of Theorem 2 and (3)

shows that with the above choice of v it also satisfies (iv) with

(h) p = I 2"-'

m=2

Hence, by (l) and the definition of h in Theorem 2, 1 - 27j = e > 0 ,

and hence

The result now follows from Theorem 2.

In general the existence result in Theorem 2 is strongest when r = t

and the uniqueness result is strongest when r - t . Hence Theorem 3 may

be strengthened by choosing different values of r for the existence and

the uniqueness part. However, except in the special case n = 2 , when

P"(X) is independent of X and this modification yields Theorem 7.2, the

result obtained by such "optimum" choices of r is more complicated and

harder to apply than Theorem 3.

Theorem 3 strengthens Theorem 7-8, the only result in [7] dealing with

(2) with n > 2 , in three ways:

(i) Theorem 7.8 considers only the case n = 3 ;

(ii) the existence region S established for the solution by

Theorem 3 is smaller than that established by Theorem 7.8;

(iii) in the case n = 3 the inequality in (l) becomes
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whereas Theorem 7.8 requires the more r e s t r i c t ive condition

This last improvement was made possible by the use of Theorem 1. The

weakening of the Lipschitz conditions in Theorems 7-1 and 7-7 to those in

Theorems 1 and 2 respectively, made possible the halving of the coefficient

'A . The replacement of the strict inequality of [7] by weak

inequality was possible since Theorem 1, following Kantorovich [5],

considers separately the case r_ = r + (when h = h ) whereas Theorem 7-1

does not.

Using Theorem 7-1 instead of Theorem 1, a marginally more complicated

version of the above proof of Theorem 3 yields the similar but weaker

result with e replaced by

m=2

Comparing e* with £ shows that for all n > 2 (assuming A •£ 0 ) , the

use of Theorem 1 instead of Theorem 7.1 establishes local existence and

uniqueness of a solution of (2) under more general conditions and even when

£* > 0 it establishes a smaller existence region for the solution. The

gain from using Theorem 1 increases as n increases.

Further information concerning (2), including cases when (l) is not

satisfied, may often be obtained from Theorem 3 by means of the change of

variable Y = X - C , where C is a fixed element of L chosen so that

the new coefficients satisfy (l).
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