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Hypergeometric Abelian Varieties

Natália Archinard

Abstract. In this paper, we construct abelian varieties associated to Gauss’ and Appell–Lauricella hy-

pergeometric series. Abelian varieties of this kind and the algebraic curves we define to construct them

were considered by several authors in settings ranging from monodromy groups (Deligne, Mostow),

exceptional sets (Cohen, Wolfart, Wüstholz), modular embeddings (Cohen, Wolfart) to CM-type (Co-

hen, Shiga, Wolfart) and modularity (Darmon). Our contribution is to provide a complete, explicit

and self-contained geometric construction.

Introduction

This paper provides an explicit construction of abelian varieties associated to Gauss’
hypergeometric series (one variable) and, more generally, to Appell-Lauricella hyper-
geometric series (several variables). Roughly speaking, to one hypergeometric series

F, one associates a family of nonsingular algebraic curves indexed by the variables of
F, on which the numerator of the integral representation of F is a period. The associ-
ated abelian varieties are abelian subvarieties of the Jacobian varieties of these curves.

They all have the same dimension depending on F only and multiplications by the
same field.

Abelian varieties Tabc(z) associated to Gauss’ hypergeometric series F(a, b, c ; z)

appear in different settings. Defined by Wolfart [21], [22], they were the support for
his investigations about the size and nature of the so-called exceptional set, which is
the set of algebraic points at which the series takes algebraic values. Using a con-
sequence ([23] Satz 2) of Wüstholz’s Analytic Subgroup Theorem ([24] Hauptsatz),

Wolfart showed that, under some conditions on a, b, c, the points z ∈ E(a, b, c) cor-
respond to isogenous abelian varieties (of the same dimension) defined over Q̄ and
having complex multiplication (see also Cohen and Wolfart [7]). The conditions on
a, b, c make the monodromy group ∆(a, b, c) a triangle subgroup of SL2(R). Wolfart

showed that the arithmeticity of the monodromy group implies the infinity of the
exceptional set. Cohen and Wüstholz [10] proved the converse assertion (under the
same conditions). For this they proposed and used a special case of a weak version
of André-Oort’s conjecture. This case of the conjecture was proved recently by Edix-

hoven and Yafaev [14]. Explicit determinations of exceptional sets of hypergeometric
series with monodromy group isomorphic to SL2(Z) can be found in [4] for two of
them and in [3] for a wider family.

The geometric objects associated to hypergeometric series provide tools for the
study of the monodromy groups of these series. For instance, the families of alge-
braic curves that we will consider appear in Deligne and Mostow [13], where the
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monodromy group of the Appell-Lauricella hypergeometric series is shown to be,
under certain assumptions on the parameters, a lattice in a projective unitary group.

Embeddings of monodromy groups of hypergeometric series into modular groups
are constructed by Cohen and Wolfart in [7] for one variable and in [9] for several
variables. The monodromy group ∆ of a hypergeometric series F is embedded into
a modular group acting on the universal covering space of some Shimura variety.

The subgroup fixing the subvariety parametrizing the abelian varieties associated to
F contains with finite index the image of ∆ under the embedding. Using ideas devel-
oped with Cohen, Shiga and Wolfart [17] found a criteria for an abelian variety over
Q̄ with generalized complex multiplication to be of CM-type. They showed that for

hypergeometric abelian varieties, CM-type is equivalent to the algebraicity of all quo-
tients of periods. They conjecture that this should be equivalent to the algebraicity of
one quotient of periods, as Wolfart proved in the one-variable case.

In the context of the generalized Fermat equation, Darmon [11], [12] studied the

modularity of hypergeometric abelian varieties in one variable.
This paper is structured in the following way. Section 1 recalls the definition of

the hypergeometric series in one and several variables and shows how one can asso-
ciate a family of curves to one hypergeometric series via its integral representation.

Section 2 gives the precise definition of this family of curves and, in particular, the
hypotheses on the parameters. The possibly singular points of the curve are also de-
termined in there. In Section 3, we construct the nonsingular model of the curve
by first desingularizing locally (Section 3.1) and then glueing the local desingular-

izations (Section 3.2). The compositions of the desingularization morphism with
local parametrizations of the nonsingular curve at the points lying above the singu-
lar points are calculated in Section 3.3. One application is the computation of Euler
characteristic and of the genus of the nonsingular model (Section 4), another appli-

cation is the computation of the order of differential forms (Section 6), which are
eigenforms for the action of some roots of unity (Section 5). The dimension of the
eigenspaces for this action is given in Sections 6.2–6.4. So-called new eigenspaces
are selected which define an abelian subvariety of the Jacobian variety, called the

New Jacobian, whose dimension depends only on the family of curves (Section 7).
In the one-variable case, this New Jacobian is isomorphic to the ϕ

(

lcd(a, b, c)
)

-
dimensional abelian variety Tabc(z) defined by Wolfart, as shown in Section 8. Finally,
Section 9 treats the “zero-variable” case by constructing an abelian variety on which

the Beta-function lives as a period. This matches with Rohrlich’s construction in the
Appendix of [20]. The last two sections translate our general construction to Wol-
fart’s language in the special case of Gauss’ hypergeometric series, completing this
way Wolfart’s interpretation of the integral representation of F(a, b, c ; z) as a quo-

tient of periods, the key for his study of the algebraic values of F via the consequence
of Wüstholz Analytic Subgroup Theorem (cf. Remark 11).

We wish to thank the referee for pointing out that different methods and existing
results could be used to shorten the proofs of Theorems 6.2 and 6.8 respectively.

For instance, the statement of Theorem 6.8 could be proved by applying the result
of [6], as Deligne and Mostow [13] and Wolfart [21], [22] did in the one variable
case (r = 2 in our notations) and Cohen and Wolfart [9] in the two variable case
(r = 3) (see also Note 2). Our proof of Theorem 6.8 is yet totally independent of
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[6] and relies on Theorem 6.2, which is itself based on the geometric construction
of the nonsingular model of the curve (Section 3). Although a different and shorter

method could be used to prove Theorem 6.2 (see Note 1), we hope that the explicit
geometric construction of the nonsingular model given in this paper will serve as an
example and have further applications.

Most of the material of this paper is contained in Chapter 1 of the author’s PhD

thesis [2].

Acknowledgements The author wishes to thank the Swiss National Science Foun-

dation for its support and McGill University for its hospitality while this article was
written. Special thanks go to Henri Darmon.

1 Hypergeometric Series

Gauss’ hypergeometric series is defined to be

(1) F(a, b, c ; z) =

∞
∑

n=0

(a ; n)(b ; n)

(c ; n)(1 ; n)
zn,

where (x ; n) :=
∏n

j=1(x + n − j) and a, b, c ∈ C, −c /∈ N. It converges in the unit
disc, where it enjoys the so-called Euler’s integral representation

(2) F(a, b, c ; z) =
1

B(b, c − b)

∫ 1

0

xb−1(1 − x)c−b−1(1 − zx)−a dx

provided the integral converges, i.e. Re(c) > Re(b) > 0. The denominator is the

Beta-function B(α, β) =
∫ 1

0
xα−1(1− x)β−1 dx. Using the change of variables x 7→ 1

u

and the symmetry of (1) in a and b, we can rewrite (2) as

(3) F(a, b, c ; z) =
1

B(a, c − a)

∫ ∞

1

u−c+b(u − 1)c−a−1(u − z)−b du.

Gauss’ hypergeometric series has been generalized in many ways to series in sev-
eral variables. We will be interested in the series FD named after Appell and Lauri-
cella, which has an integral representation of Euler type (see [1], [15], [18], [8]). In-

deed, consider the Appell-Lauricella hypergeometric series of the complex variables
z1, . . . , zd

FD(a, b1, . . . , bd, c ; z1, . . . , zd) =

∞
∑

n1,...,nd=0

(a ;
∑

j n j)
∏

j(b j ; n j)

(c ;
∑

j n j)
∏

j(1 ; n j)

d
∏

j=1

z
n j

j ,

where a, b1, . . . , bd, c ∈ C, −c /∈ N and j runs from 1 to d. This series converges if
|z j | < 1 for each j = 1, . . . , d. If Re(c) > Re(a) > 0, it has the following integral
representation

(4)
1

B(a, c − a)

∫ ∞

1

u−c+
∑

j b j (u − 1)c−a−1
d

∏

j=1

(u − z j)
−b j du.
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Remark 1 F(a, b, c ; z) satisfies the so-called hypergeometric differential equation

z(1 − z)
d2u

dz2
+

(

c − (a + b + 1)z
) du

dz
− abu = 0.

Similarly, the function FD satisfies a system of partial linear differential equations, as
can be found in [18].

If a, c − a /∈ Z, the two integrals in the integral representation (4) can be replaced
up to algebraic factors by periods on curves. For convenience of further notations,
we now consider the function FD(a, b2, . . . , br, c ; λ2, . . . , λr) of the r − 1 variables

λ2, . . . , λr and write its integral representation as

(5)
1

B(a, c − a)

∫ ∞

1

r
∏

i=0

(u − λi)
−µi du,

where we have set λ0 = 0, λ1 = 1 and µ0 = c −
∑r

j=2 b j , µ1 = 1 + a − c, µ j = b j

for j = 2, . . . , r. Suppose now that the µi ’s are rational numbers and let N be their
least common denominator. Consider the projective curve CN defined by the affine
equation

yN
=

r
∏

i=0

(x − λi)
Nµi .

Then the integral in the numerator of (5) is equal, up to an algebraic factor, to a
period

∫

γ
dx
y

on CN , where γ is a loop on CN whose image in P1
C under the projection

(x, y) 7→ x is a double contour loop (also called Pochhammer loop) around 1 and ∞.
Note that the condition c − a /∈ Z implies N -

∑r
i=0 Nµi .

2 The Family of Curves

As seen in Section 1, the projective curve associated to an Appell-Lauricella hyper-

geometric series FD(a, b2, . . . , br, c ; λ2, . . . , λr) is affinely defined by the equation
yN

=
∏r

i=0(x − λi)
Ai , where the exponents are integers defined by the parameters

a, b2, . . . , br, c of the series. Letting the complex variables λ2, . . . , λr varying in C,
we can view the curves associated to FD as forming a family over Cr−1. If we let λ0

and λ1 vary and allow the λi ’s to be infinite, we get a family over (P1
C)r+1. We will

restrict ourselves to the study of the nondegenerated fibers (i.e. those for which ∀i,
λi 6= ∞ and ∀ j 6= i, λ j 6= λi), because the construction in the degenerated case can
be recovered from that in the generic case.

Concerning the exponents of the equation, we have from Section 1 the condi-
tion N -

∑r
i=0 Ai . For technical calculations (Sections 6.3–6.4) leading to a nice

formula for the dimension of the New Jacobian (Section 7), we will make the as-
sumption N - A0, . . . ,Ar. We also want the curves to be irreducible, what amounts

to (N,A0, . . . ,Ar) = 1. This is no big deal, as the results for reducible curves can
be obtained from the results for its irreducible components. Furthermore, since our
results will be relevant only up to isomorphism of the curve, we can suppose the
exponents to be positive as showed in the following remark.
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Remark 2 Let X ′
N be the desingularization of the projective curve C ′

N defined af-
finely by

y ′N
=

r
∏

i=0

(x ′ − λi)
Ai ,

where N ∈ N, A0, . . . ,Ar ∈ Z. For each i ∈ {0, . . . , r}, write Ai = kiN + ri with
0 ≤ ri ≤ N − 1 and ki ∈ Z. Note that if Ai < 0 then ki < 0. With these notations,

the equation reads

y ′N
∏

Ai<0

(x ′ − λi)
−ki N =

∏

Ai<0

(x ′ − λi)
ri

∏

Ai>0

(x ′ − λi)
Ai .

Let CN denote the projective curve defined by the affine equation

yN
=

∏

Ai<0

(x − λi)
ri

∏

Ai>0

(x − λi)
Ai .

Then we have a map ρ : C ′
N → CN given by

(x ′, y ′) 7→
(

x ′, y ′
∏

Ai<0

(x ′ − λi)
−ki

)

=: (x, y)

∞ 7→ ∞.

It is well-defined, because for (x ′, y ′) ∈ C ′
N , we have

yN
=

(

y ′
∏

Ai<0

(x ′ − λi)
−ki

)N
=

∏

Ai<0

(x ′ − λi)
ri

∏

Ai>0

(x ′ − λi)
Ai

and (x, y) ∈ CN . Since Ai < 0 implies −ki > 0, ρ is a morphism. It has a ra-
tional inverse given by (x, y) 7→

(

x, y
∏

Ai<0(x − λi)
ki
)

. The desingularization maps
π ′ : X ′

N → C ′
N and π : XN → CN are birational morphisms. Then ρ◦π ′ is a birational

morphism from X ′
N to CN and there exists a unique isomorphism ρ̃ : X ′

N → XN such
that the following diagram commutes

X ′
N

ρ̃
−−−−→ XN

π ′





y





y

π

C ′
N −−−−→

ρ
CN .

Let’s now define the family of curves we will be working on.

Definition 1 For r ∈ Z≥0 and N,A0, . . . ,Ar ∈ N such that N - A0, . . . ,Ar ,
∑r

i=0 Ai , (N,A0, . . . ,Ar) = 1 and λ0, . . . , λr ∈ C such that λi 6= λ j if i 6= j, we

denote by CN the projective algebraic curve defined by the affine equation

yN
=

r
∏

i=0

(x − λi)
Ai

and XN for its desingularization.
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Both curves are irreducible projective algebraic curves defined over C. The pro-
jective equations of CN read

Case 1: N −
∑r

k=0 Ak > 0. CN : xN
2 = x

N−
∑r

k=0 Ak

0

∏r
i=0(x1 − λix0)Ai

Case 2: N −
∑r

k=0 Ak < 0. CN : xN
2 x

−N+
∑r

k=0 Ak

0 =
∏r

i=0(x1 − λix0)Ai .

The point at infinity is respectively (0 :1 :0) in the first case and (0 :0 :1) in the
second one. It will be denoted by ∞ when we do not wish to specify the case. Note
that the case N −

∑r
k=0 Ak = 0 is excluded by our hypotheses.

Recall that the singular points are those whose coordinates annihilate all the partial
derivatives of the polynomial defining the curve. One can verify that the only possibly
singular points are the point at infinity together with the affine points (1 :λi : 0) for
i = 0, . . . , r. More precisely, we have for i ∈ {0, . . . , r}:

(1 :λi : 0) is singular ⇔ Ai > 1
and

∞ is singular ⇔
∣

∣N −

r
∑

j=0

A j

∣

∣ > 1.

3 Construction of the Desingularization

This section gives the explicit construction of the desingularization XN of CN . We first
desingularize locally above the possibly singular points of CN (Section 3.1). These
local desingularizations are glued together in Section 3.2 to build the nonsingular
model XN of CN . Finally, Section 3.3 gives the desingularization map in local coor-

dinates above the possibly singular points. This will be used to calculate the genus of
XN (Section 4) and a basis of regular differential forms on XN (Section 6).

3.1 Local Desingularizations

Let P be a possibly singular point of CN . We will work locally on an affine open
neighbourhood of P.

3.1.1 Above P j := (1 :λ j : 0)

In the neighbourhood of an affine point, we have the classical isomorphism

CN − {∞}
∼
−→ Caff

(x0 :x1 :x2) 7→
( x1

x0
,

x1

x0

)

.

It induces a morphism κ0 : Caff → CN given by (x, y) 7→ (1 :x : y). Setting x := x1

x0
,

y := x1

x0
, we recover the affine equation of CN

Caff : yN
=

r
∏

i=0

(x − λi)
Ai .
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Let’s fix j ∈ {0, . . . , r} and work locally in a neighbourhood of (λ j , 0) on which
g j(x) :=

∏

i 6= j(x − λi)
Ai 6= 0. Set

N ′ :=
N

(N,A j)
and A ′ :=

A j

(N,A j)
.

Then there exist n,m ∈ Z such that

nN ′ + mA ′
= 1

and we have

(x, y) ∈ Caff ⇒

{

yN ′

= (x − λ j)
A ′

u and

u(N,A j ) = g j(x).

Remark that

ymN ′

(x − λ j)
nN ′

= (x − λ j)um

and that u = yN ′

(x − λ j)
−A ′

. Hence, if we set z := ym(x − λ j)
n and define

X j := {(x, u, z) ∈ C
3 ; zN ′

= (x − λ j)um, u(N,A j ) = g j(x), g j(x) 6= 0}

and Caff, j := Caff − {(x, y) ∈ Caff ; g j(x) = 0}. Then the rational map

ν j : Caff, j → X j

(x, y) 7→
(

x, yN ′

(x − λ j)
−A ′

, ym(x − λ j)
n
)

becomes a morphism on the open dense subset Ĉaff := Caff, j − {(λ j , 0)} of Caff, j .
This morphism has an inverse given by the morphism

τ j : X j → Caff, j

(x, u, z) 7→ (x, unzA ′

).

In particular, τ j is a birational morphism, which restricts to an isomorphism from

X̂ j := X j −
(

τ−1
j {(λ j , 0)}

)

to Ĉaff = Caff −{(λk, 0) ; k = 0, . . . , r}. Moreover, since

Caff is isomorphic to CN −{∞} under κ0, Ĉaff is isomorphic to CN −{P0, . . . , Pr,∞}
and

X̂ j
∼
−→ CN − {P0, . . . , Pr,∞}.

In particular, X j is birationally equivalent to CN under the morphism π j := κ0 ◦ τ j .

Remark 3 The point (λ j , 0) ∈ Caff, j has exactly (N,A j) preimages under τ j , which
are the points (λ j , u, 0), where u runs among the (N,A j)-th roots of g j(λ j). (They
are distinct, because g j(λ j) 6= 0.) P j ∈ CN has then also (N,A j) π j-preimages on X j .
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Remark 4 X j is nonsingular. Indeed, calculating the Jacobian matrix of X j , we get





um g ′
j (x)

m(x − λ j)um−1 −(N,A j)u(N,A j )−1

−N ′zN ′−1 0





Remember that u 6= 0 on X j . If x = λ j , then the upper square looks like
( 6=0 ∗

0 6=0

)

and has rank 2. If x 6= λ j , then z 6= 0 and the lower square looks like
( 6=0 6=0

6=0 0

)

and
the matrix has rank 2.

3.1.2 Above Infinity

Case 1: N −
∑r

k=0 Ak > 0. In this case, the projective equation of CN is

xN
2 = x

N−
∑

Ak

0

r
∏

i=0

(x1 − λix0)Ai

and the point at infinity has coordinates (0 :1 :0). We choose the neighbourhood of

(0 :1 :0) on CN , on which x1 6= 0, and have the isomorphism

CN ∩ {x1 6= 0}
∼
−→ C∞1

(x0 :x1 :x2) 7→
( x0

x1
,

x2

x1

)

=: (x, y).

Its inverse is given by κ1 : (x, y) 7→ (x : 1 : y). Remark that the affine possibly singular

points with coordinate x1 6= 0 also lie on CN ∩ {x1 6= 0}. In the coordinates (x, y),
the equation of C∞1 is

C∞1 : yN
= xN−

∑

Ak

r
∏

i=0

(1 − λix)Ai ,

the point at infinity is (x, y) = (0, 0) and the affine possibly singular points are the
points ( 1

λk
, 0), for each k ∈ {0, . . . , r} such that λk 6= 0. Let’s set

h(x) :=

r
∏

i=0

(1 − λix)Ai , N ′ :=
N

(N,N −
∑

Ak)
and A ′ :=

N −
∑

Ak

(N,N −
∑

Ak)
.

Then there exist n,m ∈ Z such that

nN ′ + mA ′
= 1

and we have

(x, y) ∈ C∞1 ⇒

{

yN ′

= xA ′

u and

u(N,N−
∑

Ak)
= h(x).
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Note that
ymN ′

xnN ′

= xum and u = yN ′

x−A ′

.

Set further z := ymxn, then

X∞1 := {(x, u, z) ∈ C
3 ; zN ′

= xum, u(N,N−
∑

Ak)
= h(x), h(x) 6= 0}

and C ′
∞1 := C∞1 − {(x, y) ; h(x) = 0}. Hence we have a rational map

ν∞1 : C ′
∞1 → X∞1

(x, y) 7→ (x, yN ′

x−A ′

, ymxn),

which restricts to a morphism on the open dense subset Ĉ∞1 := C ′
∞1 − {(0, 0)} of

C ′
∞1. This morphism has an inverse given by the morphism

τ∞1 : X∞1 → C ′
∞1

(x, u, z) 7→ (x, zA ′

un).

τ∞1 is then a birational morphism and restricts to an isomorphism of X̂∞1 := X∞1−
τ−1
∞1{(0, 0)} to Ĉ∞1. Since C∞1 is isomorphic to CN ∩ {x1 6= 0} under κ1, Ĉ∞1 is

isomorphic to CN − {P0, . . . , Pr,∞} and so is X̂∞1, i.e.

X̂∞1
∼
−→ CN − {P0, . . . , Pr,∞}.

In particular, X∞1 is birationally equivalent to CN under the morphism π∞1 := κ1 ◦
τ∞1.

Remark 5 The point at infinity, which has coordinates (x, y) = (0, 0) on C∞1, has
(N,N −

∑

Ak) preimages under τ∞1. They are (0, u, 0), where u is a (N,N−
∑

Ak)-

th root of h(0). Since h(0) 6= 0, this implies that the point at infinity on CN has also
(N,N −

∑

Ak) preimages on X∞1. One verifies that X∞1 is nonsingular.

Case 2: N −
∑r

k=0 Ak < 0. In this case, the projective equation of CN reads

xN
2 x

−N+
∑

Ak

0 =

r
∏

i=0

(x1 − λix0)Ai

and the point at infinity (0 :0 :1). We choose a neighbourhood of (0 :0 :1) on CN , on

which x2 6= 0. On this neighbourhood, there is no other possibly singular point than
(0 :0 :1), because they all have coordinate x2 = 0. We have the isomorphism

CN ∩ {x2 6= 0} → C∞2

(x0 :x1 :x2) 7→
( x0

x2
,

x1

x2

)

=: (x, y),
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with inverse κ2 : (x, y) 7→ (x : y : 1). In these coordinates, the equation of C∞2 is

C∞2 : x−N+
∑

Ak =

r
∏

i=0

(y − λix)Ai

and the point at infinity (x, y) = (0, 0). But the equation in this shape is not easy to

handle. We will see that after having blown up the point (0, 0) on C∞2, everything
becomes easier. In order to do this, we will use the expressions of the blow-up map
in local coordinates.

In the first coordinates’ set, the point (0, 0) has no preimage on the preimage of

C∞2 bereft of the exceptional divisor. In the second coordinates’ set, the preimage of
C∞2 under the map ϕ : (u, v) 7→ (uv, v) is given by

u−N+
∑

Ak v−N+
∑

Ak = v
∑

Ak

r
∏

i=0

(1 − λiu)Ai

⇐⇒

{

v = 0 (exceptional divisor) or

C ′
∞2 : u−N+

∑

Ak = vN
∏r

i=0(1 − λiu)Ai

and the preimage of (x, y) = (0, 0) is (u, v) = (0, 0).
We can apply to C ′

∞2 the same procedure as in the other cases, though it will be
slightly more technical. As usual, we begin by setting

h(u) :=

r
∏

i=0

(1 − λiu)Ai , N ′ :=
N

(N,−N +
∑

Ak)
and A ′ :=

−N +
∑

Ak

(N,−N +
∑

Ak)

and letting n,m ∈ Z be such that nN ′ + mA ′
= 1. Then (u, v) ∈ C ′

∞2 implies











uA ′

= vN ′

w,

w(N,−N+
∑

Ak)
= h(u),

h(u) 6= 0.

Note that unA ′

vmA ′

= vwn and w = uA ′

v−N ′

. Set z := unvm and define

X∞2 := {(u, v,w, z) ∈ C
4 ; zA ′

= vwn,w(N,−N+
∑

Ak)
= h(u), h(u) 6= 0}.

Then we have a rational map

ν∞2 : C ′
∞2 → X∞2

(u, v) 7→ (u, v, uA ′

v−N ′

, unvm),

which restricts to a morphism on the open dense subset C ′
∞2 −{(0, 0)} of C ′

∞2. This
morphism has an inverse given by the morphism

τ ′
∞2 : X∞2 → C ′

∞2

(u, v,w, z) 7→ (wmzN ′

, v).
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Hence, τ ′
∞2 is a birational morphism and restricts to an isomorphism of X̂∞2 :=

X∞2 − {(τ ′
∞2)−1(0, 0)} to C ′

∞2 − {(0, 0)}. Remembering that the blow-up map

ϕ : C ′
∞2 → C∞2 is a birational morphism and restricts to an isomorphism on C ′

∞2−
{

ϕ−1{(0, 0)}
}

and that ϕ−1{(0, 0)} = {(0, 0)}, we get a birational morphism

τ∞2 := ϕ ◦ τ ′
∞2 : X∞2 → C∞2,

which induces an isomorphism from X̂∞2 to Ĉ∞2 := C∞2 − {(0, 0)}. Now, since
C∞2 is isomorphic to CN − {P0, . . . , Pr} under κ2, Ĉ∞2 is isomorphic to CN −
{P0, . . . , Pr,∞} and so is X̂∞2, i.e.

X̂∞2
∼
−→ CN − {P0, . . . , Pr,∞}.

The birational morphism from X∞2 to CN is given by π∞2 := κ2 ◦ τ∞2.

Remark 6 X∞2 is nonsingular and the τ∞2-preimages of (0, 0) ∈ C∞2 are
(0, 0,w, 0), where w runs trough the (N,−N+

∑

Ak)-th roots of h(0). Since h(0) 6= 0,

their number is (N,−N +
∑

Ak) = (N,N −
∑

Ak).

3.2 Construction of XN by Glueing

We refer here to the construction described in [16], Volume 1, V.3.2. Let X∞ resp.
π∞ denote X∞1 resp. π∞1 in the case N −

∑

Ak > 0 and X∞2 resp. π∞2 in the case
N −

∑

Ak < 0.
Remember that, for each j ∈ {0, . . . , r,∞}, the morphism π j : X j → CN restricts

to an isomorphism of the open dense subset X̂ j of X j to CN − {P0, . . . , Pr,∞} and
that X j and CN are birationally equivalent. Then one can define an equivalence re-
lation on the disjoint union

∐

j∈{0,...,r,∞} X j by setting, for Q j ∈ X̂ j ,Qk ∈ X̂k with

j, k ∈ {0, . . . , r,∞} and j 6= k,

Q j ∼ Qk ⇔ π j(Q j) = πk(Qk).

Moreover, the functions π j , j ∈ {0, . . . , r,∞}, induce a well-defined function π
on the quotient X :=

∐

j∈{0,...,r,∞} X j/∼ by setting, for C ∈ X and Q j ∈ X j with
[Q j] = C,

π(C) := π j(Q j).

By definition of the equivalence relation, this is independent of the choice of the
representative of the class C.

On the set X, we have the quotient topology and can define a sheaf induced from

the sheaf of regular functions on each X j , for which π is again a birational and finite
morphism. This implies that X is again a projective curve. Since X is moreover non-
singular, because so is each X j , and, as we have seen, birationally equivalent to CN ,
it provides a model of the desingularization of CN , hence is isomorphic to XN . The

desingularization map is given by the map π such that π|X j
= π j for each j. Another

isomorphic construction is given in [16] Volume 2, II.5.3, Theorem 6, Theorem 7.
Since, to our purpose, we only need to know the desingularization up to isomor-

phism, X will be identified with XN in the following.
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3.3 Compositions of π with Local Parametrizations of XN

Because the restriction of π to XN −
{

π−1({P0, . . . , Pr,∞})
}

is an isomorphism

to CN − {P0, . . . , Pr,∞}, we only need to know the compositions of π with local
parametrizations at the points of π−1({P0, . . . , Pr,∞}), which are isolated on XN .

3.3.1 Above P j = (1 :λ j : 0)

Fix j ∈ {0, . . . , r} and remember that the local desingularization above P j is

X j = {(x, u, z) ∈ C
3 ; zN ′

= (x − λ j)um, u(N,A j ) = g j(x), g j(x) 6= 0}.

We have then the composition

π j = κ0 ◦ τ j : X j → CN

(x, u, z) 7→ (1 :x :unzA ′

j ).

Recall that X j is nonsingular and open in an affine variety, hence each point has a

neighbourhood for the complex topology which is isomorphic to an open neigh-
bourhood on C. Choose a complex open neighbourhood U j of s = 0 in C on which

g j(sN ′

+ λ j) 6= 0. Then the image of U j under s 7→ g j(sN ′

+ λ j) is included in C

bereft of a half-line through 0. Thus, branches of roots of g j(sN ′

+ λ j) can be well-
defined as holomorphic functions of s on U j . Then choosing fixed branches, we have

a well-defined holomorphic function

ϕ j : s 7→
(

sN ′

+ λ j , g j(sN ′

+ λ j)
1

(N,A j ) , sg j(sN ′

+ λ j)
m
N

)

from U j to X j . Indeed, u(N,A j ) = g j(sN ′

+ λ j) = g j(x) and

zN ′

= sN ′

g j(sN ′

+ λ j)
m
N

N ′

= (sN ′

+ λ j − λ j)g j(sN ′

+ λ j)
m

(N,A j )
= (x − λ j)um.

On the image of ϕ j , we have a well-defined holomorphic inverse map

(x, u, z) 7→ zg j(x)−
m
N .

Hence, ϕ j is an analytic isomorphism and a local parametrization of X j at the point

ϕ(0) =
(

λ j , g j(λ j)
1

(N,A j ) , 0
)

, which is one of the π-preimages of P j ∈ CN . Remark

again that the choices of branches for the (N,A j)-th root of g j(sN ′

+λ j) are in bijective

correspondence with the π-preimages on XN of P j .

The expression of π in this local parameter s at each π-preimage of P j is given by

the composition π j ◦ ϕ j : U j → CN

(6) s 7→
(

1 : s
N

(N,A j ) + λ j : s
A j

(N,A j ) g j(s
N

(N,A j ) + λ j)
1
N

)

.
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3.3.2 Above Infinity

Case 1: N −
∑r

k=0 Ak > 0. We are looking for an analytic parametrization of X∞1

at the points (0, u, 0), where u satisfies u(N,N−
∑

Ak)
= h(0). Let’s choose a complex

neighbourhood U∞ of s = 0 in C on which h(sN ′

) 6= 0, N ′ being here N
(N,N−

∑

Ak)
.

On such a neighbourhood, we can define roots of h(sN ′

) as analytic functions of s.

Fix an N-th root h(sN ′

)
1
N . Then, for each branch of the (N,N −

∑

Ak)-th root of
h(sN ′

), the map

ϕ∞1 : U∞ → X∞1

s 7→
(

sN ′

, h(sN ′

)
1

(N,N−

∑

Ak) , sh(sN ′

)
m
N

)

is a well-defined analytic map such that ϕ∞1(0) = (0, u, 0), where u is the corre-
sponding (N,N −

∑

Ak)-th root of h(0). ϕ∞1 has an analytic inverse on its image,
which is given by

(x, u, z) 7→ zh(x)−
m
N .

Thus ϕ∞1 is a local parametrization of X∞1 at the preimage
(

0, h(0)
1

(N,N−

∑

Ak) , 0
)

of ∞. Since π∞1 = κ1 ◦ τ∞1 : X∞1 → CN is given by (x, u, z) 7→ (x : 1 :zA ′

un),
π∞1 ◦ ϕ∞1 : U∞ → CN is given by

(7) s 7→
(

s
N

(N,N−

∑

Ak) : 1 : s
N−

∑

Ak
(N,N−

∑

Ak) h(s
N

(N,N−

∑

Ak) )
1
N

)

and is a local expression of π at each point on XN lying above (0 :1 :0).

Case 2: N −
∑r

k=0 Ak < 0. On U∞ defined as in Case 1, we have a well-defined
holomorphic map

ϕ∞2 : U∞ → X∞2

s 7→
(

sN ′

, s
−N+

∑

Ak
(N,−N+

∑

Ak) h(sN ′

)−
1
N , h(sN ′

)
1

(N,−N+
∑

Ak) , sh(sN ′

)
nN ′

−1

NA ′

)

,

for a fixed choice of the branch of the roots of h(sN ′

). On its image, this map has an
analytic inverse given by

(u, v,w, z) 7→ zh(x)
1−nN ′

NA ′ .

Each choice of the branch of the (N,−N +
∑

Ak)-th root of h(sN ′

) corresponds to a

π-preimage of (0 :0 :1) at which ϕ∞2 is a local parametrization. The composition of
ϕ∞2 with π equals κ2 ◦ ϕ ◦ τ ′

∞2 ◦ ϕ∞2 : U∞ → CN and is given by

(8) s 7→
(

s

∑

Ak
(N,−N+

∑

Ak) : s
−N+

∑

Ak
(N,−N+

∑

Ak) : h(s
N

(N,−N+
∑

Ak) )
1
N

)

.
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4 Genus of XN

In this section, we calculate the algebraic genus g[XN ] = dimC Ω
1[XN ] as the topo-

logical genus of the compact Riemann surface XN (C) of complex points on XN . In
order to do this, we apply Hurwitz’s formula to the covering map ν : XN (C) → P1

C

defined below.
Consider the projection p : CN → P1

C given by (x0 :x1 :x2) 7→ (x0 : x1) and com-
pose it with the desingularization map π : XN (C) → CN . The composition

ν := p ◦ π : XN(C) → P
1
C

is nonconstant and regular (hence holomorphic). It is then a covering map between

compact Riemann surfaces to which we can apply Hurwitz genus formula. The de-
gree of ν is N , because each affine point (x, y) ∈ CN with x 6= λ0, . . . , λr has N

distinct preimages on XN corresponding to the N-th roots of
∏r

i=0(x − λi)
Ai .

It remains to calculate the ramification indices.

4.1 Above Nonsingular Points

Each point Q ∈ XN (C) such that π(Q) =: P is nonsingular is a regular point of the

covering ν. Indeed, if P ∈ CN is nonsingular and P = (x, y) (resp. ∞), then y (resp.
x1 and x2) can be written as a function of x (resp. x0) in a neighbourhood of P. π
being locally an isomorphism at Q, x (resp. x0) can also be taken as a local parameter
of XN (C) at Q. With respect to this parameter, π is given by x 7→

(

x, y(x)
)

(resp. by

x0 7→ (x0 :x1(x0) :x2(x0))) and ν by x 7→ x (resp. x0 7→ x0). Hence rν(Q) = 1.

4.2 Above P j = (1 :λ j : 0)

For j ∈ {0, . . . , r}, let Q j be one π-preimage of (λ j , 0) ∈ CN . The composition of π
with a local parametrization of XN at Q j is given in (6) Section 3. Composing it with
p, we get

s 7→ (1 : s
N

(N,A j ) + λ j).

If we now choose the chart (x0 : x1) 7→
x1−λ j

x0
on {(x0 : x1) ∈ P1

C ; x0 6= 0} and
compose it with the above map, we get the expression of ν in local coordinates as

s 7→ s
N

(N,A j ) .

This shows that each π-preimage of (λ j , 0) has ramification index equal to N
(N,A j )

.

4.3 Above Infinity

For the points lying above ∞, we will choose the chart (U1, ψ) on P1
C, where U1 :=

{(x0 : x1) ∈ P1
C ; x1 6= 0} and ψ : (x0 : x1) 7→ x0

x1
.

Case 1: N −
∑r

k=0 Ak > 0. The composition of p with the composition (7) of π
with a local parametrization of XN at each preimage of ∞ reads

s 7→ (s
N

(N,N−

∑

Ak) : 1).
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Composing it with ψ, we get the expression of ν in local coordinates at each π-pre-
image of ∞ as

s 7→ s
N

(N,N−

∑

Ak) .

Case 2: N −
∑r

k=0 Ak < 0. In this case, we have to be a little more careful, because
the map p is not defined at ∞. If only to consider momentarily the restriction of p

to the punctured Riemann surface XN (C)−
{

π−1{(0 :0 :1)}
}

, we can suppose s 6= 0

and consider the composition of (8) with p, which is

ν ◦ ϕ∞2 : s 7→ (s

∑

Ak
(N,−N+

∑

Ak) : s
−N+

∑

Ak
(N,−N+

∑

Ak) ) = (s
N

(N,−N+
∑

Ak) : 1).

If s tends to 0, ν ◦ ϕ∞2(s) tends to (0 : 1), the point at infinity in P1
C. Hence, we can

extend the map continuously by setting 0 7→ (0 : 1). The composition with ψ of the
extended map is

s 7→ s
N

(N,−N+
∑

Ak) .

This shows that the ramification index of each point lying above ∞ is equal to

N/(N,−N +
∑

Ak). In both cases, the ramification index of each π-preimage of
∞ is equal to (N,−N +

∑

Ak) = (N,N −
∑

Ak). The following table summaries all
these data.

(9)

point P of CN nb of π-preimages Q rν(Q)

(λ j , 0), j ∈ {0, . . . , r} (N,A j)
N

(N,A j )

∞ (N,N −
∑r

k=0 Ak)
N

(N,N−
∑

r
k=0 Ak)

other points 1 1

Theorem 4.1 Let XN be the desingularization of the irreducible projective algebraic

plane curve CN defined over C by the affine equation

yN
=

r
∏

i=0

(x − λi)
Ai ,

where λ0, . . . , λr ∈ C are such that, ∀i, j ∈ {0, . . . , r} with i 6= j, λi 6= λ j . Let further

N,A0, . . . ,Ar ∈ N satisfy

N 6=

r
∑

k=0

Ak and (N,A0, . . . ,Ar) = 1.

Then the Euler characteristic of XN (C) is given by

χ
(

XN (C)
)

= −rN +
(

N,N −

r
∑

k=0

Ak

)

+

r
∑

j=0

(N,A j)

and the genus of XN by

g[XN ] =
(

XN(C)
)

= 1 +
1

2

(

rN −
(

N,N −
r

∑

k=0

Ak

)

−
r

∑

j=0

(N,A j)
)

.
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Proof We apply Hurwitz’s formula to the covering map

ν = p ◦ π : XN (C) → P
1
C,

where π : XN → CN is the desingularization map and p : CN → P1
C the projection

given by (x0 :x1 :x2) 7→ (x0 : x1). As seen above, it has degree N and the only possible

ramification points lie above the points ∞ ∈ P1
C and (1 : λ j), j ∈ {0, . . . , r}. Us-

ing the ramification indices calculated above, the number of preimages calculated in
Section 3 (all recalled in (9)) and the fact that χ(P1

C) = 2, we get, by Hurwitz’s genus
formula

χ
(

XN (C)
)

= 2N −
(

N,N −
∑

Ak

)( N

(N,N −
∑

Ak)
− 1

)

−

r
∑

j=0

(N,A j)
( N

(N,A j)
− 1

)

= −rN +
(

N,N −
∑

Ak

)

+

r
∑

j=0

(N,A j).

To get the second formula, we use χ
(

XN(C)
)

= 2 − 2g
(

XN(C)
)

.

g[XN ] = g
(

XN(C)
)

= 1 −
1

2
χ
(

XN (C)
)

= 1 +
1

2

(

rN −
(

N,N −
r

∑

k=0

Ak

)

−
r

∑

j=0

(N,A j)
)

.

5 Actions of µN

Let µN be the group of complex N-th roots of unity. We will define an action of

µN on XN and show how it induces a linear action on the C-vector space Ω
1[XN ] of

regular differential 1-forms on XN .
For ζ ∈ µN and an affine point (x, y) ∈ CN , define

ζ · (x, y) := (x, ζ−1 y).

Further, set ζ · ∞ = ∞, ∀ζ ∈ µN . As (ζ−1)N
= 1, we have ζ · (x, y) ∈ CN . This

is an action, because µN is abelian and 1 acts as the identity. Moreover, since µN is

included in the definition field C of CN , for each ζ ∈ µN , the map

ϕζ : CN → CN

(x, y) 7→ ζ · (x, y)

∞ 7→ ∞

is a morphism of algebraic varieties.

https://doi.org/10.4153/CJM-2003-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-037-4


Hypergeometric Abelian Varieties 913

Now we want to extend this action to an action on XN . Remember that the desin-
gularization map π : XN → CN restricts to an isomorphism on the dense subset

π−1(C
reg
N ) of XN , where C

reg
N is the set of regular points in CN . Let P ∈ XN , if π(P) is

regular, set
ζ · P := π−1

(

ζ · π(P)
)

.

If P ∈ XN is such that π(P) = ∞ or ∃ j ∈ {0, . . . , r} with π(P) = (λ j , 0), set

ζ · P := P.

Note that, if (λ j , 0) (respectively ∞) is regular on CN , this last definition is coherent
with the above one. This defines an action on XN .

For ζ ∈ µN , set

Φζ : XN → XN

P 7→ ζ · P.

Then Φζ makes the following diagram commute

(10)

XN
Φζ

−−−−→ XN

π





y





y

π

CN −−−−→
ϕζ

CN .

Because ϕζ and π are morphisms, Φζ is also a morphism.
Let ω be a regular differential form on XN . Since Φζ : XN → XN is a morphism,

the pull-back Φ
∗
ζω is again regular on XN . Hence, the following map is well-defined

µN × Ω
1[XN ] → Ω

1[XN ]

(ζ, ω) 7→ Φ
∗
ζω.

It defines an action of µN on Ω
1[XN ], which is linear, because, for every ζ ∈ µN ,

the map Ω
1[XN ] → Ω

1[XN ], given by ω 7→ Φ
∗
ζω is linear. Furthermore, the C-

vector space Ω
1[XN ] being finite dimensional, it furnishes a finite dimensional linear

representation of µN .

Such a linear representation admits a decomposition in isotypical components
(each isotypical component being the direct sum of all irreducible representations
associated to a given character). For n ∈ {1, . . . ,N}, Vn will denote the isotypical
component associated to the character χn : ζ 7→ ζn. In these terms, we can write the

canonical decomposition of Ω
1[XN ] as

(11) Ω
1[XN ] =

⊕

Vn,

where the sum is taken over the indices n in {0, . . . ,N − 1} for which dimVn > 0.
In the next paragraph, the dimension of Vn will be calculated for each n. It cor-

responds to the number of irreducible subrepresentations of Ω
1[XN ] having charac-

ter χn.
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914 Natália Archinard

6 Basis of Regular Differential Forms on XN

In this section, we calculate a C-basis of regular differential 1-forms on XN . In
view of the decomposition (11), it is sufficient to find a basis of Vn for each n in
{0, . . . ,N − 1}. Once this being done, we will calculate dimC Vn by counting the

basis elements and also the sum dimVn + dimVN−n in the case (n,N) = 1.
Let’s first make use of a result that goes back to Abel and Riemann and that is

stated in Satz 1 Section 9.3 of [5] in the following way.

Proposition 6.1 The nonvanishing holomorphic differential 1-forms on the Riemann

surface C ′, which is the desingularization of an irreducible algebraic plane curve C with

affine equation f (x, y) = 0, where the coordinates are chosen in such a way that ∂ f
∂y

is

not identically zero, are given by [the pull-backs under the desingularization map of]

Φ(x, y) dx
∂ f
∂y

(x, y)
,

where Φ(x, y) = 0 is the equation of an adjoint curve to C of degree (deg f ) − 3.

We do not want to introduce what an adjoint curve is, but this proposition allows
us to choose a basis of regular differential 1-forms on XN among the regular pull-
backs under π of the differential forms

(12)
Φ(x, y)dx

yN−1
,

on CN , where Φ(x, y) ∈ C[x, y].
If (x, y) ∈ CN , each power ykN with k ∈ N, can be replaced by a polynomial

expression in x. Hence, we can suppose that

Φ(x, y) = Φ0(x) + Φ1(x)y + · · · + ΦN−1(x)yN−1.

That is

Φ(x, y) dx

yN−1
=

Φ0(x) dx

yN−1
+

Φ1(x) dx

yN−2
+ · · · +

ΦN−2(x) dx

y
+ ΦN−1(x) dx.

Hence, if the regular pull-backs of the differential forms (12) generate Ω
1[XN ], so

do the regular pull-backs of the differential forms

Ψ(x) dx

yn
,

where n ∈ {0, . . . ,N − 1} and Ψ(x) ∈ C[x]. Further, the polynomials Ψ(x) will be
replaced by polynomials that are fitter to reflect the topology of CN (resp. XN ) and

that also generate the ring C[x]. Namely, polynomials of the form

r
∏

i=0

(x − λi)
ai ∈ C[x], ai ∈ Z.

https://doi.org/10.4153/CJM-2003-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-037-4


Hypergeometric Abelian Varieties 915

This discussion may be summarized by saying that the regular pull-backs under π of
the following differential forms on CN

ωn(x, y) :=

∏r
i=0(x − λi)

ai dx

yn
,

with ai ∈ Z and n ∈ {0, . . . ,N − 1}, generate Ω
1[XN ].

6.1 Regularity Conditions for π∗ωn

Let’s now fix n in {0, . . . ,N − 1}. We are looking for conditions on a0, . . . , ar for
π∗ωn to be regular on XN .

6.1.1

On the dense subset U := CN − {∞, (λi , 0) ; j = 0, . . . , r} of CN , the differen-
tial form ωn is obviously regular, because (x, y) 7→ x and (x, y) 7→ 1

yn are regular

functions on U . Since the desingularization map π : XN → CN is a morphism, the
pull-back π∗ωn is regular on π−1(U ).

6.1.2 Above (1 :λ j : 0)

Let j ∈ {0, . . . , r} and Q j ∈ XN be such that π(Q j) = (λ j , 0). As calculated in
Section 3.3.1, the composition of π with the local parametrization ϕ j of XN at Q j is
given in affine coordinates on CN by (compare with (6))

s 7→
(

s
N

(N,A j ) + λ j , s
A j

(N,A j ) g j(s
N

(N,A j ) + λ j)
1
N

)

,

where g j(x) :=
∏

i 6= j(x−λi)
Ai and s takes values in a neighbourhood U j of 0 in C on

which g j(s
N

(N,A j ) + λ j) 6= 0. By definition, we have

(

(π j ◦ ϕ j)
∗(ωn)

)

(s) = ω
(

(π j ◦ ϕ j)(s)
)

◦ ds(π j ◦ ϕ j)

and d(π j◦ϕ j )(s)x ◦ ds(π j ◦ ϕ j) =
∂(π j◦ϕ j )1

∂s
(s) dss. Hence

(

(π j ◦ ϕ j)
∗(ωn)

)

(s) =
N

(N,A j)

r
∏

i=0

(s
N

(N,A j ) + λ j − λi)
ai s

N
(N,A j )

−1−
nA j

(N,A j )

g j(s
N

(N,A j ) + λ j)
− n

N ds

= C(s)s
a j

N
(N,A j )

+
N−nA j
(N,A j )

−1
ds,

where C(s) := N
(N,A j )

∏

i 6= j(s
N

(N,A j ) +λ j −λi)
ai g j(s

N
(N,A j ) +λ j)

− n
N does not take the value

zero on U j and is regular (because g j(s
N

(N,A j ) + λ j) 6= 0 on U j). Remark that this
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amounts to replacing x and y by their expressions in s and dx by N
(N,A j )

s
N

(N,A j )
−1

ds in

ωn(x, y). Since ϕ j is an analytic isomorphism, it is an algebraic morphism and so
is its inverse. This has the consequence that π∗ωn is regular at Q j = ϕ j(0) exactly

when (π j ◦ ϕ j)
∗(ωn) is regular at 0 (because π∗

j ωn = (ϕ−1
j )∗

(

(π j ◦ ϕ j)
∗(ωn)

)

and

(π j ◦ ϕ j)
∗(ωn) = (ϕ j)

∗(π∗
j ωn)). Hence, we have

π∗ωn is regular at Q j ⇔ a j ≥
nA j + (N,A j)

N
− 1.

Note that this condition ensures the regularity of π∗ωn at each π-preimage of (λ j , 0).

6.1.3 Above Infinity

First of all, we have to write the differential form ωn in projective coordinates. Setting
x := x1

x0
and y := x2

x0
, we get

dx =
1

x0
dx1 −

x1

x2
0

dx0

and

ωn(x0, x1, x2) = x−n
2 x

n−2−
∑r

k=0 ak

0

r
∏

i=0

(x1 − λix0)ai (x0dx1 − x1dx0).

Case 1: N −
∑r

k=0 Ak > 0. The composition of π with the local parametrization
ϕ∞1 of XN at each preimage Q of (0 :1 :0) is given by (cf. (7) Section 3.3.2)

s 7→
(

s
N

(N,N−

∑

Ak) : 1 : s
N−

∑

Ak
(N,N−

∑

Ak) h(s
N

(N,N−

∑

Ak) )
1
N

)

,

where h(x) =
∏r

i=0(1−λix)Ai and s takes values in the complex neighbourhood U∞

of s = 0 on which h(s
N

(N,N−

∑

Ak) ) 6= 0. Noting that x1 = 1 ⇒ dx1 = 0 and inserting
the expressions for x0, x1, x2, dx0 into that of ωn, we get

(

(π∞1 ◦ ϕ∞1)∗ωn

)

(s) = C(s)s
n

∑

Ak−N−N
∑

ai
(N,N−

∑

Ak)
−1

ds,

where C is regular on U∞ and C(s) 6= 0 for s ∈ U∞. Therefore

π∗ωn is regular at Q ⇔
r

∑

i=0

ai ≤
n

∑r
k=0 Ak − (N,N −

∑r
k=0 Ak)

N
− 1.

Case 2: N −
∑r

k=0 Ak < 0. The composition of π with the local parametrization
ϕ∞2 of XN at each preimage Q of (0 :0 :1) is given, for s ∈ U∞, by (cf. (8) Section 3)

s 7→
(

s

∑

Ak
(N,−N+

∑

Ak) : s
−N+

∑

Ak
(N,−N+

∑

Ak) : h(s
N

(N,−N+
∑

Ak) )
1
N

)

.
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Replacing x0, x1, x2, dx0, dx1 by their expressions in s, we get

(

(π∞2 ◦ ϕ∞2)∗ωn

)

(s) = C(s)s
n

∑

Ak−N
∑

ai−N

(N,−N+
∑

Ak)
−1

ds,

where C is regular on U∞ and C(s) 6= 0 for s ∈ U∞. Thus, we have

(π∗ωn)(s) is regular at Q ⇔
r

∑

i=0

ai ≤
n

∑r
k=0 Ak − (N,−N +

∑r
k=0 Ak)

N
− 1.

Summary 1 Since (N,−N +
∑r

k=0 Ak) = (N,N −
∑

Ak), we can summarize these

conditions by saying that the pull-back under π : XN → CN of the differential form

ωn(x, y) =

∏r
i=0(x − λi)

ai dx

yn

on CN is regular on XN if and only if

(13)



















r
∑

i=0

ai ≤
n

∑r
k=0 Ak − (N,N −

∑r
k=0 Ak)

N
− 1

a j ≥
nA j + (N,A j)

N
− 1, ∀ j ∈ {0, . . . , r}.

These conditions will be referred to as the regularity conditions for π∗ωn.

Note 1 As kindly noticed by the referee, there is no need to construct the non-
singular model by glueing the local desingularizations for computing the order of
differential forms on XN . Indeed, it suffices to consider the local affine equation at

each singular point and reduce it into irreducible factors. It will be of the form

(14) 0 = yN − wA
=

∏

ζd

(yN ′

− ζdwA ′

),

where d = gcd(N,A), N ′
=

N
d

, A ′
=

A
d

and the product runs over all d-th roots of
unity. Let n,m ∈ Z be such that nN ′ + mA ′

= 1 and write z := ymwn, then the
desingularization is locally given by

y = ζn
d zA ′

and w = ζ−m
d zN ′

.

So that each factor in (14) corresponds exactly to one branch of the desingularization

above the point (0, 0). Substituting w := x − λi at (λi , 0) and w := 1
x

at ∞, one can
compute the order of differential forms on XN .

Remark 7 We would like now to show that the pull-back π∗ωn of a differential form
ωn(x, y) = y−n

∏r
i=0(x−λi)

ai dx belongs to the isotypical componentVn of character
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χn, if it satisfies the above conditions. If it is the case, π∗ωn ∈ Ω
1[XN ] and it remains

to study the action of µN on π∗ωn, for a fixed n ∈ {0, . . . ,N − 1}. Let ζ ∈ µN , then

ζ · π∗ωn = Φ
∗
ζ (π∗ωn)

= (π ◦ Φζ)∗ωn

= (ϕζ ◦ π)∗ωn by (10).

Now, for P ∈ XN , we have

(

(ϕζ ◦ π)∗ωn)
)

(P) = ωn

(

(ϕζ ◦ π)(P)
)

◦ dP(ϕζ ◦ π)

= ωn

(

ϕζ
(

π(P)
))

◦ dπ(P)ϕζ ◦ dPπ

= ζnωn

(

π(P)
)

◦ dPπ

= ζn(π∗ωn)(P).

Hence, for every ζ ∈ µN , we have

ζ · (π∗ωn) = χn(ζ)π∗ωn.

This shows that π∗ωn ∈ Vn.

6.2 Dimension of Vn

Let n be fixed in {0, . . . ,N − 1}. In order to determine the dimension of Vn, we will

count the number of elements in a maximal family of linearly independent differen-
tial forms of the form y−n

∏r
i=0(x − λi)

ai dx, where n, a0, . . . , ar ∈ Z and satisfy the
regularity conditions (13). Since a0, . . . , ar are integers and according to the regular-
ity conditions, the maximal possible value (

∑r
i=0 ai)max of

∑r
i=0 ai and the minimal

possible value (a j)min of a j , j ∈ {0, . . . , r}, are given by

(

r
∑

i=0

ai

)

max
=

[

n
∑

Ak − (N,N −
∑

Ak)

N
− 1

]

and

(a j)min = −

[

1 −
nA j + (N,A j)

N

]

, j ∈ {0, . . . , r},

where [x] denotes the integral part of x.

Definition 2 Let x ∈ R, then x admits a unique decomposition as

x = [x] + 〈x〉,

where [x] ∈ Z and 〈x〉 ∈ [0, 1) are respectively called the integral part and the frac-

tional part of x.
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Write further (
∑r

i=0 ai)min :=
∑r

i=0(ai)min and ` := (
∑r

i=0 ai)max − (
∑r

i=0 ai)min.

If ` ≥ 0, there is at least one solution. Write ωmin for the solution where each ai is
minimal. Then Vn = 〈xkωmin〉k=0,...,` and dimVn = ` + 1. Indeed, one verifies that

each possible value for
∑r

i=0 ai brings exactly one element in the maximal family of
linearly independent differential forms. For instance, if ∃ j ∈ {0, . . . , r} such that
(a j)min + 1 and (

∑r
i=0 ai)min + 1 satisfy the regularity conditions, then

y−n(x − λ j)
(a j )min+1

∏

i 6= j

(x − λi)
(ai )min = xωmin − λ jωmin ∈ 〈ωmin, xωmin〉.

Note that this is independent of j and conclude by induction on `.

Theorem 6.2 Let XN be the curve defined in Theorem 4.1 and recall that the vector

space Ω
1[XN ] of regular differential 1-forms on XN furnishes a linear representation of

µN (cf. Section 5). Then, for n ∈ {0, . . . ,N − 1}, the isotypical component Vn of

character χn : ζ 7→ ζn has dimension

dimVn =

{

dn if dn > 0

0 otherwise,

where

dn :=

[

n
∑

Ak − (N,N −
∑

Ak)

N

]

+

r
∑

i=0

[

1 −
nAi + (N,Ai)

N

]

.

Proof Use [x − 1] = [x] − 1 to show that dn = ` + 1 and apply the above reasoning.

Remark 8 If dimVn = 0, then Vn does not appears in the canonical decomposition
(11) of Ω

1[XN ].

Remark 9 Since g[XN ] = dimC(Ω1[XN ]), Theorem 4.1 and Theorem 6.2 together
imply the following relation

1 +
1

2

(

rN −
(

N,N −
r

∑

k=0

Ak

)

−
r

∑

j=0

(N,A j)
)

=

∑

n∈{0,...,N−1}
dn>0

dn.

6.3 Dimension of Vn, (n,N) = 1

Here will be used the conditions N - A0, . . . ,Ar,
∑r

k=0 Ak. The goal here is to trans-
form the formula for dimVn of Theorem 6.2 in the case where (n,N) = 1 into a more
treatable form. Some preparatory lemmata are given in order to prove Theorems 6.7
and 6.8.
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Lemma 6.3 Let x ∈ R, ` ∈ Z, N,A ∈ N and n ∈ {0, . . . ,N − 1}. Then we have

1. [x + `] = [x] + `,
2. [x] = x − 〈x〉,
3. 〈x + `〉 = 〈x〉.
4. If x /∈ Z, then 〈−x〉 = 1 − 〈x〉.
5. If N - A and (n,N) = 1, then 〈 nA−(N,A)

N
〉 = 〈 nA

N
〉 − (N,A)

N
.

6. If N - A and (n,N) = 1, then
[

− nA+(N,A)
N

]

= −
[

nA−(N,A)
N

]

− 1.

Proof The first four points follow directly from the definitions. For point 5., write

N ′ := N
(N,A)

, A ′ := A
(N,A)

and nA ′
= kN ′ + r, with k ∈ Z and r ∈ {1, . . . ,N ′ − 1}.

Note that r 6= 0, because N - nA. Then
nA ′

N ′
= k +

r

N ′
and

nA ′ − 1

N ′
= k +

r − 1

N ′
.

Since r − 1 ∈ {0, . . . ,N ′ − 2} and k ∈ Z, we have

〈 nA ′

N ′

〉

=
r

N ′
and

〈 nA ′ − 1

N ′

〉

=
r

N ′
−

1

N ′
.

This implies 〈 nA ′−1
N ′

〉 = 〈 nA ′

N ′
〉 − 1

N ′
or equivalently

〈 nA − (N,A)

N

〉

=

〈 nA

N

〉

−
(N,A)

N
.

6. With the same notations and hypotheses as above, we have [ nA ′−1
N ′

] = k. Now,

[ −nA ′ − 1

N ′

]

=

[

−k −
r + 1

N ′

]

= −k +
[

−
r + 1

N ′

]

= −k − 1,

because − r+1
N ′

∈ [−1, 0). Hence, [− nA ′+1
N ′

] = −[ nA ′−1
N ′

] − 1 or equivalently

[

−
nA + (N,A)

N

]

= −
[ nA − (N,A)

N

]

− 1.

Lemma 6.4 Let n ∈ {0, . . . ,N − 1}, N,A0, . . . ,Ar ∈ N and suppose (n,N) = 1

and N - A0, . . . ,Ar,
∑r

k=0 Ak. Then, ∀ j ∈ {0, . . . ,N}, we have

1.
[

−
nA j +(N,A j )

N

]

= 〈
nA j

N
〉 −

nA j

N
− 1 and

2.
[ n

∑r
k=0 Ak−(N,N−

∑r
k=0 Ak)

N

]

=
n

∑r
k=0 Ak

N
−

〈 n
∑r

k=0 Ak

N

〉

.

Proof The reference number refers to Lemma 6.3.
1. Fix j ∈ {0, . . . ,N}, then

[

−
nA j + (N,A j)

N

]

= −
[ nA j − (N,A j)

N

]

− 1 by (5)

= −
nA j − (N,A j)

N
+

〈 nA j − (N,A j)

N

〉

− 1 by (2)

= −
nA j

N
+

(N,A j)

N
+

〈 nA j

N

〉

−
(N,A j)

N
− 1 by (5)

=

〈 nA j

N

〉

−
nA j

N
− 1.
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2.

[ n
∑

Ak − (N,N −
∑

Ak)

N

]

=
n

∑

Ak − (N,N −
∑

Ak)

N

−
〈 n

∑

Ak − (N,N −
∑

Ak)

N

〉

by (2)

=
n

∑

Ak

N
−

(N,N −
∑

Ak)

N

−
〈 n

∑

Ak

N

〉

+
(N,N −

∑

Ak)

N
by (5)

=
n

∑

Ak

N
−

〈 n
∑

Ak

N

〉

.

Proposition 6.5 If (n,N) = 1 and N - A0, . . . ,Ar,
∑r

k=0 Ak, then the integer dn

defined in Theorem 6.2 is equal to

dn = −
〈 n

∑r
k=0 Ak

N

〉

+

r
∑

i=0

〈 nAi

N

〉

.

Proof

dn =

[ n
∑

Ak − (N,N −
∑

Ak)

N

]

+

r
∑

i=0

[

1 −
nAi + (N,Ai)

N

]

=

[ n
∑

Ak − (N,N −
∑

Ak)

N

]

+ r + 1 +
∑

[

−
nAi + (N,Ai)

N

]

=
n

∑

Ak

N
−

〈 n
∑

Ak

N

〉

+ r + 1 +
∑

〈 nAi

N

〉

−
∑ nAi

N
− (r + 1)

= −
〈 n

∑

Ak

N

〉

+
∑

〈 nAi

N

〉

.

The second and third equalities are respectively obtained by applying (1) of Lem-
mas 6.3 and 6.4.

Under the hypotheses (n,N) = 1 and N - A0, . . . ,Ar,
∑r

k=0 Ak, we still can get a

better result on dim Vn. For this, we will use the following lemma.

Lemma 6.6 Let x0, . . . , xr be real numbers. Then we have

−
〈

r
∑

i=0

xi

〉

+

r
∑

i=0

〈xi〉 ∈ {0, . . . , r}.

Proof First remark that
〈

∑

xi

〉

=

〈

∑

[xi] +
∑

〈xi〉
〉

=

〈

∑

〈xi〉
〉

,
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because of
∑

[xi] ∈ Z applied to (3) of Lemma 6.3. Then we have

−
〈

∑

xi

〉

+
∑

〈xi〉 = −
〈

∑

〈xi〉
〉

+
∑

〈xi〉 =

[

∑

〈xi〉
]

=: c,

by the above and by definition. Pay attention to the fact that c is an integer. Since
∑

〈xi〉 ≥ 0 and−〈
∑

xi〉 ∈ (−1, 0], the integer c cannot be negative, because−1 can-
not be reached. Moreover, c ≤ r, because

∑

〈xi〉 < r + 1. Hence c lies in {0, . . . , r}.

Theorem 6.7 Let the notations be as in Theorem 6.2 and suppose (n,N) = 1 and

N - A0, . . . ,Ar,
∑r

k=0 Ak. Then we have

dimVn = −
〈 n

∑r
k=0 Ak

N

〉

+

r
∑

i=0

〈 nAi

N

〉

.

Proof By Proposition 6.5, we have

dn = −
〈 n

∑r
k=0 Ak

N

〉

+

r
∑

i=0

〈 nAi

N

〉

and by Lemma 6.6, we know that dn ∈ {0, . . . , r}. Finally, by Theorem 6.2, we get
dim Vn = dn.

6.4 dimVn + dim VN−n, (n,N) = 1

Theorem 6.8 Let the notations be as in Theorem 6.2. Suppose that (n,N) = 1 and

N - A0, . . . ,Ar,
∑r

k=0 Ak. Then we have

dim Vn + dimVN−n = r.

Proof

dimVN−n = −
〈 (N − n)

∑

Ak

N

〉

+

r
∑

i=0

〈 (N − n)Ai

N

〉

by Theorem 6.7

= −
〈

∑

Ak −
n

∑

Ak

N

〉

+
∑

〈

Ai −
nAi

N

〉

= −
〈

−
n

∑

Ak

N

〉

+
∑

〈

−
nAi

N

〉

by (3) Lemma 6.3

= −1 +
〈 n

∑

Ak

N

〉

+ r + 1 −
∑

〈 nAi

N

〉

by (4) Lemma 6.3

= r −
(

−
〈 n

∑

Ak

N

〉

+
∑

〈 nAi

N

〉)

= r − dimVn by Theorem 6.7.

https://doi.org/10.4153/CJM-2003-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-037-4


Hypergeometric Abelian Varieties 923

Note 2 As the referee kindly pointed out, the result of Theorem 6.8 could be de-
duced directly from a result of Chevalley and Weil [6] giving a formula for the mul-

tiplicities of irreducible representations in the representation given by the action of a
finite group on the space of holomorphic differential forms on a curve. This formula
amounts basically to the holomorphic Lefschetz formula, a recent account of which
can be found in the Appendix of [19]. This confirms our result based on a geometric

viewpoint.

7 New Forms and New Jacobian

We are now approaching our goal of constructing an abelian variety on which
∫

π∗ω1

lives as a period. We could have taken the Jacobian variety of XN , but its dimension
(equal to dim Ω

1[XN ] = g[XN ]) would have depended not only on N but also on
A0, . . . ,Ar (cf. Theorem 4.1). That is the reason why we will restrict ourselves to an
abelian subvariety of Jac(XN ), whose dimension depends on N and on the number

r + 1 of factors in the equation, but not on the exponents.

In order to define this subvariety, we will select regular differential forms on XN ,
which “do not come from under” and are therefore called new. This will be made
more precise.

First of all, let’s work at the level of the singular curve CN , because it is here possible
to work with explicit expressions for the differential forms, in coordinates that we

choose to be affine.

Let d ∈ N. If d|N , then we have a well-defined morphism

ψd : CN → Cd

(x, y) 7→ (x, y
N
d )

∞ 7→ ∞.

Let (u, v) ∈ Cd be an affine point, then

ψ−1
d {(u, v)} = {(u, v0), (u, ζ N

d
v0), . . . , (u, ζ

N
d
−1

N
d

v0)},

where v0 is any fixed N
d

-th root of v and ζ N
d

:= e
2πi
N

d. We see that there is an open

dense subset of Cd of points having N
d

preimages. The other points have exactly one

preimage. ψd is a ramified topological covering. The set of preimages of a point
P ∈ Cd is called the fiber over P with respect to ψd.

As we have seen in Section 5, the group µN of N-th roots of unity acts on CN

µN ×CN → CN

(ζ, P) 7→ ϕζ(P).

Remark that the subgroup Id := 〈ζd
N〉, ζN := e

2πi
N , of index d in µN acts transitively

on each fiber by permutation. Hence, the covering is Galois.
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The action of µN on CN induces an action of µN on the vector space Φ[CN ] of
differential forms on CN . This goes very similarly as for the definition of the induced

action on Ω
1[XN ] (see Section 5). Indeed, we set

µN × Φ[CN ] → Φ[CN ]

(ζ, ω) 7→ ϕ∗
ζω.

Now, suppose that you have a differential form η on Cd. It is clear that its pull-

back ψ∗
d η on CN is invariant under the action of the subgroup Id, because Id preserves

the fibers.
The converse is more subtle. Let ω ∈ Φ[CN ] be invariant under the action of

Id. Does ω define a differential form (ψd)∗ω on Cd? The answer to this question is

positive, because Id acts transitively on each fiber. Hence, for Q ∈ Cd, we can define
(

(ψd)∗ω
)

(Q) to be the unique linear form on θCd ,Q such that, for P ∈ CN with

ψd(P) = Q,
(

(ψd)∗ω
)

(Q) ◦ dPψd = ω(P). This is well-defined, because ∀P ′ ∈ CN

with ψd(P ′) = Q, ∃ξ ∈ Id such that ϕξ(P ′) = P and then

ω(P) = ω
(

ϕξ(P ′)
)

◦ dP ′ϕξ = (ϕ∗
ξω)(P ′) = ω(P ′),

by invariance of ω under Id. Remark further that ψ∗
d

(

(ψd)∗ω
)

= ω. Indeed, let
P ∈ CN , then

ψ∗
d

(

(ψd)∗ω
)

(P) =
(

(ψd)∗ω
)(

ψd(P)
)

◦ dPψd = ω(P).

The so-defined differential form (ψd)∗ω ∈ Φ[Cd] is called the push-forward ofω with
respect to ψd.

For a differential form ω on CN and d|N , we have shown

ω is fixed under the action of Id on Φ[CN ] ⇔ ∃η ∈ Φ[Cd] such that ψ∗
dη = ω.

Let’s now consider the differential form ωn(x, y) = y−n
∏r

i=0(x − λi)
ai dx on CN ,

where the ai ’s are integer. Under which condition on n is ωn fixed by the action of Id?
Well,

∀ξ ∈ Id, ϕ∗
ξωn = ωn ⇔ ∀ξ ∈ Id, ξnωn = ωn

⇔ ∀k ∈
{

0, . . . ,
N

d
− 1

}

, (ζdk
N )nωn = ωn

⇔ ∃` ∈ Z s.t. n = `
N

d
.

The differential forms which satisfy this for a d dividing N and different from N are
the ones we want to get rid of, because “they come from under”. This is equivalent

to the fact that (N, n) 6= 1. Indeed, if the above equivalent conditions hold, N
d

is
6= 1 and divides both N and n. Conversely, suppose that (N, n) 6= 1, then ωn is fixed
under the action of I N

(N,n)
.
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Definition 3 A differential form ωn (resp. π∗ωn) on CN (resp. XN ) such that
(n,N) = 1 and the linear combinations of such differential forms are said to be

new. The vector subspace of Ω
1[XN ] consisting of all new forms on XN which are

holomorphic is

Ω
1[XN ]new :=

⊕

Vn,

where the sum is taken over the n ∈ {0, . . . ,N − 1} such that dimVn > 0 and

(n,N) = 1.

The Jacobian variety Jac(XN ) of XN is the abelian variety defined by the following
quotient:

Ω
1[XN ]∗

/

ı
(

H1

(

XN (C),Z
))

.

The vector subspace Ω
1[XN ]new defines a subquotient of this quotient which cor-

responds to abelian subvariety of Jac(XN ). This abelian subvariety will be called
the New Jacobian of XN and denoted by Jacnew (XN ). Its dimension is equal to
dimC(Ω1[XN ]new ). By definition, we have

(15) dimC(Ω1[XN ]new ) =

∑

(n,N)=1
0<n<N

dim(Vn) =
1

2

∑

(n,N)=1
0<n<N

(dimVn + dim VN−n).

Under the assumptions N - A0, . . . ,Ar,
∑r

k=0 Ak, we can apply Theorem 6.8 to get

dim Vn + dimVN−n = r. This implies

(16) dim Jacnew(XN ) =
rϕ(N)

2
,

where ϕ(N) :=
∑

(n,N)=1
0<n<N

1 is Euler’s function.

Remark 10 The endomorphism algebra of Jacnew(XN ) contains Q(µN ).

8 Abelian Varieties Associated to Gauss’ Hypergeometric Series

The family of curves, which is often associated to Gauss’ hypergeometric series, as in
[21], [22], is isomorphic to but not equal to the one we defined in Section 2. Indeed,
our construction is based on the second integral representation (3) of F(a, b, c ; z) and

not on Euler’s. Since the two families of curves are isomorphic, so are their Jacobian
varieties. Hence, the New Jacobian defines an abelian subvariety of the Jacobian of
the curve coming from Euler’s integral representation, which is precisely the abelian
variety Tabc(z) used by Wolfart. On the way to show this, we will have all intermedi-

ate results about genus, order of differential forms, dimensions, some of which will
slightly correct some of Wolfart’s assertions (see Remark 12). Remark 11 gives some
light about the motivation coming from Wolfart’s work.

Let’s consider a hypergeometric series F(a, b, c ; z) with rational parameters a, b, c

and −c /∈ N. For |z| < 1 and c > b > 0, Euler’s integral representation (2) can be
written as

(17) F(a, b, c ; z) =
P(z)

P(0)
, where P(z) =

∫ 1

0

xb−1(1 − x)c−b−1(1 − zx)−a dx.
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If z 6= 0, 1 and b, c − b /∈ Z, this integral can be replaced up to an algebraic factor by
a period

∫

γ
dx
y

on the projective curve C(N, z) defined affinely by the equation

yN
= xA(1 − x)B(1 − zx)C ,

where N := lcd(a, b, c), A := N(1 − b), B := N(1 + b − c), C := Na. If we choose γ
to be a loop on C(N, z) whose projection in P1

C under (x, y) 7→ x is a double contour
loop around 0 and 1 with interior not containing 1

z
, we have the relation

∫

γ

dx

y
= (1 − ζ−A

N )(1 − ζ−B
N )

∫ 1

0

xb−1(1 − x)c−b−1(1 − zx)−a dx.

Let X(N, z) denote the desingularization of C(N, z) and πz the desingularization
morphism. We have

∫

γ

dx

y
=

∫

π∗z γ

π∗
z

( dx

y

)

,

where π∗
z ( dx

y
) is the pull-back of dx

y
on X(N, z) and π∗

z γ a lift of γ to X(N, z).

Remark 11 These relations are the motivation for the whole construction, taking
into account that a similar relation can be worked out for the integral in the de-
nominator, as we shall see in Section 9. Indeed, these relations allow us to interpret

(17) as a quotient of periods defined over Q(z) (this is the point of the assumption
a, b, c ∈ Q). As Wolfart pointed out, this is a key tool for the study of the set of
algebraic points at which the series takes algebraic values (the so-called exceptional

set). Indeed, if z ∈ Q̄ , then the abelian varieties and the periods are defined over

Q̄ and one can apply a consequence ([23] Satz 2) of Wüstholz’s Analytic Subgroup
Theorem to get a necessary condition on the corresponding abelian varieties for this
quotient to be algebraic. This is a central observation in Wolfart’s work [21], [22].
An explicit condition for z to lie in the exceptional set is determined in [4] for two

hypergeometric series with monodromy group isomorphic to SL2(Z) and in [3] for a
wider family of these series.

In order to apply the construction of New Jacobian to construct an abelian variety
on which P(z) with z 6= 0, 1 lives as a period, we first note the existence of an iso-
morphism between the curve X(N, z) and a curve of the same shape as those defined

in Section 2.
We define CN (z) to be the projective algebraic curve defined affinely by the equa-

tion
yN

= xN−A−B−C (x − 1)B(x − z)C ,

XN (z) to be its desingularization and π : XN (z) → CN (z) the desingularization mor-
phism. Then the map

κ : C(N, z) → CN(z)

(x0 :x1 :x2) 7→ (x1 :x0 :x2)
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is well-defined as one can verify using the equations in projective coordinates

C(N, z) : xN
2 = xN−A−B−C

0 xA
1 (x0 − x1)B(x0 − zx1)C and

CN(z) : uN
2 = uA

0 uN−A−B−C
1 (u1 − u0)B(u1 − zu0)C .

Moreover, κ is clearly a morphism of algebraic varieties, which is equal to its inverse.
Hence it is an isomorphism and the composition κ ◦ πz : X(N, z) → CN (z) is a

birational morphism. It follows that X(N, z) is a nonsingular model of CN(z). By
the uniqueness up to isomorphism of the desingularization, X(N, z) and XN (z) are
isomorphic (call this isomorphism κ̃). Following Definition 1, we will suppose that

N - N − A − B −C, B, C, N − A and (N,N − A − B −C,B,C) = 1.

In particular, this implies a, b, c − a, c − b /∈ Z.

The two curves X(N, z) and XN(z) being isomorphic, they have the same Euler
characteristic. By Theorem 4.1, we find

χ
(

X(N, z)(C)
)

= −2N + (N,A) + (N,B) + (N,C) + (N,N − A − B −C)

g[X(N, z)] = N + 1 −
1

2
[(N,A) + (N,B) + (N,C) + (N,N − A − B −C)].

Let n ∈ {0, . . . ,N − 1} and ωn denote the following (rational) differential form

on CN (z)
xa0 (x − 1)a1 (x − z)a2 dx

yn
.

Then, by the regularity conditions (13) Section 6.1, the pull-back π∗ωn on XN(z) is
regular exactly when the following four conditions hold

(18)

a0 ≥
n(N − A − B −C) + (N,N − A − B −C)

N
− 1,

a1 ≥
nB + (N,B)

N
− 1,

a2 ≥
nC + (N,C)

N
− 1,

a0 + a1 + a2 ≤
n(N − A) + (N,A)

N
− 1.

For n ∈ {0, . . . ,N−1}, let Vn be the isotypical component of Ω
1[XN (z)] of character

χn for the action of µN . Then, Theorem 6.2 implies

(19) dim Vn =

{

dn if dn ≥ 0

0 otherwise,
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where dn is equal to

dn =

[ n(A + B + C) − (N,N − A − B −C)

N

]

+
[

1 −
nA + (N,A)

N

]

+
[

1 −
nB + (N,B)

N

]

+
[

1 −
nC + (N,C)

N

]

.

In order to get dn in this form, use that for k ∈ Z, [x + k] = [x] + k.

Remark 12 Let ηn denote the differential form y−nxb0 (1 − x)b1 (1 − zx)b2 dx on
C(N, z). We can use the conditions (18) to determine when π∗

z ηn is holomorphic

on X(N, z), since π∗
z ηn is holomorphic on X(N, z) exactly when π∗(κ−1)∗ηn is holo-

morphic on XN(z). This is the case exactly when the following four conditions hold

(20)

b0 ≥
nA + (N,A)

N
− 1

b1 ≥
nB + (N,B)

N
− 1

b2 ≥
nC + (N,C)

N
− 1

b0 + b1 + b2 ≤
n(A + B + C) − (N,N − A − B −C)

N
− 1.

These conditions correct slightly the assertion of Wolfart ([22] Section 4) on the
holomorphy conditions for differential 1-forms, while his assertion on the dimen-

sion of the isotypical components Vn for n ∈ {0, . . . ,N − 1} is corrected by (19).

Consider now the case (n,N) = 1. Theorem 6.7 implies

dim Vn = −
〈 n(N − A)

N

〉

+
〈 n(N − A − B −C)

N

〉

+
〈 nB

N

〉

+
〈 nC

N

〉

.

Using that ∀x ∈ R \ Z, 〈−x〉 = 1 − 〈x〉, we obtain

dimVn =

〈 nA

N

〉

+
〈 nB

N

〉

+
〈 nC

N

〉

−
〈 n(A + B + C)

N

〉

.

Finally, in the case (n,N) = 1, Theorem 6.8 implies

(21) dimVn + dim VN−n = 2.

By definition, the isomorphism κ̃ makes the following diagram commute

X(N, z)
κ̃

−−−−→ XN

πz





y





y

π

C(N, z) −−−−→
κ

CN .
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By (15) and (21), the vector space of newforms Ω
1[XN (z)]new has dimension ϕ(N).

It defines a vector subspace of Ω
1[X(N, z)] of the same dimension by pulling-back

Ω
1[X(N, z)]new := κ̃∗

(

Ω
1[XN (z)]new

)

.

This vector subspace defines a ϕ(N)-dimensional abelian subvariety Tabc(z) of the
Jacobian variety X(N, z), which is the abelian variety considered by Wolfart in [21],
[22].

If π∗
z ( dx

y
) is regular on X(N, z) (cf. the regularity conditions (20)), we have

π∗
z

( dx

y

)

= κ̃∗
(

π∗(κ−1)∗
( dx

y

))

∈ κ̃∗
(

Ω
1[XN (z)]new

)

.

In this case, P(z) is, up to multiplication by an algebraic constant, a period on Tabc(z).

9 Abelian Varieties Associated to the Beta Function

In order to interpret Euler’s integral representation (2) of F(a, b, c ; z) with a, b, c ∈ Q̄

as a quotient of periods, we are left with the construction of an abelian variety on
which the denominator of (2) lives as a period. We refer to Section 8 and specially to

Remark 11 for a motivation. Also the procedure to derive this construction from the
construction of the New Jacobian will be totally similar to that of Section 8. After all,
it is only a (degenerated) specialization at z = 0.

The integral P(0) in the denominator of Euler’s integral representation as it is

formulated in (17) is the Beta function

B(b, c − b) =

∫ 1

0

xb−1(1 − x)c−b−1 dx.

Let M := lcd(b, c), P := M(1 − b), Q := M(1 + b − c) and X(M, 0) be the desingu-
larization of the projective curve C(M, 0) defined affinely by

yM
= xP(1 − x)Q.

If b, c − b /∈ Z, we have

P(0) =

∫ 1

0

dx

y
= k

∫

γ

dx

y
,

where k ∈ Q̄ , dx
y

is a differential form on C(M, 0) and γ a lift on C(M, 0) under

(x, y) 7→ x of a double contour loop around 0 and 1 in C. By the same argument
as in Section 8, it is sufficient to work on a curve isomorphic to C(M, 0). Hence, we

define CM(0) to be the projective curve with affine equation

yM
= xM−P−Q(x − 1)Q

and XM(0) to be its desingularization. The projective equations are

C(M, 0) : xM
2 = xM−P−Q

0 xP
1 (x0 − x1)Q and

CM(0) : xM
2 = xP

0 xM−P−Q
1 (x1 − x0)Q
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and there is an isomorphism

κ : C(M, 0) → CM(0)

(x0 :x1 :x2) 7→ (x1 :x0 :x2).

The unicity up to isomorphism of the desingularization implies the existence of an

isomorphism κ̃ : X(M, 0) → XM(0) such that the following diagram commutes

X(M, 0)
κ̃

−−−−→ XM(0)

π0





y





y

π

C(M, 0) −−−−→
κ

CM(0).

In order to apply our general construction, we will suppose that

M - M − P − Q, Q, M − P and (M,M − P − Q,Q) = 1.

This implies b, c, c − b /∈ Z. Since the two curves are isomorphic, they have the same

Euler characteristic. By Theorem 4.1, we have

χ
(

X(M, 0)(C)
)

= −M + (M, P) + (M,Q) + (M,M − P − Q)

g[X(M, 0)] = 1 +
1

2
[M − (M, P) − (M,Q) − (M,M − P − Q)].

For n ∈ {0, . . . ,M − 1}, let ωn be the (rational) differential form on CM defined by

xa0 (x − 1)a1 dx

yn
.

By the regularity conditions (13), π∗ωn is regular on XM if and only if

(22)

a0 ≥
n(M − P − Q) + (M,M − P − Q)

M
− 1,

a1 ≥
nQ + (M,Q)

M
− 1,

a0 + a1 ≤
n(M − P) − (M, P)

M
− 1.

Remark 13 For n ∈ {0, . . . ,M − 1}, let ηn be the (rational) differential 1-form
y−nxb0 (1 − x)b1 dx on C(M, 0). Then π∗

0 ηn is regular on X(M, 0) if and only if

π∗(κ−1)∗ηn is regular on XM(0). By the conditions (22), this is the case exactly when
the following three conditions hold.

b0 ≥
nP + (M, P)

M
− 1,

b1 ≥
nQ + (M,Q)

M
− 1,

b0 + b1 ≤
n(P + Q) − (M,M − P − Q)

M
− 1.
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For n ∈ {0, . . . ,M − 1}, let Vn be the isotypical component of Ω
1[XM(0)] with

character χn. Theorem 6.2 implies

dim Vn =

{

dn if dn ≥ 0

0 otherwise,

where

dn =

[ n(M − P) − (M, P)

M

]

+
[

1 −
n(M − P − Q) + (M,M − P − Q)

M

]

+
[

1 −
nQ + (M,Q)

M

]

=

[ n(P + Q) − (M,M − P − Q)

M

]

+
[

1 −
nP + (M, P)

M

]

+
[

1 −
nQ + (M,Q)

M

]

.

In the case (n,N) = 1, it follows from Theorem 6.7 that

dim Vn = −
〈 n(M − P)

M

〉

+
〈 n(M − P − Q)

M

〉

+
〈 nQ

M

〉

=

〈 nP

M

〉

+
〈 nQ

M

〉

−
〈 n(P + Q)

M

〉

and from Theorem 6.8 that

dimVn + dim VN−n = 1.

Together with (15), this implies that the vector space Ω
1[XM]new of new differen-

tial forms on XM has dimension ϕ(M)
2

. Set Ω
1[X(M, 0)]new := κ̃∗(Ω1[XM]new ). Then

Ω
1[X(M, 0)]new defines and abelian subvariety Tabc(0) of Jac

(

X(M, 0)
)

of dimen-

sion ϕ(M)
2

. If π∗
0 ( dx

y
) is regular on X(M, 0) (cf. Remark 13), then P(0) = B(b, c − b)

is, up to multiplication by an algebraic factor, a period on Tabc(0).

Remark 14 In its Appendix to [20], Rohrlich constructed an abelian variety on
which the Beta function is a period as a quotient of the Jacobian of the Fermat curve.
That construction and the one given here are isomorphic.
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