Hypergeometric Abelian Varieties

Natália Archinard

Abstract

In this paper, we construct abelian varieties associated to Gauss' and Appell-Lauricella hypergeometric series. Abelian varieties of this kind and the algebraic curves we define to construct them were considered by several authors in settings ranging from monodromy groups (Deligne, Mostow), exceptional sets (Cohen, Wolfart, Wüstholz), modular embeddings (Cohen, Wolfart) to CM-type (Cohen, Shiga, Wolfart) and modularity (Darmon). Our contribution is to provide a complete, explicit and self-contained geometric construction.

Introduction

This paper provides an explicit construction of abelian varieties associated to Gauss' hypergeometric series (one variable) and, more generally, to Appell-Lauricella hypergeometric series (several variables). Roughly speaking, to one hypergeometric series F, one associates a family of nonsingular algebraic curves indexed by the variables of F, on which the numerator of the integral representation of F is a period. The associated abelian varieties are abelian subvarieties of the Jacobian varieties of these curves. They all have the same dimension depending on F only and multiplications by the same field.

Abelian varieties $T_{a b c}(z)$ associated to Gauss' hypergeometric series $F(a, b, c ; z)$ appear in different settings. Defined by Wolfart [21], [22], they were the support for his investigations about the size and nature of the so-called exceptional set, which is the set of algebraic points at which the series takes algebraic values. Using a consequence ([23] Satz 2) of Wüstholz's Analytic Subgroup Theorem ([24] Hauptsatz), Wolfart showed that, under some conditions on a, b, c, the points $z \in E(a, b, c)$ correspond to isogenous abelian varieties (of the same dimension) defined over ($\overline{\mathbb{O}}$) and having complex multiplication (see also Cohen and Wolfart [7]). The conditions on a, b, c make the monodromy group $\Delta(a, b, c)$ a triangle subgroup of $\mathrm{SL}_{2}(\mathbb{R})$. Wolfart showed that the arithmeticity of the monodromy group implies the infinity of the exceptional set. Cohen and Wüstholz [10] proved the converse assertion (under the same conditions). For this they proposed and used a special case of a weak version of André-Oort's conjecture. This case of the conjecture was proved recently by Edixhoven and Yafaev [14]. Explicit determinations of exceptional sets of hypergeometric series with monodromy group isomorphic to $\mathrm{SL}_{2}(\mathbb{Z})$ can be found in [4] for two of them and in [3] for a wider family.

The geometric objects associated to hypergeometric series provide tools for the study of the monodromy groups of these series. For instance, the families of algebraic curves that we will consider appear in Deligne and Mostow [13], where the

[^0]monodromy group of the Appell-Lauricella hypergeometric series is shown to be, under certain assumptions on the parameters, a lattice in a projective unitary group. Embeddings of monodromy groups of hypergeometric series into modular groups are constructed by Cohen and Wolfart in [7] for one variable and in [9] for several variables. The monodromy group Δ of a hypergeometric series F is embedded into a modular group acting on the universal covering space of some Shimura variety. The subgroup fixing the subvariety parametrizing the abelian varieties associated to F contains with finite index the image of Δ under the embedding. Using ideas developed with Cohen, Shiga and Wolfart [17] found a criteria for an abelian variety over ($\overline{0})$ with generalized complex multiplication to be of CM-type. They showed that for hypergeometric abelian varieties, CM-type is equivalent to the algebraicity of all quotients of periods. They conjecture that this should be equivalent to the algebraicity of one quotient of periods, as Wolfart proved in the one-variable case.

In the context of the generalized Fermat equation, Darmon [11], [12] studied the modularity of hypergeometric abelian varieties in one variable.

This paper is structured in the following way. Section 1 recalls the definition of the hypergeometric series in one and several variables and shows how one can associate a family of curves to one hypergeometric series via its integral representation. Section 2 gives the precise definition of this family of curves and, in particular, the hypotheses on the parameters. The possibly singular points of the curve are also determined in there. In Section 3, we construct the nonsingular model of the curve by first desingularizing locally (Section 3.1) and then glueing the local desingularizations (Section 3.2). The compositions of the desingularization morphism with local parametrizations of the nonsingular curve at the points lying above the singular points are calculated in Section 3.3. One application is the computation of Euler characteristic and of the genus of the nonsingular model (Section 4), another application is the computation of the order of differential forms (Section 6), which are eigenforms for the action of some roots of unity (Section 5). The dimension of the eigenspaces for this action is given in Sections 6.2-6.4. So-called new eigenspaces are selected which define an abelian subvariety of the Jacobian variety, called the New Jacobian, whose dimension depends only on the family of curves (Section 7). In the one-variable case, this New Jacobian is isomorphic to the $\varphi(\operatorname{lcd}(a, b, c))$ dimensional abelian variety $T_{a b c}(z)$ defined by Wolfart, as shown in Section 8. Finally, Section 9 treats the "zero-variable" case by constructing an abelian variety on which the Beta-function lives as a period. This matches with Rohrlich's construction in the Appendix of [20]. The last two sections translate our general construction to Wolfart's language in the special case of Gauss' hypergeometric series, completing this way Wolfart's interpretation of the integral representation of $F(a, b, c ; z)$ as a quotient of periods, the key for his study of the algebraic values of F via the consequence of Wüstholz Analytic Subgroup Theorem (cf. Remark 11).

We wish to thank the referee for pointing out that different methods and existing results could be used to shorten the proofs of Theorems 6.2 and 6.8 respectively. For instance, the statement of Theorem 6.8 could be proved by applying the result of [6], as Deligne and Mostow [13] and Wolfart [21], [22] did in the one variable case ($r=2$ in our notations) and Cohen and Wolfart [9] in the two variable case $(r=3)$ (see also Note 2). Our proof of Theorem 6.8 is yet totally independent of
[6] and relies on Theorem 6.2, which is itself based on the geometric construction of the nonsingular model of the curve (Section 3). Although a different and shorter method could be used to prove Theorem 6.2 (see Note 1), we hope that the explicit geometric construction of the nonsingular model given in this paper will serve as an example and have further applications.

Most of the material of this paper is contained in Chapter 1 of the author's PhD thesis [2].

Acknowledgements The author wishes to thank the Swiss National Science Foundation for its support and McGill University for its hospitality while this article was written. Special thanks go to Henri Darmon.

1 Hypergeometric Series

Gauss' hypergeometric series is defined to be

$$
\begin{equation*}
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a ; n)(b ; n)}{(c ; n)(1 ; n)} z^{n} \tag{1}
\end{equation*}
$$

where $(x ; n):=\prod_{j=1}^{n}(x+n-j)$ and $a, b, c \in \mathbb{C},-c \notin \mathbb{N}$. It converges in the unit disc, where it enjoys the so-called Euler's integral representation

$$
\begin{equation*}
F(a, b, c ; z)=\frac{1}{B(b, c-b)} \int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-z x)^{-a} d x \tag{2}
\end{equation*}
$$

provided the integral converges, i.e. $\operatorname{Re}(c)>\operatorname{Re}(b)>0$. The denominator is the Beta-function $B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x$. Using the change of variables $x \mapsto \frac{1}{u}$ and the symmetry of (1) in a and b, we can rewrite (2) as

$$
\begin{equation*}
F(a, b, c ; z)=\frac{1}{B(a, c-a)} \int_{1}^{\infty} u^{-c+b}(u-1)^{c-a-1}(u-z)^{-b} d u \tag{3}
\end{equation*}
$$

Gauss' hypergeometric series has been generalized in many ways to series in several variables. We will be interested in the series F_{D} named after Appell and Lauricella, which has an integral representation of Euler type (see [1], [15], [18], [8]). Indeed, consider the Appell-Lauricella hypergeometric series of the complex variables z_{1}, \ldots, z_{d}

$$
F_{D}\left(a, b_{1}, \ldots, b_{d}, c ; z_{1}, \ldots, z_{d}\right)=\sum_{n_{1}, \ldots, n_{d}=0}^{\infty} \frac{\left(a ; \sum_{j} n_{j}\right) \prod_{j}\left(b_{j} ; n_{j}\right)}{\left(c ; \sum_{j} n_{j}\right) \prod_{j}\left(1 ; n_{j}\right)} \prod_{j=1}^{d} z_{j}^{n_{j}}
$$

where $a, b_{1}, \ldots, b_{d}, c \in \mathbb{C},-c \notin \mathbb{N}$ and j runs from 1 to d. This series converges if $\left|z_{j}\right|<1$ for each $j=1, \ldots, d$. If $\operatorname{Re}(c)>\operatorname{Re}(a)>0$, it has the following integral representation

$$
\begin{equation*}
\frac{1}{B(a, c-a)} \int_{1}^{\infty} u^{-c+\sum_{j} b_{j}}(u-1)^{c-a-1} \prod_{j=1}^{d}\left(u-z_{j}\right)^{-b_{j}} d u \tag{4}
\end{equation*}
$$

Remark $1 F(a, b, c ; z)$ satisfies the so-called hypergeometric differential equation

$$
z(1-z) \frac{d^{2} u}{d z^{2}}+(c-(a+b+1) z) \frac{d u}{d z}-a b u=0
$$

Similarly, the function F_{D} satisfies a system of partial linear differential equations, as can be found in [18].

If $a, c-a \notin \mathbb{Z}$, the two integrals in the integral representation (4) can be replaced up to algebraic factors by periods on curves. For convenience of further notations, we now consider the function $F_{D}\left(a, b_{2}, \ldots, b_{r}, c ; \lambda_{2}, \ldots, \lambda_{r}\right)$ of the $r-1$ variables $\lambda_{2}, \ldots, \lambda_{r}$ and write its integral representation as

$$
\begin{equation*}
\frac{1}{B(a, c-a)} \int_{1}^{\infty} \prod_{i=0}^{r}\left(u-\lambda_{i}\right)^{-\mu_{i}} d u \tag{5}
\end{equation*}
$$

where we have set $\lambda_{0}=0, \lambda_{1}=1$ and $\mu_{0}=c-\sum_{j=2}^{r} b_{j}, \mu_{1}=1+a-c, \mu_{j}=b_{j}$ for $j=2, \ldots, r$. Suppose now that the μ_{i} 's are rational numbers and let N be their least common denominator. Consider the projective curve C_{N} defined by the affine equation

$$
y^{N}=\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{N \mu_{i}}
$$

Then the integral in the numerator of (5) is equal, up to an algebraic factor, to a period $\int_{\gamma} \frac{d x}{y}$ on C_{N}, where γ is a loop on C_{N} whose image in $\mathbb{P}_{\mathbb{C}}^{1}$ under the projection $(x, y) \mapsto x$ is a double contour loop (also called Pochhammer loop) around 1 and ∞. Note that the condition $c-a \notin \mathbb{Z}$ implies $N \nmid \sum_{i=0}^{r} N \mu_{i}$.

2 The Family of Curves

As seen in Section 1, the projective curve associated to an Appell-Lauricella hypergeometric series $F_{D}\left(a, b_{2}, \ldots, b_{r}, c ; \lambda_{2}, \ldots, \lambda_{r}\right)$ is affinely defined by the equation $y^{N}=\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{A_{i}}$, where the exponents are integers defined by the parameters $a, b_{2}, \ldots, b_{r}, c$ of the series. Letting the complex variables $\lambda_{2}, \ldots, \lambda_{r}$ varying in \mathbb{C}, we can view the curves associated to F_{D} as forming a family over \mathbb{C}^{r-1}. If we let λ_{0} and λ_{1} vary and allow the λ_{i} 's to be infinite, we get a family over $\left(\mathbb{P}_{\mathbb{C}}^{1}\right)^{r+1}$. We will restrict ourselves to the study of the nondegenerated fibers (i.e. those for which $\forall i$, $\lambda_{i} \neq \infty$ and $\forall j \neq i, \lambda_{j} \neq \lambda_{i}$), because the construction in the degenerated case can be recovered from that in the generic case.

Concerning the exponents of the equation, we have from Section 1 the condition $N \nmid \sum_{i=0}^{r} A_{i}$. For technical calculations (Sections 6.3-6.4) leading to a nice formula for the dimension of the New Jacobian (Section 7), we will make the assumption $N \nmid A_{0}, \ldots, A_{r}$. We also want the curves to be irreducible, what amounts to $\left(N, A_{0}, \ldots, A_{r}\right)=1$. This is no big deal, as the results for reducible curves can be obtained from the results for its irreducible components. Furthermore, since our results will be relevant only up to isomorphism of the curve, we can suppose the exponents to be positive as showed in the following remark.

Remark 2 Let X_{N}^{\prime} be the desingularization of the projective curve C_{N}^{\prime} defined affinely by

$$
y^{\prime N}=\prod_{i=0}^{r}\left(x^{\prime}-\lambda_{i}\right)^{A_{i}}
$$

where $N \in \mathbb{N}, A_{0}, \ldots, A_{r} \in \mathbb{Z}$. For each $i \in\{0, \ldots, r\}$, write $A_{i}=k_{i} N+r_{i}$ with $0 \leq r_{i} \leq N-1$ and $k_{i} \in \mathbb{Z}$. Note that if $A_{i}<0$ then $k_{i}<0$. With these notations, the equation reads

$$
y^{\prime N} \prod_{A_{i}<0}\left(x^{\prime}-\lambda_{i}\right)^{-k_{i} N}=\prod_{A_{i}<0}\left(x^{\prime}-\lambda_{i}\right)^{r_{i}} \prod_{A_{i}>0}\left(x^{\prime}-\lambda_{i}\right)^{A_{i}}
$$

Let C_{N} denote the projective curve defined by the affine equation

$$
y^{N}=\prod_{A_{i}<0}\left(x-\lambda_{i}\right)^{r_{i}} \prod_{A_{i}>0}\left(x-\lambda_{i}\right)^{A_{i}}
$$

Then we have a map $\rho: C_{N}^{\prime} \rightarrow C_{N}$ given by

$$
\begin{aligned}
\left(x^{\prime}, y^{\prime}\right) & \mapsto\left(x^{\prime}, y^{\prime} \prod_{A_{i}<0}\left(x^{\prime}-\lambda_{i}\right)^{-k_{i}}\right)=:(x, y) \\
& \mapsto \infty
\end{aligned}
$$

It is well-defined, because for $\left(x^{\prime}, y^{\prime}\right) \in C_{N}^{\prime}$, we have

$$
y^{N}=\left(y^{\prime} \prod_{A_{i}<0}\left(x^{\prime}-\lambda_{i}\right)^{-k_{i}}\right)^{N}=\prod_{A_{i}<0}\left(x^{\prime}-\lambda_{i}\right)^{r_{i}} \prod_{A_{i}>0}\left(x^{\prime}-\lambda_{i}\right)^{A_{i}}
$$

and $(x, y) \in C_{N}$. Since $A_{i}<0$ implies $-k_{i}>0, \rho$ is a morphism. It has a rational inverse given by $(x, y) \mapsto\left(x, y \prod_{A_{i}<0}\left(x-\lambda_{i}\right)^{k_{i}}\right)$. The desingularization maps $\pi^{\prime}: X_{N}^{\prime} \rightarrow C_{N}^{\prime}$ and $\pi: X_{N} \rightarrow C_{N}$ are birational morphisms. Then $\rho \circ \pi^{\prime}$ is a birational morphism from X_{N}^{\prime} to C_{N} and there exists a unique isomorphism $\tilde{\rho}: X_{N}^{\prime} \rightarrow X_{N}$ such that the following diagram commutes

Let's now define the family of curves we will be working on.
Definition 1 For $r \in \mathbb{Z}_{\geq 0}$ and $N, A_{0}, \ldots, A_{r} \in \mathbb{N}$ such that $N \nmid A_{0}, \ldots, A_{r}$, $\sum_{i=0}^{r} A_{i},\left(N, A_{0}, \ldots, A_{r}\right)=1$ and $\lambda_{0}, \ldots, \lambda_{r} \in \mathbb{C}$ such that $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$, we denote by C_{N} the projective algebraic curve defined by the affine equation

$$
y^{N}=\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{A_{i}}
$$

and X_{N} for its desingularization.

Both curves are irreducible projective algebraic curves defined over \mathbb{C}. The projective equations of C_{N} read
Case 1: $N-\sum_{k=0}^{r} A_{k}>0 . \quad C_{N}: x_{2}^{N}=x_{0}^{N-\sum_{k=0}^{r} A_{k}} \prod_{i=0}^{r}\left(x_{1}-\lambda_{i} x_{0}\right)^{A_{i}}$
Case 2: $N-\sum_{k=0}^{r} A_{k}<0 . \quad C_{N}: x_{2}^{N} x_{0}^{-N+\sum_{k=0}^{r} A_{k}}=\prod_{i=0}^{r}\left(x_{1}-\lambda_{i} x_{0}\right)^{A_{i}}$.
The point at infinity is respectively $(0: 1: 0)$ in the first case and $(0: 0: 1)$ in the second one. It will be denoted by ∞ when we do not wish to specify the case. Note that the case $N-\sum_{k=0}^{r} A_{k}=0$ is excluded by our hypotheses.

Recall that the singular points are those whose coordinates annihilate all the partial derivatives of the polynomial defining the curve. One can verify that the only possibly singular points are the point at infinity together with the affine points $\left(1: \lambda_{i}: 0\right)$ for $i=0, \ldots, r$. More precisely, we have for $i \in\{0, \ldots, r\}$:

$$
\left(1: \lambda_{i}: 0\right) \text { is singular } \Leftrightarrow A_{i}>1
$$

and

$$
\infty \text { is singular } \Leftrightarrow\left|N-\sum_{j=0}^{r} A_{j}\right|>1
$$

3 Construction of the Desingularization

This section gives the explicit construction of the desingularization X_{N} of C_{N}. We first desingularize locally above the possibly singular points of C_{N} (Section 3.1). These local desingularizations are glued together in Section 3.2 to build the nonsingular model X_{N} of C_{N}. Finally, Section 3.3 gives the desingularization map in local coordinates above the possibly singular points. This will be used to calculate the genus of $X_{N}($ Section 4$)$ and a basis of regular differential forms on X_{N} (Section 6).

3.1 Local Desingularizations

Let P be a possibly singular point of C_{N}. We will work locally on an affine open neighbourhood of P.

3.1.1 Above $P_{j}:=\left(1: \lambda_{j}: 0\right)$

In the neighbourhood of an affine point, we have the classical isomorphism

$$
\begin{aligned}
C_{N}-\{\infty\} & \stackrel{\sim}{\longrightarrow} C_{\mathrm{aff}} \\
\left(x_{0}: x_{1}: x_{2}\right) & \mapsto\left(\frac{x_{1}}{x_{0}}, \frac{x_{1}}{x_{0}}\right) .
\end{aligned}
$$

It induces a morphism $\kappa_{0}: C_{\text {aff }} \rightarrow C_{N}$ given by $(x, y) \mapsto(1: x: y)$. Setting $x:=\frac{x_{1}}{x_{0}}$, $y:=\frac{x_{1}}{x_{0}}$, we recover the affine equation of C_{N}

$$
C_{\mathrm{aff}}: y^{N}=\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{A_{i}}
$$

Let's fix $j \in\{0, \ldots, r\}$ and work locally in a neighbourhood of $\left(\lambda_{j}, 0\right)$ on which $g_{j}(x):=\prod_{i \neq j}\left(x-\lambda_{i}\right)^{A_{i}} \neq 0$. Set

$$
N^{\prime}:=\frac{N}{\left(N, A_{j}\right)} \quad \text { and } \quad A^{\prime}:=\frac{A_{j}}{\left(N, A_{j}\right)}
$$

Then there exist $n, m \in \mathbb{Z}$ such that

$$
n N^{\prime}+m A^{\prime}=1
$$

and we have

$$
(x, y) \in C_{\mathrm{aff}} \Rightarrow\left\{\begin{array}{l}
y^{N^{\prime}}=\left(x-\lambda_{j}\right)^{A^{\prime}} u \quad \text { and } \\
u^{\left(N, A_{j}\right)}=g_{j}(x)
\end{array}\right.
$$

Remark that

$$
y^{m N^{\prime}}\left(x-\lambda_{j}\right)^{n N^{\prime}}=\left(x-\lambda_{j}\right) u^{m}
$$

and that $u=y^{N^{\prime}}\left(x-\lambda_{j}\right)^{-A^{\prime}}$. Hence, if we set $z:=y^{m}\left(x-\lambda_{j}\right)^{n}$ and define

$$
X_{j}:=\left\{(x, u, z) \in \mathbb{C}^{3} ; z^{N^{\prime}}=\left(x-\lambda_{j}\right) u^{m}, u^{\left(N, A_{j}\right)}=g_{j}(x), g_{j}(x) \neq 0\right\}
$$

and $C_{\mathrm{aff}, j}:=C_{\mathrm{aff}}-\left\{(x, y) \in C_{\mathrm{aff}} ; g_{j}(x)=0\right\}$. Then the rational map

$$
\begin{aligned}
\nu_{j}: C_{\mathrm{aff}, j} & \rightarrow X_{j} \\
\quad(x, y) & \mapsto\left(x, y^{N^{\prime}}\left(x-\lambda_{j}\right)^{-A^{\prime}}, y^{m}\left(x-\lambda_{j}\right)^{n}\right)
\end{aligned}
$$

becomes a morphism on the open dense subset $\hat{C}_{\text {aff }}:=C_{\text {aff }, j}-\left\{\left(\lambda_{j}, 0\right)\right\}$ of $C_{\text {aff }, j}$. This morphism has an inverse given by the morphism

$$
\begin{aligned}
\tau_{j}: X_{j} & \rightarrow C_{\mathrm{aff}, j} \\
(x, u, z) & \mapsto\left(x, u^{n} z^{A^{\prime}}\right)
\end{aligned}
$$

In particular, τ_{j} is a birational morphism, which restricts to an isomorphism from $\hat{X}_{j}:=X_{j}-\left(\tau_{j}^{-1}\left\{\left(\lambda_{j}, 0\right)\right\}\right)$ to $\hat{C}_{\text {aff }}=C_{\text {aff }}-\left\{\left(\lambda_{k}, 0\right) ; k=0, \ldots, r\right\}$. Moreover, since $C_{\text {aff }}$ is isomorphic to $C_{N}-\{\infty\}$ under $\kappa_{0}, \hat{C}_{\text {aff }}$ is isomorphic to $C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\}$ and

$$
\hat{X}_{j} \xrightarrow{\sim} C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\} .
$$

In particular, X_{j} is birationally equivalent to C_{N} under the morphism $\pi_{j}:=\kappa_{0} \circ \tau_{j}$.

Remark 3 The point $\left(\lambda_{j}, 0\right) \in C_{\text {aff }, j}$ has exactly $\left(N, A_{j}\right)$ preimages under τ_{j}, which are the points $\left(\lambda_{j}, u, 0\right)$, where u runs among the $\left(N, A_{j}\right)$-th roots of $g_{j}\left(\lambda_{j}\right)$. (They are distinct, because $g_{j}\left(\lambda_{j}\right) \neq 0$.) $P_{j} \in C_{N}$ has then also $\left(N, A_{j}\right) \pi_{j}$-preimages on X_{j}.

Remark $4 X_{j}$ is nonsingular. Indeed, calculating the Jacobian matrix of X_{j}, we get

$$
\left(\begin{array}{cc}
u^{m} & g_{j}^{\prime}(x) \\
m\left(x-\lambda_{j}\right) u^{m-1} & -\left(N, A_{j}\right) u^{\left(N, A_{j}\right)-1} \\
-N^{\prime} z^{N^{\prime}-1} & 0
\end{array}\right)
$$

Remember that $u \neq 0$ on X_{j}. If $x=\lambda_{j}$, then the upper square looks like $\left(\begin{array}{cc}\neq 0 & * \\ 0 & \neq 0\end{array}\right)$ and has rank 2. If $x \neq \lambda_{j}$, then $z \neq 0$ and the lower square looks like $\left(\begin{array}{c}\neq 0 \\ \neq 0\end{array} 0\right.$ the matrix has rank 2.

3.1.2 Above Infinity

Case 1: $N-\sum_{k=0}^{r} A_{k}>0$. In this case, the projective equation of C_{N} is

$$
x_{2}^{N}=x_{0}^{N-\sum A_{k}} \prod_{i=0}^{r}\left(x_{1}-\lambda_{i} x_{0}\right)^{A_{i}}
$$

and the point at infinity has coordinates $(0: 1: 0)$. We choose the neighbourhood of ($0: 1: 0$) on C_{N}, on which $x_{1} \neq 0$, and have the isomorphism

$$
\begin{aligned}
C_{N} \cap\left\{x_{1} \neq 0\right\} & \xrightarrow{\sim} C_{\infty 1} \\
\left(x_{0}: x_{1}: x_{2}\right) & \mapsto\left(\frac{x_{0}}{x_{1}}, \frac{x_{2}}{x_{1}}\right)=:(x, y) .
\end{aligned}
$$

Its inverse is given by $\kappa_{1}:(x, y) \mapsto(x: 1: y)$. Remark that the affine possibly singular points with coordinate $x_{1} \neq 0$ also lie on $C_{N} \cap\left\{x_{1} \neq 0\right\}$. In the coordinates (x, y), the equation of $C_{\infty 1}$ is

$$
C_{\infty 1}: y^{N}=x^{N-\sum A_{k}} \prod_{i=0}^{r}\left(1-\lambda_{i} x\right)^{A_{i}}
$$

the point at infinity is $(x, y)=(0,0)$ and the affine possibly singular points are the points $\left(\frac{1}{\lambda_{k}}, 0\right)$, for each $k \in\{0, \ldots, r\}$ such that $\lambda_{k} \neq 0$. Let's set

$$
h(x):=\prod_{i=0}^{r}\left(1-\lambda_{i} x\right)^{A_{i}}, \quad N^{\prime}:=\frac{N}{\left(N, N-\sum A_{k}\right)} \quad \text { and } \quad A^{\prime}:=\frac{N-\sum A_{k}}{\left(N, N-\sum A_{k}\right)}
$$

Then there exist $n, m \in \mathbb{Z}$ such that

$$
n N^{\prime}+m A^{\prime}=1
$$

and we have

$$
(x, y) \in C_{\infty 1} \Rightarrow\left\{\begin{array}{l}
y^{N^{\prime}}=x^{A^{\prime}} u \quad \text { and } \\
u^{\left(N, N-\sum A_{k}\right)}=h(x)
\end{array}\right.
$$

Note that

$$
y^{m N^{\prime}} x^{n N^{\prime}}=x u^{m} \quad \text { and } \quad u=y^{N^{\prime}} x^{-A^{\prime}}
$$

Set further $z:=y^{m} x^{n}$, then

$$
X_{\infty 1}:=\left\{(x, u, z) \in \mathbb{C}^{3} ; z^{N^{\prime}}=x u^{m}, u^{\left(N, N-\sum A_{k}\right)}=h(x), h(x) \neq 0\right\}
$$

and $C_{\infty 1}^{\prime}:=C_{\infty 1}-\{(x, y) ; h(x)=0\}$. Hence we have a rational map

$$
\begin{aligned}
\nu_{\infty 1}: C_{\infty 1}^{\prime} & \rightarrow X_{\infty 1} \\
(x, y) & \mapsto\left(x, y^{N^{\prime}} x^{-A^{\prime}}, y^{m} x^{n}\right)
\end{aligned}
$$

which restricts to a morphism on the open dense subset $\hat{C}_{\infty 1}:=C_{\infty 1}^{\prime}-\{(0,0)\}$ of $C_{\infty 1}^{\prime}$. This morphism has an inverse given by the morphism

$$
\begin{aligned}
\tau_{\infty 1}: X_{\infty 1} & \rightarrow C_{\infty 1}^{\prime} \\
(x, u, z) & \mapsto\left(x, z^{A^{\prime}} u^{n}\right)
\end{aligned}
$$

$\tau_{\infty 1}$ is then a birational morphism and restricts to an isomorphism of $\hat{X}_{\infty 1}:=X_{\infty 1}-$ $\tau_{\infty 1}^{-1}\{(0,0)\}$ to $\hat{C}_{\infty 1}$. Since $C_{\infty 1}$ is isomorphic to $C_{N} \cap\left\{x_{1} \neq 0\right\}$ under $\kappa_{1}, \hat{C}_{\infty 1}$ is isomorphic to $C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\}$ and so is $\hat{X}_{\infty 1}$, i.e.

$$
\hat{X}_{\infty 1} \xrightarrow{\sim} C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\}
$$

In particular, $X_{\infty 1}$ is birationally equivalent to C_{N} under the morphism $\pi_{\infty 1}:=\kappa_{1} \circ$ $\tau_{\infty 1}$.

Remark 5 The point at infinity, which has coordinates $(x, y)=(0,0)$ on $C_{\infty 1}$, has $\left(N, N-\sum A_{k}\right)$ preimages under $\tau_{\infty 1}$. They are $(0, u, 0)$, where u is a $\left(N, N-\sum A_{k}\right)$ th root of $h(0)$. Since $h(0) \neq 0$, this implies that the point at infinity on C_{N} has also ($N, N-\sum A_{k}$) preimages on $X_{\infty 1}$. One verifies that $X_{\infty 1}$ is nonsingular.

Case 2: $N-\sum_{k=0}^{r} A_{k}<0 . \quad$ In this case, the projective equation of C_{N} reads

$$
x_{2}^{N} x_{0}^{-N+\sum A_{k}}=\prod_{i=0}^{r}\left(x_{1}-\lambda_{i} x_{0}\right)^{A_{i}}
$$

and the point at infinity $(0: 0: 1)$. We choose a neighbourhood of $(0: 0: 1)$ on C_{N}, on which $x_{2} \neq 0$. On this neighbourhood, there is no other possibly singular point than $(0: 0: 1)$, because they all have coordinate $x_{2}=0$. We have the isomorphism

$$
\begin{aligned}
C_{N} \cap\left\{x_{2} \neq 0\right\} & \rightarrow C_{\infty 2} \\
\left(x_{0}: x_{1}: x_{2}\right) & \mapsto\left(\frac{x_{0}}{x_{2}}, \frac{x_{1}}{x_{2}}\right)=:(x, y),
\end{aligned}
$$

with inverse $\kappa_{2}:(x, y) \mapsto(x: y: 1)$. In these coordinates, the equation of $C_{\infty 2}$ is

$$
C_{\infty 2}: x^{-N+\sum A_{k}}=\prod_{i=0}^{r}\left(y-\lambda_{i} x\right)^{A_{i}}
$$

and the point at infinity $(x, y)=(0,0)$. But the equation in this shape is not easy to handle. We will see that after having blown up the point $(0,0)$ on $C_{\infty 2}$, everything becomes easier. In order to do this, we will use the expressions of the blow-up map in local coordinates.

In the first coordinates' set, the point $(0,0)$ has no preimage on the preimage of $C_{\infty 2}$ bereft of the exceptional divisor. In the second coordinates' set, the preimage of $C_{\infty 2}$ under the map $\varphi:(u, v) \mapsto(u v, v)$ is given by

$$
\begin{aligned}
u^{-N+\sum A_{k}} v^{-N+\sum A_{k}} & =v^{\sum A_{k}} \prod_{i=0}^{r}\left(1-\lambda_{i} u\right)^{A_{i}} \\
& \Longleftrightarrow\left\{\begin{array}{l}
v=0 \text { (exceptional divisor) or } \\
C_{\infty 2}^{\prime}: u^{-N+\sum A_{k}}=v^{N} \prod_{i=0}^{r}\left(1-\lambda_{i} u\right)^{A_{i}}
\end{array}\right.
\end{aligned}
$$

and the preimage of $(x, y)=(0,0)$ is $(u, v)=(0,0)$.
We can apply to $C_{\infty 2}^{\prime}$ the same procedure as in the other cases, though it will be slightly more technical. As usual, we begin by setting
$h(u):=\prod_{i=0}^{r}\left(1-\lambda_{i} u\right)^{A_{i}}, \quad N^{\prime}:=\frac{N}{\left(N,-N+\sum A_{k}\right)} \quad$ and $\quad A^{\prime}:=\frac{-N+\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}$
and letting $n, m \in \mathbb{Z}$ be such that $n N^{\prime}+m A^{\prime}=1$. Then $(u, v) \in C_{\infty 2}^{\prime}$ implies

$$
\left\{\begin{array}{l}
u^{A^{\prime}}=v^{N^{\prime}} w \\
w^{\left(N,-N+\sum A_{k}\right)}=h(u) \\
h(u) \neq 0
\end{array}\right.
$$

Note that $u^{n A^{\prime}} v^{m A^{\prime}}=v w^{n}$ and $w=u^{A^{\prime}} v^{-N^{\prime}}$. Set $z:=u^{n} v^{m}$ and define

$$
X_{\infty 2}:=\left\{(u, v, w, z) \in \mathbb{C}^{4} ; z^{A^{\prime}}=v w^{n}, w^{\left(N,-N+\sum A_{k}\right)}=h(u), h(u) \neq 0\right\}
$$

Then we have a rational map

$$
\begin{aligned}
\nu_{\infty 2}: C_{\infty 2}^{\prime} & \rightarrow X_{\infty 2} \\
(u, v) & \mapsto\left(u, v, u^{A^{\prime}} v^{-N^{\prime}}, u^{n} v^{m}\right)
\end{aligned}
$$

which restricts to a morphism on the open dense subset $C_{\infty 2}^{\prime}-\{(0,0)\}$ of $C_{\infty 2}^{\prime}$. This morphism has an inverse given by the morphism

$$
\begin{aligned}
\tau_{\infty 2}^{\prime}: X_{\infty 2} & \rightarrow C_{\infty 2}^{\prime} \\
(u, v, w, z) & \mapsto\left(w^{m} z^{N^{\prime}}, v\right)
\end{aligned}
$$

Hence, $\tau_{\infty 2}^{\prime}$ is a birational morphism and restricts to an isomorphism of $\hat{X}_{\infty 2}:=$ $X_{\infty 2}-\left\{\left(\tau_{\infty 2}^{\prime}\right)^{-1}(0,0)\right\}$ to $C_{\infty 2}^{\prime}-\{(0,0)\}$. Remembering that the blow-up map $\varphi: C_{\infty 2}^{\prime} \rightarrow C_{\infty 2}$ is a birational morphism and restricts to an isomorphism on $C_{\infty 2}^{\prime}-$ $\left\{\varphi^{-1}\{(0,0)\}\right\}$ and that $\varphi^{-1}\{(0,0)\}=\{(0,0)\}$, we get a birational morphism

$$
\tau_{\infty 2}:=\varphi \circ \tau_{\infty 2}^{\prime}: X_{\infty 2} \rightarrow C_{\infty 2}
$$

which induces an isomorphism from $\hat{X}_{\infty 2}$ to $\hat{C}_{\infty 2}:=C_{\infty 2}-\{(0,0)\}$. Now, since $C_{\infty 2}$ is isomorphic to $C_{N}-\left\{P_{0}, \ldots, P_{r}\right\}$ under $\kappa_{2}, \hat{C}_{\infty 2}$ is isomorphic to $C_{N}-$ $\left\{P_{0}, \ldots, P_{r}, \infty\right\}$ and so is $\hat{X}_{\infty 2}$, i.e.

$$
\hat{X}_{\infty 2} \xrightarrow{\sim} C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\} .
$$

The birational morphism from $X_{\infty 2}$ to C_{N} is given by $\pi_{\infty 2}:=\kappa_{2} \circ \tau_{\infty 2}$.
Remark $6 X_{\infty 2}$ is nonsingular and the $\tau_{\infty 2}$-preimages of $(0,0) \in C_{\infty 2}$ are $(0,0, w, 0)$, where w runs trough the $\left(N,-N+\sum A_{k}\right)$-th roots of $h(0)$. Since $h(0) \neq 0$, their number is $\left(N,-N+\sum A_{k}\right)=\left(N, N-\sum A_{k}\right)$.

3.2 Construction of X_{N} by Glueing

We refer here to the construction described in [16], Volume 1, V.3.2. Let X_{∞} resp. π_{∞} denote $X_{\infty 1}$ resp. $\pi_{\infty 1}$ in the case $N-\sum A_{k}>0$ and $X_{\infty 2}$ resp. $\pi_{\infty 2}$ in the case $N-\sum A_{k}<0$.

Remember that, for each $j \in\{0, \ldots, r, \infty\}$, the morphism $\pi_{j}: X_{j} \rightarrow C_{N}$ restricts to an isomorphism of the open dense subset \hat{X}_{j} of X_{j} to $C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\}$ and that X_{j} and C_{N} are birationally equivalent. Then one can define an equivalence relation on the disjoint union $\coprod_{j \in\{0, \ldots, r, \infty\}} X_{j}$ by setting, for $Q_{j} \in \hat{X}_{j}, Q_{k} \in \hat{X}_{k}$ with $j, k \in\{0, \ldots, r, \infty\}$ and $j \neq k$,

$$
Q_{j} \sim Q_{k} \quad \Leftrightarrow \quad \pi_{j}\left(Q_{j}\right)=\pi_{k}\left(Q_{k}\right)
$$

Moreover, the functions $\pi_{j}, j \in\{0, \ldots, r, \infty\}$, induce a well-defined function π on the quotient $X:=\coprod_{j \in\{0, \ldots, r, \infty\}} X_{j} / \sim$ by setting, for $\mathcal{C} \in X$ and $Q_{j} \in X_{j}$ with $\left[Q_{j}\right]=\mathcal{C}$,

$$
\pi(\mathcal{C}):=\pi_{j}\left(Q_{j}\right) .
$$

By definition of the equivalence relation, this is independent of the choice of the representative of the class \mathcal{C}.

On the set X, we have the quotient topology and can define a sheaf induced from the sheaf of regular functions on each X_{j}, for which π is again a birational and finite morphism. This implies that X is again a projective curve. Since X is moreover nonsingular, because so is each X_{j}, and, as we have seen, birationally equivalent to C_{N}, it provides a model of the desingularization of C_{N}, hence is isomorphic to X_{N}. The desingularization map is given by the map π such that $\left.\pi\right|_{X_{j}}=\pi_{j}$ for each j. Another isomorphic construction is given in [16] Volume 2, II.5.3, Theorem 6, Theorem 7.

Since, to our purpose, we only need to know the desingularization up to isomorphism, X will be identified with X_{N} in the following.

3.3 Compositions of π with Local Parametrizations of X_{N}

Because the restriction of π to $X_{N}-\left\{\pi^{-1}\left(\left\{P_{0}, \ldots, P_{r}, \infty\right\}\right)\right\}$ is an isomorphism to $C_{N}-\left\{P_{0}, \ldots, P_{r}, \infty\right\}$, we only need to know the compositions of π with local parametrizations at the points of $\pi^{-1}\left(\left\{P_{0}, \ldots, P_{r}, \infty\right\}\right)$, which are isolated on X_{N}.

3.3.1 Above $P_{j}=\left(1: \lambda_{j}: 0\right)$

Fix $j \in\{0, \ldots, r\}$ and remember that the local desingularization above P_{j} is

$$
X_{j}=\left\{(x, u, z) \in \mathbb{C}^{3} ; z^{N^{\prime}}=\left(x-\lambda_{j}\right) u^{m}, u^{\left(N, A_{j}\right)}=g_{j}(x), g_{j}(x) \neq 0\right\}
$$

We have then the composition

$$
\begin{aligned}
\pi_{j}=\kappa_{0} \circ \tau_{j}: X_{j} & \rightarrow C_{N} \\
(x, u, z) & \mapsto\left(1: x: u^{n} z^{A_{j}^{\prime}}\right) .
\end{aligned}
$$

Recall that X_{j} is nonsingular and open in an affine variety, hence each point has a neighbourhood for the complex topology which is isomorphic to an open neighbourhood on $\left(\mathbb{C}\right.$. Choose a complex open neighbourhood U_{j} of $s=0$ in \mathbb{C} on which $g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right) \neq 0$. Then the image of U_{j} under $s \mapsto g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)$ is included in \mathbb{C} bereft of a half-line through 0 . Thus, branches of roots of $g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)$ can be welldefined as holomorphic functions of s on U_{j}. Then choosing fixed branches, we have a well-defined holomorphic function

$$
\varphi_{j}: s \mapsto\left(s^{N^{\prime}}+\lambda_{j}, g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)^{\frac{1}{\left(N, A_{j}\right)}}, s g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)^{\frac{m}{N}}\right)
$$

from U_{j} to X_{j}. Indeed, $u^{\left(N, A_{j}\right)}=g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)=g_{j}(x)$ and

$$
z^{N^{\prime}}=s^{N^{\prime}} g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)^{\frac{m}{N} N^{\prime}}=\left(s^{N^{\prime}}+\lambda_{j}-\lambda_{j}\right) g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)^{\frac{m}{\left(N, A_{j}\right)}}=\left(x-\lambda_{j}\right) u^{m}
$$

On the image of φ_{j}, we have a well-defined holomorphic inverse map

$$
(x, u, z) \mapsto z g_{j}(x)^{-\frac{m}{N}}
$$

Hence, φ_{j} is an analytic isomorphism and a local parametrization of X_{j} at the point $\varphi(0)=\left(\lambda_{j}, g_{j}\left(\lambda_{j}\right)^{\frac{1}{\left.N, A_{j}\right)}}, 0\right)$, which is one of the π-preimages of $P_{j} \in C_{N}$. Remark again that the choices of branches for the $\left(N, A_{j}\right)$-th root of $g_{j}\left(s^{N^{\prime}}+\lambda_{j}\right)$ are in bijective correspondence with the π-preimages on X_{N} of P_{j}.

The expression of π in this local parameter s at each π-preimage of P_{j} is given by the composition $\pi_{j} \circ \varphi_{j}: U_{j} \rightarrow C_{N}$

$$
\begin{equation*}
s \mapsto\left(1: s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}: s^{\frac{A_{j}}{\left(N, A_{j}\right)}} g_{j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right)^{\frac{1}{N}}\right) . \tag{6}
\end{equation*}
$$

3.3.2 Above Infinity

Case 1: $N-\sum_{k=0}^{r} A_{k}>0$. We are looking for an analytic parametrization of $X_{\infty 1}$ at the points $(0, u, 0)$, where u satisfies $u^{\left(N, N-\sum A_{k}\right)}=h(0)$. Let's choose a complex neighbourhood U_{∞} of $s=0$ in \mathbb{C} on which $h\left(s^{N^{\prime}}\right) \neq 0, N^{\prime}$ being here $\frac{N}{\left(N, N-\sum A_{k}\right)}$. On such a neighbourhood, we can define roots of $h\left(s^{N^{\prime}}\right)$ as analytic functions of s. Fix an N-th root $h\left(s^{N^{\prime}}\right)^{\frac{1}{N}}$. Then, for each branch of the ($N, N-\sum A_{k}$)-th root of $h\left(s^{N^{\prime}}\right)$, the map

$$
\begin{aligned}
\varphi_{\infty 1}: U_{\infty} & \rightarrow X_{\infty 1} \\
s & \mapsto\left(s^{N^{\prime}}, h\left(s^{N^{\prime}}\right)^{\frac{1}{\left(N, N-\sum A_{k}\right)}}, \operatorname{sh}\left(s^{N^{\prime}}\right)^{\frac{m}{N}}\right)
\end{aligned}
$$

is a well-defined analytic map such that $\varphi_{\infty 1}(0)=(0, u, 0)$, where u is the corresponding $\left(N, N-\sum A_{k}\right)$-th root of $h(0) . \varphi_{\infty 1}$ has an analytic inverse on its image, which is given by

$$
(x, u, z) \mapsto z h(x)^{-\frac{m}{N}} .
$$

Thus $\varphi_{\infty 1}$ is a local parametrization of $X_{\infty 1}$ at the preimage $\left(0, h(0)^{\frac{1}{\left(N, N-\sum A_{k}\right)}}, 0\right)$ of ∞. Since $\pi_{\infty 1}=\kappa_{1} \circ \tau_{\infty 1}: X_{\infty 1} \rightarrow C_{N}$ is given by $(x, u, z) \mapsto\left(x: 1: z^{A^{\prime}} u^{n}\right)$, $\pi_{\infty 1} \circ \varphi_{\infty 1}: U_{\infty} \rightarrow C_{N}$ is given by

$$
\begin{equation*}
s \mapsto\left(s^{\frac{N}{\left(N, N-\sum A_{k}\right)}}: 1: s^{\frac{N-\sum A_{k}}{\left(N, N-\sum A_{k}\right)}} h\left(s^{\frac{N}{\left(N, N-\sum A_{k}\right)}}\right)^{\frac{1}{N}}\right) \tag{7}
\end{equation*}
$$

and is a local expression of π at each point on X_{N} lying above ($\left.0: 1: 0\right)$.
Case 2: $N-\sum_{k=0}^{r} A_{k}<0 . \quad$ On U_{∞} defined as in Case 1, we have a well-defined holomorphic map

$$
\begin{aligned}
\varphi_{\infty 2}: U_{\infty} & \rightarrow X_{\infty 2} \\
s & \mapsto\left(s^{N^{\prime}}, s^{\frac{-N+\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}} h\left(s^{N^{\prime}}\right)^{-\frac{1}{N}}, h\left(s^{N^{\prime}}\right)^{\frac{1}{\left(N,-N+\sum A_{k}\right.}}, \operatorname{sh}\left(s^{N^{\prime}}\right)^{\frac{n N^{\prime}-1}{N A^{\prime}}}\right),
\end{aligned}
$$

for a fixed choice of the branch of the roots of $h\left(s^{N^{\prime}}\right)$. On its image, this map has an analytic inverse given by

$$
(u, v, w, z) \mapsto z h(x)^{\frac{1-n N^{\prime}}{N A^{\prime}}} .
$$

Each choice of the branch of the $\left(N,-N+\sum A_{k}\right)$-th root of $h\left(s^{N^{\prime}}\right)$ corresponds to a π-preimage of $(0: 0: 1)$ at which $\varphi_{\infty 2}$ is a local parametrization. The composition of $\varphi_{\infty 2}$ with π equals $\kappa_{2} \circ \varphi \circ \tau_{\infty 2}^{\prime} \circ \varphi_{\infty 2}: U_{\infty} \rightarrow C_{N}$ and is given by

$$
\begin{equation*}
s \mapsto\left(s^{\frac{\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}}: s^{\frac{-N+\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}}: h\left(s^{\frac{N}{\left(N,-N+\sum A_{k}\right)}}\right)^{\frac{1}{N}}\right) . \tag{8}
\end{equation*}
$$

4 Genus of X_{N}

In this section, we calculate the algebraic genus $g\left[X_{N}\right]=\operatorname{dim}_{\mathbb{C}} \Omega^{1}\left[X_{N}\right]$ as the topological genus of the compact Riemann surface $X_{N}(\mathbb{C})$ of complex points on X_{N}. In order to do this, we apply Hurwitz's formula to the covering map $\nu: X_{N}(\mathbb{C}) \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ defined below.

Consider the projection $p: C_{N} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ given by $\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{0}: x_{1}\right)$ and compose it with the desingularization map $\pi: X_{N}(\mathbb{C}) \rightarrow C_{N}$. The composition

$$
\nu:=p \circ \pi: X_{N}(\mathbb{C}) \rightarrow \mathbb{P}_{\mathbb{C}}^{1}
$$

is nonconstant and regular (hence holomorphic). It is then a covering map between compact Riemann surfaces to which we can apply Hurwitz genus formula. The degree of ν is N, because each affine point $(x, y) \in C_{N}$ with $x \neq \lambda_{0}, \ldots, \lambda_{r}$ has N distinct preimages on X_{N} corresponding to the N-th roots of $\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{A_{i}}$.

It remains to calculate the ramification indices.

4.1 Above Nonsingular Points

Each point $Q \in X_{N}(\mathbb{C})$ such that $\pi(Q)=: P$ is nonsingular is a regular point of the covering ν. Indeed, if $P \in C_{N}$ is nonsingular and $P=(x, y)$ (resp. ∞), then y (resp. x_{1} and x_{2}) can be written as a function of x (resp. x_{0}) in a neighbourhood of $P . \pi$ being locally an isomorphism at Q, x (resp. x_{0}) can also be taken as a local parameter of $X_{N}(\mathbb{C})$ at Q. With respect to this parameter, π is given by $x \mapsto(x, y(x))$ (resp. by $x_{0} \mapsto\left(x_{0}: x_{1}\left(x_{0}\right): x_{2}\left(x_{0}\right)\right)$ and ν by $x \mapsto x\left(\right.$ resp. $\left.x_{0} \mapsto x_{0}\right)$. Hence $r_{\nu}(Q)=1$.
4.2 Above $P_{j}=\left(1: \lambda_{j}: 0\right)$

For $j \in\{0, \ldots, r\}$, let Q_{j} be one π-preimage of $\left(\lambda_{j}, 0\right) \in C_{N}$. The composition of π with a local parametrization of X_{N} at Q_{j} is given in (6) Section 3. Composing it with p, we get

$$
s \mapsto\left(1: s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right) .
$$

If we now choose the chart $\left(x_{0}: x_{1}\right) \mapsto \frac{x_{1}-\lambda_{j}}{x_{0}}$ on $\left\{\left(x_{0}: x_{1}\right) \in \mathbb{P}_{\mathbb{C}}^{1} ; x_{0} \neq 0\right\}$ and compose it with the above map, we get the expression of ν in local coordinates as

$$
s \mapsto s^{\frac{N}{\left(N, A_{j}\right)}} .
$$

This shows that each π-preimage of $\left(\lambda_{j}, 0\right)$ has ramification index equal to $\frac{N}{\left(N, A_{j}\right)}$.

4.3 Above Infinity

For the points lying above ∞, we will choose the chart $\left(U_{1}, \psi\right)$ on $\mathbb{P}_{\mathbb{C}}^{1}$, where $U_{1}:=$ $\left\{\left(x_{0}: x_{1}\right) \in \mathbb{P}_{\mathbb{C}}^{1} ; x_{1} \neq 0\right\}$ and $\psi:\left(x_{0}: x_{1}\right) \mapsto \frac{x_{0}}{x_{1}}$.
Case 1: $N-\sum_{k=0}^{r} A_{k}>0$. The composition of p with the composition (7) of π with a local parametrization of X_{N} at each preimage of ∞ reads

$$
s \mapsto\left(s^{\frac{N}{\left(N, N-\sum A_{k}\right)}}: 1\right)
$$

Composing it with ψ, we get the expression of ν in local coordinates at each π-preimage of ∞ as

$$
s \mapsto s^{\frac{N}{\left(N, N-\sum A_{k}\right)}} .
$$

Case 2: $N-\sum_{k=0}^{r} A_{k}<0$. In this case, we have to be a little more careful, because the map p is not defined at ∞. If only to consider momentarily the restriction of p to the punctured Riemann surface $X_{N}(\mathbb{C})-\left\{\pi^{-1}\{(0: 0: 1)\}\right\}$, we can suppose $s \neq 0$ and consider the composition of (8) with p, which is

$$
\nu \circ \varphi_{\infty 2}: s \mapsto\left(s^{\frac{\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}}: s^{\frac{-N+\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}}\right)=\left(s^{\frac{N}{\left(N,-N+\sum A_{k}\right)}}: 1\right) .
$$

If s tends to $0, \nu \circ \varphi_{\infty 2}(s)$ tends to $(0: 1)$, the point at infinity in $\mathbb{P}_{\mathbb{C}}^{1}$. Hence, we can extend the map continuously by setting $0 \mapsto(0: 1)$. The composition with ψ of the extended map is

$$
s \mapsto s^{\frac{N}{\left(N,-N+\sum A_{k}\right)}} .
$$

This shows that the ramification index of each point lying above ∞ is equal to $N /\left(N,-N+\sum A_{k}\right)$. In both cases, the ramification index of each π-preimage of ∞ is equal to $\left(N,-N+\sum A_{k}\right)=\left(N, N-\sum A_{k}\right)$. The following table summaries all these data.

point P of C_{N}	nb of π-preimages Q	$r_{\nu}(Q)$
$\left(\lambda_{j}, 0\right), j \in\{0, \ldots, r\}$	$\left(N, A_{j}\right)$	$\frac{N}{\left(N, A_{j}\right)}$
∞	$\left(N, N-\sum_{k=0}^{r} A_{k}\right)$	$\frac{N}{\left(N, N-\sum_{k=0}^{r} A_{k}\right)}$
other points	1	1

Theorem 4.1 Let X_{N} be the desingularization of the irreducible projective algebraic plane curve C_{N} defined over \mathbb{C} by the affine equation

$$
y^{N}=\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{A_{i}},
$$

where $\lambda_{0}, \ldots, \lambda_{r} \in \mathbb{C}$ are such that, $\forall i, j \in\{0, \ldots, r\}$ with $i \neq j, \lambda_{i} \neq \lambda_{j}$. Let further $N, A_{0}, \ldots, A_{r} \in \mathbb{N}$ satisfy

$$
N \neq \sum_{k=0}^{r} A_{k} \quad \text { and } \quad\left(N, A_{0}, \ldots, A_{r}\right)=1
$$

Then the Euler characteristic of $X_{N}(\mathbb{C})$ is given by

$$
\chi\left(X_{N}(\mathbb{C})\right)=-r N+\left(N, N-\sum_{k=0}^{r} A_{k}\right)+\sum_{j=0}^{r}\left(N, A_{j}\right)
$$

and the genus of X_{N} by

$$
g\left[X_{N}\right]=\left(X_{N}(\mathbb{C})\right)=1+\frac{1}{2}\left(r N-\left(N, N-\sum_{k=0}^{r} A_{k}\right)-\sum_{j=0}^{r}\left(N, A_{j}\right)\right) .
$$

Proof We apply Hurwitz's formula to the covering map

$$
\nu=p \circ \pi: X_{N}(\mathbb{C}) \rightarrow \mathbb{P}_{\mathbb{C}}^{1}
$$

where $\pi: X_{N} \rightarrow C_{N}$ is the desingularization map and $p: C_{N} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ the projection given by $\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{0}: x_{1}\right)$. As seen above, it has degree N and the only possible ramification points lie above the points $\infty \in \mathbb{P}_{\mathbb{C}}^{1}$ and $\left(1: \lambda_{j}\right), j \in\{0, \ldots, r\}$. Using the ramification indices calculated above, the number of preimages calculated in Section 3 (all recalled in (9)) and the fact that $\chi\left(\mathbb{P}_{\mathbb{C}}^{1}\right)=2$, we get, by Hurwitz's genus formula

$$
\begin{aligned}
\chi\left(X_{N}(\mathbb{C})\right)= & 2 N-\left(N, N-\sum A_{k}\right)\left(\frac{N}{\left(N, N-\sum A_{k}\right)}-1\right) \\
& -\sum_{j=0}^{r}\left(N, A_{j}\right)\left(\frac{N}{\left(N, A_{j}\right)}-1\right) \\
= & -r N+\left(N, N-\sum A_{k}\right)+\sum_{j=0}^{r}\left(N, A_{j}\right)
\end{aligned}
$$

To get the second formula, we use $\chi\left(X_{N}(\mathbb{C})\right)=2-2 g\left(X_{N}(\mathbb{C})\right)$.

$$
\begin{aligned}
g\left[X_{N}\right]=g\left(X_{N}(\mathbb{C})\right) & =1-\frac{1}{2} \chi\left(X_{N}(\mathbb{C})\right) \\
& =1+\frac{1}{2}\left(r N-\left(N, N-\sum_{k=0}^{r} A_{k}\right)-\sum_{j=0}^{r}\left(N, A_{j}\right)\right)
\end{aligned}
$$

5 Actions of μ_{N}

Let μ_{N} be the group of complex N-th roots of unity. We will define an action of μ_{N} on X_{N} and show how it induces a linear action on the \mathbb{C}-vector space $\Omega^{1}\left[X_{N}\right]$ of regular differential 1-forms on X_{N}.

For $\zeta \in \mu_{N}$ and an affine point $(x, y) \in C_{N}$, define

$$
\zeta \cdot(x, y):=\left(x, \zeta^{-1} y\right)
$$

Further, set $\zeta \cdot \infty=\infty, \forall \zeta \in \mu_{N}$. As $\left(\zeta^{-1}\right)^{N}=1$, we have $\zeta \cdot(x, y) \in C_{N}$. This is an action, because μ_{N} is abelian and 1 acts as the identity. Moreover, since μ_{N} is included in the definition field \mathbb{C} of C_{N}, for each $\zeta \in \mu_{N}$, the map

$$
\begin{aligned}
\varphi_{\zeta}: C_{N} & \rightarrow C_{N} \\
(x, y) & \mapsto \zeta \cdot(x, y) \\
\infty & \mapsto \infty
\end{aligned}
$$

is a morphism of algebraic varieties.

Now we want to extend this action to an action on X_{N}. Remember that the desingularization map $\pi: X_{N} \rightarrow C_{N}$ restricts to an isomorphism on the dense subset $\pi^{-1}\left(C_{N}^{\text {reg }}\right)$ of X_{N}, where $C_{N}^{\text {reg }}$ is the set of regular points in C_{N}. Let $P \in X_{N}$, if $\pi(P)$ is regular, set

$$
\zeta \cdot P:=\pi^{-1}(\zeta \cdot \pi(P))
$$

If $P \in X_{N}$ is such that $\pi(P)=\infty$ or $\exists j \in\{0, \ldots, r\}$ with $\pi(P)=\left(\lambda_{j}, 0\right)$, set

$$
\zeta \cdot P:=P
$$

Note that, if $\left(\lambda_{j}, 0\right)$ (respectively ∞) is regular on C_{N}, this last definition is coherent with the above one. This defines an action on X_{N}.

For $\zeta \in \mu_{N}$, set

$$
\begin{aligned}
\Phi_{\zeta}: X_{N} & \rightarrow X_{N} \\
P & \mapsto \zeta \cdot P
\end{aligned}
$$

Then Φ_{ζ} makes the following diagram commute

Because φ_{ζ} and π are morphisms, Φ_{ζ} is also a morphism.
Let ω be a regular differential form on X_{N}. Since $\Phi_{\zeta}: X_{N} \rightarrow X_{N}$ is a morphism, the pull-back $\Phi_{\zeta}^{*} \omega$ is again regular on X_{N}. Hence, the following map is well-defined

$$
\begin{aligned}
\mu_{N} \times \Omega^{1}\left[X_{N}\right] & \rightarrow \Omega^{1}\left[X_{N}\right] \\
(\zeta, \omega) & \mapsto \Phi_{\zeta}^{*} \omega .
\end{aligned}
$$

It defines an action of μ_{N} on $\Omega^{1}\left[X_{N}\right]$, which is linear, because, for every $\zeta \in \mu_{N}$, the map $\Omega^{1}\left[X_{N}\right] \rightarrow \Omega^{1}\left[X_{N}\right]$, given by $\omega \mapsto \Phi_{\zeta}^{*} \omega$ is linear. Furthermore, the \mathbb{C} vector space $\Omega^{1}\left[X_{N}\right]$ being finite dimensional, it furnishes a finite dimensional linear representation of μ_{N}.

Such a linear representation admits a decomposition in isotypical components (each isotypical component being the direct sum of all irreducible representations associated to a given character). For $n \in\{1, \ldots, N\}, V_{n}$ will denote the isotypical component associated to the character $\chi_{n}: \zeta \mapsto \zeta^{n}$. In these terms, we can write the canonical decomposition of $\Omega^{1}\left[X_{N}\right]$ as

$$
\begin{equation*}
\Omega^{1}\left[X_{N}\right]=\bigoplus V_{n} \tag{11}
\end{equation*}
$$

where the sum is taken over the indices n in $\{0, \ldots, N-1\}$ for which $\operatorname{dim} V_{n}>0$.
In the next paragraph, the dimension of V_{n} will be calculated for each n. It corresponds to the number of irreducible subrepresentations of $\Omega^{1}\left[X_{N}\right]$ having character χ_{n}.

6 Basis of Regular Differential Forms on X_{N}

In this section, we calculate a (C-basis of regular differential 1-forms on X_{N}. In view of the decomposition (11), it is sufficient to find a basis of V_{n} for each n in $\{0, \ldots, N-1\}$. Once this being done, we will calculate $\operatorname{dim}_{\mathbb{C}} V_{n}$ by counting the basis elements and also the sum $\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}$ in the case $(n, N)=1$.

Let's first make use of a result that goes back to Abel and Riemann and that is stated in Satz 1 Section 9.3 of [5] in the following way.

Proposition 6.1 The nonvanishing holomorphic differential 1-forms on the Riemann surface C^{\prime}, which is the desingularization of an irreducible algebraic plane curve C with affine equation $f(x, y)=0$, where the coordinates are chosen in such a way that $\frac{\partial f}{\partial y}$ is not identically zero, are given by [the pull-backs under the desingularization map of]

$$
\frac{\Phi(x, y) d x}{\frac{\partial f}{\partial y}(x, y)}
$$

where $\Phi(x, y)=0$ is the equation of an adjoint curve to C of degree $(\operatorname{deg} f)-3$.
We do not want to introduce what an adjoint curve is, but this proposition allows us to choose a basis of regular differential 1-forms on X_{N} among the regular pullbacks under π of the differential forms

$$
\begin{equation*}
\frac{\Phi(x, y) d x}{y^{N-1}} \tag{12}
\end{equation*}
$$

on C_{N}, where $\Phi(x, y) \in \mathbb{C}[x, y]$.
If $(x, y) \in C_{N}$, each power $y^{k N}$ with $k \in \mathbb{N}$, can be replaced by a polynomial expression in x. Hence, we can suppose that

$$
\Phi(x, y)=\Phi_{0}(x)+\Phi_{1}(x) y+\cdots+\Phi_{N-1}(x) y^{N-1}
$$

That is

$$
\frac{\Phi(x, y) d x}{y^{N-1}}=\frac{\Phi_{0}(x) d x}{y^{N-1}}+\frac{\Phi_{1}(x) d x}{y^{N-2}}+\cdots+\frac{\Phi_{N-2}(x) d x}{y}+\Phi_{N-1}(x) d x
$$

Hence, if the regular pull-backs of the differential forms (12) generate $\Omega^{1}\left[X_{N}\right]$, so do the regular pull-backs of the differential forms

$$
\frac{\Psi(x) d x}{y^{n}}
$$

where $n \in\{0, \ldots, N-1\}$ and $\Psi(x) \in \mathbb{C}[x]$. Further, the polynomials $\Psi(x)$ will be replaced by polynomials that are fitter to reflect the topology of C_{N} (resp. X_{N}) and that also generate the ring $\mathbb{C}[x]$. Namely, polynomials of the form

$$
\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{a_{i}} \in \mathbb{C}[x], a_{i} \in \mathbb{Z}
$$

This discussion may be summarized by saying that the regular pull-backs under π of the following differential forms on C_{N}

$$
\omega_{n}(x, y):=\frac{\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{a_{i}} d x}{y^{n}}
$$

with $a_{i} \in \mathbb{Z}$ and $n \in\{0, \ldots, N-1\}$, generate $\Omega^{1}\left[X_{N}\right]$.

6.1 Regularity Conditions for $\pi^{*} \omega_{n}$

Let's now fix n in $\{0, \ldots, N-1\}$. We are looking for conditions on a_{0}, \ldots, a_{r} for $\pi^{*} \omega_{n}$ to be regular on X_{N}.

6.1.1

On the dense subset $U:=C_{N}-\left\{\infty,\left(\lambda_{i}, 0\right) ; j=0, \ldots, r\right\}$ of C_{N}, the differential form ω_{n} is obviously regular, because $(x, y) \mapsto x$ and $(x, y) \mapsto \frac{1}{y^{n}}$ are regular functions on U. Since the desingularization map $\pi: X_{N} \rightarrow C_{N}$ is a morphism, the pull-back $\pi^{*} \omega_{n}$ is regular on $\pi^{-1}(U)$.

6.1.2 Above $\left(1: \lambda_{j}: 0\right)$

Let $j \in\{0, \ldots, r\}$ and $Q_{j} \in X_{N}$ be such that $\pi\left(Q_{j}\right)=\left(\lambda_{j}, 0\right)$. As calculated in Section 3.3.1, the composition of π with the local parametrization φ_{j} of X_{N} at Q_{j} is given in affine coordinates on C_{N} by (compare with (6))

$$
s \mapsto\left(s^{\frac{N}{\left.N, A_{j}\right)}}+\lambda_{j}, s^{\frac{A_{j}}{\left.N, A_{j}\right)}} g_{j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right)^{\frac{1}{N}}\right),
$$

where $g_{j}(x):=\prod_{i \neq j}\left(x-\lambda_{i}\right)^{A_{i}}$ and s takes values in a neighbourhood U_{j} of 0 in \mathbb{C} on which $g_{j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right) \neq 0$. By definition, we have

$$
\left(\left(\pi_{j} \circ \varphi_{j}\right)^{*}\left(\omega_{n}\right)\right)(s)=\omega\left(\left(\pi_{j} \circ \varphi_{j}\right)(s)\right) \circ d_{s}\left(\pi_{j} \circ \varphi_{j}\right)
$$

and $d_{\left(\pi_{j} \circ \varphi_{j}\right)(s)} x \circ d_{s}\left(\pi_{j} \circ \varphi_{j}\right)=\frac{\partial\left(\pi_{j} \circ \varphi_{j}\right)_{1}}{\partial s}(s) d_{s} s$. Hence

$$
\begin{aligned}
\left(\left(\pi_{j} \circ \varphi_{j}\right)^{*}\left(\omega_{n}\right)\right)(s)= & \frac{N}{\left(N, A_{j}\right)} \prod_{i=0}^{r}\left(s^{\frac{N}{\left.N, A_{j}\right)}}+\lambda_{j}-\lambda_{i}\right)^{a_{i}} s^{\frac{N}{\left(N, A_{j}\right)}-1-\frac{n A_{j}}{\left(N, A_{j}\right)}} \\
& g_{j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right)^{-\frac{n}{N}} d s \\
= & C(s) s^{a_{j}} \frac{N}{\left(N, A_{j}\right)}+\frac{N-n A_{j}}{\left(N, A_{j}\right)}-1
\end{aligned} s,
$$

where $C(s):=\frac{N}{\left(N, A_{j}\right)} \prod_{i \neq j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}-\lambda_{i}\right)^{a_{i}} g_{j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right)^{-\frac{n}{N}}$ does not take the value zero on U_{j} and is regular (because $g_{j}\left(s^{\frac{N}{\left(N, A_{j}\right)}}+\lambda_{j}\right) \neq 0$ on U_{j}). Remark that this
amounts to replacing x and y by their expressions in s and $d x$ by $\frac{N}{\left(N, A_{j}\right)} s^{\frac{N}{\left.N, A_{j}\right)}-1} d s$ in $\omega_{n}(x, y)$. Since φ_{j} is an analytic isomorphism, it is an algebraic morphism and so is its inverse. This has the consequence that $\pi^{*} \omega_{n}$ is regular at $Q_{j}=\varphi_{j}(0)$ exactly when $\left(\pi_{j} \circ \varphi_{j}\right)^{*}\left(\omega_{n}\right)$ is regular at 0 (because $\pi_{j}^{*} \omega_{n}=\left(\varphi_{j}^{-1}\right)^{*}\left(\left(\pi_{j} \circ \varphi_{j}\right)^{*}\left(\omega_{n}\right)\right)$ and $\left.\left(\pi_{j} \circ \varphi_{j}\right)^{*}\left(\omega_{n}\right)=\left(\varphi_{j}\right)^{*}\left(\pi_{j}^{*} \omega_{n}\right)\right)$. Hence, we have

$$
\pi^{*} \omega_{n} \text { is regular at } Q_{j} \Leftrightarrow a_{j} \geq \frac{n A_{j}+\left(N, A_{j}\right)}{N}-1
$$

Note that this condition ensures the regularity of $\pi^{*} \omega_{n}$ at each π-preimage of $\left(\lambda_{j}, 0\right)$.

6.1.3 Above Infinity

First of all, we have to write the differential form ω_{n} in projective coordinates. Setting $x:=\frac{x_{1}}{x_{0}}$ and $y:=\frac{x_{2}}{x_{0}}$, we get

$$
d x=\frac{1}{x_{0}} d x_{1}-\frac{x_{1}}{x_{0}^{2}} d x_{0}
$$

and

$$
\omega_{n}\left(x_{0}, x_{1}, x_{2}\right)=x_{2}^{-n} x_{0}^{n-2-\sum_{k=0}^{r} a_{k}} \prod_{i=0}^{r}\left(x_{1}-\lambda_{i} x_{0}\right)^{a_{i}}\left(x_{0} d x_{1}-x_{1} d x_{0}\right)
$$

Case 1: $N-\sum_{k=0}^{r} A_{k}>0$. The composition of π with the local parametrization $\varphi_{\infty 1}$ of X_{N} at each preimage Q of $(0: 1: 0)$ is given by (cf. (7) Section 3.3.2)

$$
s \mapsto\left(s^{\frac{N}{\left(N, N-\sum A_{k}\right)}}: 1: s^{\frac{N-\sum A_{k}}{\left(N, N-\sum A_{k}\right)}} h\left(s^{\frac{N}{\left(N, N-\sum A_{k}\right)}}\right)^{\frac{1}{N}}\right)
$$

where $h(x)=\prod_{i=0}^{r}\left(1-\lambda_{i} x\right)^{A_{i}}$ and s takes values in the complex neighbourhood U_{∞} of $s=0$ on which $h\left(s^{\left.\frac{N}{N, N-\sum A_{k}}\right)}\right) \neq 0$. Noting that $x_{1}=1 \Rightarrow d x_{1}=0$ and inserting the expressions for $x_{0}, x_{1}, x_{2}, d x_{0}$ into that of ω_{n}, we get

$$
\left(\left(\pi_{\infty 1} \circ \varphi_{\infty 1}\right)^{*} \omega_{n}\right)(s)=C(s) s^{\frac{n \sum A_{k}-N-N \sum a_{i}}{\left(N, N-\sum A_{k}\right)}-1} d s
$$

where C is regular on U_{∞} and $C(s) \neq 0$ for $s \in U_{\infty}$. Therefore

$$
\pi^{*} \omega_{n} \text { is regular at } Q \Leftrightarrow \sum_{i=0}^{r} a_{i} \leq \frac{n \sum_{k=0}^{r} A_{k}-\left(N, N-\sum_{k=0}^{r} A_{k}\right)}{N}-1
$$

Case 2: $N-\sum_{k=0}^{r} A_{k}<0$. The composition of π with the local parametrization $\varphi_{\infty 2}$ of X_{N} at each preimage Q of ($0: 0: 1$) is given, for $s \in U_{\infty}$, by (cf. (8) Section 3)

$$
s \mapsto\left(s^{\frac{\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}}: s^{\frac{-N+\sum A_{k}}{\left(N,-N+\sum A_{k}\right)}}: h\left(s^{\frac{N}{\left(N,-N+\sum A_{k}\right)}}\right)^{\frac{1}{N}}\right) .
$$

Replacing $x_{0}, x_{1}, x_{2}, d x_{0}, d x_{1}$ by their expressions in s, we get

$$
\left(\left(\pi_{\infty 2} \circ \varphi_{\infty 2}\right)^{*} \omega_{n}\right)(s)=C(s) s^{\frac{n \sum A_{k}-N \sum a_{i}-N}{\left(N,-N+\sum A_{k}\right)}-1} d s
$$

where C is regular on U_{∞} and $C(s) \neq 0$ for $s \in U_{\infty}$. Thus, we have

$$
\left(\pi^{*} \omega_{n}\right)(s) \text { is regular at } Q \Leftrightarrow \sum_{i=0}^{r} a_{i} \leq \frac{n \sum_{k=0}^{r} A_{k}-\left(N,-N+\sum_{k=0}^{r} A_{k}\right)}{N}-1 .
$$

Summary 1 Since $\left(N,-N+\sum_{k=0}^{r} A_{k}\right)=\left(N, N-\sum A_{k}\right)$, we can summarize these conditions by saying that the pull-back under $\pi: X_{N} \rightarrow C_{N}$ of the differential form

$$
\omega_{n}(x, y)=\frac{\prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{a_{i}} d x}{y^{n}}
$$

on C_{N} is regular on X_{N} if and only if

$$
\left\{\begin{align*}
\sum_{i=0}^{r} a_{i} & \leq \frac{n \sum_{k=0}^{r} A_{k}-\left(N, N-\sum_{k=0}^{r} A_{k}\right)}{N}-1 \tag{13}\\
a_{j} & \geq \frac{n A_{j}+\left(N, A_{j}\right)}{N}-1, \quad \forall j \in\{0, \ldots, r\}
\end{align*}\right.
$$

These conditions will be referred to as the regularity conditions for $\pi^{*} \omega_{n}$.
Note 1 As kindly noticed by the referee, there is no need to construct the nonsingular model by glueing the local desingularizations for computing the order of differential forms on X_{N}. Indeed, it suffices to consider the local affine equation at each singular point and reduce it into irreducible factors. It will be of the form

$$
\begin{equation*}
0=y^{N}-w^{A}=\prod_{\zeta_{d}}\left(y^{N^{\prime}}-\zeta_{d} w^{A^{\prime}}\right) \tag{14}
\end{equation*}
$$

where $d=\operatorname{gcd}(N, A), N^{\prime}=\frac{N}{d}, A^{\prime}=\frac{A}{d}$ and the product runs over all d-th roots of unity. Let $n, m \in \mathbb{Z}$ be such that $n N^{\prime}+m A^{\prime}=1$ and write $z:=y^{m} w^{n}$, then the desingularization is locally given by

$$
y=\zeta_{d}^{n} z^{A^{\prime}} \quad \text { and } \quad w=\zeta_{d}^{-m} z^{N^{\prime}}
$$

So that each factor in (14) corresponds exactly to one branch of the desingularization above the point $(0,0)$. Substituting $w:=x-\lambda_{i}$ at $\left(\lambda_{i}, 0\right)$ and $w:=\frac{1}{x}$ at ∞, one can compute the order of differential forms on X_{N}.

Remark 7 We would like now to show that the pull-back $\pi^{*} \omega_{n}$ of a differential form $\omega_{n}(x, y)=y^{-n} \prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{a_{i}} d x$ belongs to the isotypical component V_{n} of character
χ_{n}, if it satisfies the above conditions. If it is the case, $\pi^{*} \omega_{n} \in \Omega^{1}\left[X_{N}\right]$ and it remains to study the action of μ_{N} on $\pi^{*} \omega_{n}$, for a fixed $n \in\{0, \ldots, N-1\}$. Let $\zeta \in \mu_{N}$, then

$$
\begin{aligned}
\zeta \cdot \pi^{*} \omega_{n} & =\Phi_{\zeta}^{*}\left(\pi^{*} \omega_{n}\right) \\
& =\left(\pi \circ \Phi_{\zeta}\right)^{*} \omega_{n} \\
& =\left(\varphi_{\zeta} \circ \pi\right)^{*} \omega_{n} \quad \text { by }(10)
\end{aligned}
$$

Now, for $P \in X_{N}$, we have

$$
\begin{aligned}
\left.\left(\left(\varphi_{\zeta} \circ \pi\right)^{*} \omega_{n}\right)\right)(P) & =\omega_{n}\left(\left(\varphi_{\zeta} \circ \pi\right)(P)\right) \circ d_{P}\left(\varphi_{\zeta} \circ \pi\right) \\
& =\omega_{n}\left(\varphi_{\zeta}(\pi(P))\right) \circ d_{\pi(P)} \varphi_{\zeta} \circ d_{P} \pi \\
& =\zeta^{n} \omega_{n}(\pi(P)) \circ d_{P} \pi \\
& =\zeta^{n}\left(\pi^{*} \omega_{n}\right)(P) .
\end{aligned}
$$

Hence, for every $\zeta \in \mu_{N}$, we have

$$
\zeta \cdot\left(\pi^{*} \omega_{n}\right)=\chi_{n}(\zeta) \pi^{*} \omega_{n}
$$

This shows that $\pi^{*} \omega_{n} \in V_{n}$.

6.2 Dimension of V_{n}

Let n be fixed in $\{0, \ldots, N-1\}$. In order to determine the dimension of V_{n}, we will count the number of elements in a maximal family of linearly independent differential forms of the form $y^{-n} \prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{a_{i}} d x$, where $n, a_{0}, \ldots, a_{r} \in \mathbb{Z}$ and satisfy the regularity conditions (13). Since a_{0}, \ldots, a_{r} are integers and according to the regularity conditions, the maximal possible value $\left(\sum_{i=0}^{r} a_{i}\right)_{\max }$ of $\sum_{i=0}^{r} a_{i}$ and the minimal possible value $\left(a_{j}\right)_{\min }$ of $a_{j}, j \in\{0, \ldots, r\}$, are given by

$$
\begin{aligned}
& \left(\sum_{i=0}^{r} a_{i}\right)_{\max }=\left[\frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N}-1\right] \quad \text { and } \\
& \left(a_{j}\right)_{\min }=-\left[1-\frac{n A_{j}+\left(N, A_{j}\right)}{N}\right], \quad j \in\{0, \ldots, r\}
\end{aligned}
$$

where $[x]$ denotes the integral part of x.
Definition 2 Let $x \in \mathbb{R}$, then x admits a unique decomposition as

$$
x=[x]+\langle x\rangle
$$

where $[x] \in \mathbb{Z}$ and $\langle x\rangle \in[0,1)$ are respectively called the integral part and the fractional part of x.

Write further $\left(\sum_{i=0}^{r} a_{i}\right)_{\min }:=\sum_{i=0}^{r}\left(a_{i}\right)_{\min }$ and $\ell:=\left(\sum_{i=0}^{r} a_{i}\right)_{\max }-\left(\sum_{i=0}^{r} a_{i}\right)_{\min }$. If $\ell \geq 0$, there is at least one solution. Write $\omega_{\min }$ for the solution where each a_{i} is minimal. Then $V_{n}=\left\langle x^{k} \omega_{\min }\right\rangle_{k=0, \ldots, \ell}$ and $\operatorname{dim} V_{n}=\ell+1$. Indeed, one verifies that each possible value for $\sum_{i=0}^{r} a_{i}$ brings exactly one element in the maximal family of linearly independent differential forms. For instance, if $\exists j \in\{0, \ldots, r\}$ such that $\left(a_{j}\right)_{\min }+1$ and $\left(\sum_{i=0}^{r} a_{i}\right)_{\min }+1$ satisfy the regularity conditions, then

$$
y^{-n}\left(x-\lambda_{j}\right)^{\left(a_{j}\right)_{\min }+1} \prod_{i \neq j}\left(x-\lambda_{i}\right)^{\left(a_{i}\right)_{\min }}=x \omega_{\min }-\lambda_{j} \omega_{\min } \in\left\langle\omega_{\min }, x \omega_{\min }\right\rangle
$$

Note that this is independent of j and conclude by induction on ℓ.

Theorem 6.2 Let X_{N} be the curve defined in Theorem 4.1 and recall that the vector space $\Omega^{1}\left[X_{N}\right]$ of regular differential 1-forms on X_{N} furnishes a linear representation of μ_{N} (cf. Section 5). Then, for $n \in\{0, \ldots, N-1\}$, the isotypical component V_{n} of character $\chi_{n}: \zeta \mapsto \zeta^{n}$ has dimension

$$
\operatorname{dim} V_{n}= \begin{cases}d_{n} & \text { if } d_{n}>0 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
d_{n}:=\left[\frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N}\right]+\sum_{i=0}^{r}\left[1-\frac{n A_{i}+\left(N, A_{i}\right)}{N}\right] .
$$

Proof Use $[x-1]=[x]-1$ to show that $d_{n}=\ell+1$ and apply the above reasoning.

Remark 8 If $\operatorname{dim} V_{n}=0$, then V_{n} does not appears in the canonical decomposition (11) of $\Omega^{1}\left[X_{N}\right]$.

Remark 9 Since $g\left[X_{N}\right]=\operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}\left[X_{N}\right]\right)$, Theorem 4.1 and Theorem 6.2 together imply the following relation

$$
1+\frac{1}{2}\left(r N-\left(N, N-\sum_{k=0}^{r} A_{k}\right)-\sum_{j=0}^{r}\left(N, A_{j}\right)\right)=\sum_{\substack{n \in\{0, \ldots, N-1\} \\ d_{n}>0}} d_{n}
$$

6.3 Dimension of $V_{n},(n, N)=1$

Here will be used the conditions $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$. The goal here is to transform the formula for $\operatorname{dim} V_{n}$ of Theorem 6.2 in the case where $(n, N)=1$ into a more treatable form. Some preparatory lemmata are given in order to prove Theorems 6.7 and 6.8.

Lemma 6.3 Let $x \in \mathbb{R}, \ell \in \mathbb{Z}, N, A \in \mathbb{N}$ and $n \in\{0, \ldots, N-1\}$. Then we have

1. $[x+\ell]=[x]+\ell$,
2. $[x]=x-\langle x\rangle$,
3. $\langle x+\ell\rangle=\langle x\rangle$.
4. If $x \notin \mathbb{Z}$, then $\langle-x\rangle=1-\langle x\rangle$.
5. If $N \nmid A$ and $(n, N)=1$, then $\left\langle\frac{n A-(N, A)}{N}\right\rangle=\left\langle\frac{n A}{N}\right\rangle-\frac{(N, A)}{N}$.
6. If $N \nmid A$ and $(n, N)=1$, then $\left[-\frac{n A+(N, A)}{N}\right]=-\left[\frac{n A-(N, A)}{N}\right]-1$.

Proof The first four points follow directly from the definitions. For point 5., write $N^{\prime}:=\frac{N}{(N, A)}, A^{\prime}:=\frac{A}{(N, A)}$ and $n A^{\prime}=k N^{\prime}+r$, with $k \in \mathbb{Z}$ and $r \in\left\{1, \ldots, N^{\prime}-1\right\}$. Note that $r \neq 0$, because $N \nmid n A$. Then

$$
\frac{n A^{\prime}}{N^{\prime}}=k+\frac{r}{N^{\prime}} \quad \text { and } \quad \frac{n A^{\prime}-1}{N^{\prime}}=k+\frac{r-1}{N^{\prime}}
$$

Since $r-1 \in\left\{0, \ldots, N^{\prime}-2\right\}$ and $k \in \mathbb{Z}$, we have

$$
\left\langle\frac{n A^{\prime}}{N^{\prime}}\right\rangle=\frac{r}{N^{\prime}} \quad \text { and } \quad\left\langle\frac{n A^{\prime}-1}{N^{\prime}}\right\rangle=\frac{r}{N^{\prime}}-\frac{1}{N^{\prime}}
$$

This implies $\left\langle\frac{n A^{\prime}-1}{N^{\prime}}\right\rangle=\left\langle\frac{n A^{\prime}}{N^{\prime}}\right\rangle-\frac{1}{N^{\prime}}$ or equivalently

$$
\left\langle\frac{n A-(N, A)}{N}\right\rangle=\left\langle\frac{n A}{N}\right\rangle-\frac{(N, A)}{N}
$$

6. With the same notations and hypotheses as above, we have $\left[\frac{n A^{\prime}-1}{N^{\prime}}\right]=k$. Now,

$$
\left[\frac{-n A^{\prime}-1}{N^{\prime}}\right]=\left[-k-\frac{r+1}{N^{\prime}}\right]=-k+\left[-\frac{r+1}{N^{\prime}}\right]=-k-1
$$

because $-\frac{r+1}{N^{\prime}} \in[-1,0)$. Hence, $\left[-\frac{n A^{\prime}+1}{N^{\prime}}\right]=-\left[\frac{n A^{\prime}-1}{N^{\prime}}\right]-1$ or equivalently

$$
\left[-\frac{n A+(N, A)}{N}\right]=-\left[\frac{n A-(N, A)}{N}\right]-1
$$

Lemma 6.4 Let $n \in\{0, \ldots, N-1\}, N, A_{0}, \ldots, A_{r} \in \mathbb{N}$ and suppose $(n, N)=1$ and $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$. Then, $\forall j \in\{0, \ldots, N\}$, we have

1. $\left[-\frac{n A_{j}+\left(N, A_{j}\right)}{N}\right]=\left\langle\frac{n A_{j}}{N}\right\rangle-\frac{n A_{j}}{N}-1$ and
2. $\left[\frac{n \sum_{k=0}^{r} A_{k}-\left(N, N-\sum_{k=0}^{r} A_{k}\right)}{N}\right]=\frac{n \sum_{k=0}^{r} A_{k}}{N}-\left\langle\frac{n \sum_{k=0}^{r} A_{k}}{N}\right\rangle$.

Proof The reference number refers to Lemma 6.3.

1. Fix $j \in\{0, \ldots, N\}$, then

$$
\begin{aligned}
{\left[-\frac{n A_{j}+\left(N, A_{j}\right)}{N}\right] } & =-\left[\frac{n A_{j}-\left(N, A_{j}\right)}{N}\right]-1 \quad \text { by }(5) \\
& =-\frac{n A_{j}-\left(N, A_{j}\right)}{N}+\left\langle\frac{n A_{j}-\left(N, A_{j}\right)}{N}\right\rangle-1 \quad \text { by }(2) \\
& =-\frac{n A_{j}}{N}+\frac{\left(N, A_{j}\right)}{N}+\left\langle\frac{n A_{j}}{N}\right\rangle-\frac{\left(N, A_{j}\right)}{N}-1 \quad \text { by }(5) \\
& =\left\langle\frac{n A_{j}}{N}\right\rangle-\frac{n A_{j}}{N}-1
\end{aligned}
$$

2.

$$
\begin{aligned}
{\left[\frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N}\right]=} & \frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N} \\
& -\left\langle\frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N}\right\rangle \quad \text { by }(2) \\
= & \frac{n \sum A_{k}}{N}-\frac{\left(N, N-\sum A_{k}\right)}{N} \\
& -\left\langle\frac{n \sum A_{k}}{N}\right\rangle+\frac{\left(N, N-\sum A_{k}\right)}{N} \quad \text { by }(5) \\
= & \frac{n \sum A_{k}}{N}-\left\langle\frac{n \sum A_{k}}{N}\right\rangle
\end{aligned}
$$

Proposition 6.5 If $(n, N)=1$ and $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$, then the integer d_{n} defined in Theorem 6.2 is equal to

$$
d_{n}=-\left\langle\frac{n \sum_{k=0}^{r} A_{k}}{N}\right\rangle+\sum_{i=0}^{r}\left\langle\frac{n A_{i}}{N}\right\rangle .
$$

Proof

$$
\begin{aligned}
d_{n} & =\left[\frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N}\right]+\sum_{i=0}^{r}\left[1-\frac{n A_{i}+\left(N, A_{i}\right)}{N}\right] \\
& =\left[\frac{n \sum A_{k}-\left(N, N-\sum A_{k}\right)}{N}\right]+r+1+\sum\left[-\frac{n A_{i}+\left(N, A_{i}\right)}{N}\right] \\
& =\frac{n \sum A_{k}}{N}-\left\langle\frac{n \sum A_{k}}{N}\right\rangle+r+1+\sum\left\langle\frac{n A_{i}}{N}\right\rangle-\sum \frac{n A_{i}}{N}-(r+1) \\
& =-\left\langle\frac{n \sum A_{k}}{N}\right\rangle+\sum\left\langle\frac{n A_{i}}{N}\right\rangle .
\end{aligned}
$$

The second and third equalities are respectively obtained by applying (1) of Lemmas 6.3 and 6.4.

Under the hypotheses $(n, N)=1$ and $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$, we still can get a better result on $\operatorname{dim} V_{n}$. For this, we will use the following lemma.

Lemma 6.6 Let x_{0}, \ldots, x_{r} be real numbers. Then we have

$$
-\left\langle\sum_{i=0}^{r} x_{i}\right\rangle+\sum_{i=0}^{r}\left\langle x_{i}\right\rangle \in\{0, \ldots, r\} .
$$

Proof First remark that

$$
\left\langle\sum x_{i}\right\rangle=\left\langle\sum\left[x_{i}\right]+\sum\left\langle x_{i}\right\rangle\right\rangle=\left\langle\sum\left\langle x_{i}\right\rangle\right\rangle
$$

because of $\sum\left[x_{i}\right] \in \mathbb{Z}$ applied to (3) of Lemma 6.3. Then we have

$$
-\left\langle\sum x_{i}\right\rangle+\sum\left\langle x_{i}\right\rangle=-\left\langle\sum\left\langle x_{i}\right\rangle\right\rangle+\sum\left\langle x_{i}\right\rangle=\left[\sum\left\langle x_{i}\right\rangle\right]=: c,
$$

by the above and by definition. Pay attention to the fact that c is an integer. Since $\sum\left\langle x_{i}\right\rangle \geq 0$ and $-\left\langle\sum x_{i}\right\rangle \in(-1,0]$, the integer c cannot be negative, because -1 cannot be reached. Moreover, $c \leq r$, because $\sum\left\langle x_{i}\right\rangle<r+1$. Hence c lies in $\{0, \ldots, r\}$.

Theorem 6.7 Let the notations be as in Theorem 6.2 and suppose $(n, N)=1$ and $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$. Then we have

$$
\operatorname{dim} V_{n}=-\left\langle\frac{n \sum_{k=0}^{r} A_{k}}{N}\right\rangle+\sum_{i=0}^{r}\left\langle\frac{n A_{i}}{N}\right\rangle .
$$

Proof By Proposition 6.5, we have

$$
d_{n}=-\left\langle\frac{n \sum_{k=0}^{r} A_{k}}{N}\right\rangle+\sum_{i=0}^{r}\left\langle\frac{n A_{i}}{N}\right\rangle
$$

and by Lemma 6.6, we know that $d_{n} \in\{0, \ldots, r\}$. Finally, by Theorem 6.2, we get $\operatorname{dim} V_{n}=d_{n}$.
$6.4 \operatorname{dim} V_{n}+\operatorname{dim} V_{N-n},(n, N)=1$
Theorem 6.8 Let the notations be as in Theorem 6.2. Suppose that $(n, N)=1$ and $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$. Then we have

$$
\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=r
$$

Proof

$$
\begin{aligned}
\operatorname{dim} V_{N-n} & =-\left\langle\frac{(N-n) \sum A_{k}}{N}\right\rangle+\sum_{i=0}^{r}\left\langle\frac{(N-n) A_{i}}{N}\right\rangle \quad \text { by Theorem } 6.7 \\
& =-\left\langle\sum A_{k}-\frac{n \sum A_{k}}{N}\right\rangle+\sum\left\langle A_{i}-\frac{n A_{i}}{N}\right\rangle \\
& =-\left\langle-\frac{n \sum A_{k}}{N}\right\rangle+\sum\left\langle-\frac{n A_{i}}{N}\right\rangle \quad \text { by (3) Lemma } 6.3 \\
& =-1+\left\langle\frac{n \sum A_{k}}{N}\right\rangle+r+1-\sum\left\langle\frac{n A_{i}}{N}\right\rangle \quad \text { by (4) Lemma } 6.3 \\
& =r-\left(-\left\langle\frac{n \sum A_{k}}{N}\right\rangle+\sum\left\langle\frac{n A_{i}}{N}\right\rangle\right) \\
& =r-\operatorname{dim} V_{n} \quad \text { by Theorem } 6.7 .
\end{aligned}
$$

Note 2 As the referee kindly pointed out, the result of Theorem 6.8 could be deduced directly from a result of Chevalley and Weil [6] giving a formula for the multiplicities of irreducible representations in the representation given by the action of a finite group on the space of holomorphic differential forms on a curve. This formula amounts basically to the holomorphic Lefschetz formula, a recent account of which can be found in the Appendix of [19]. This confirms our result based on a geometric viewpoint.

7 New Forms and New Jacobian

We are now approaching our goal of constructing an abelian variety on which $\int \pi^{*} \omega_{1}$ lives as a period. We could have taken the Jacobian variety of X_{N}, but its dimension (equal to $\operatorname{dim} \Omega^{1}\left[X_{N}\right]=g\left[X_{N}\right]$) would have depended not only on N but also on A_{0}, \ldots, A_{r} (cf. Theorem 4.1). That is the reason why we will restrict ourselves to an abelian subvariety of $\operatorname{Jac}\left(X_{N}\right)$, whose dimension depends on N and on the number $r+1$ of factors in the equation, but not on the exponents.

In order to define this subvariety, we will select regular differential forms on X_{N}, which "do not come from under" and are therefore called new. This will be made more precise.

First of all, let's work at the level of the singular curve C_{N}, because it is here possible to work with explicit expressions for the differential forms, in coordinates that we choose to be affine.

Let $d \in \mathbb{N}$. If $d \mid N$, then we have a well-defined morphism

$$
\begin{aligned}
\psi_{d}: C_{N} & \rightarrow C_{d} \\
(x, y) & \mapsto\left(x, y^{\frac{N}{d}}\right) \\
\infty & \mapsto \infty .
\end{aligned}
$$

Let $(u, v) \in C_{d}$ be an affine point, then

$$
\psi_{d}^{-1}\{(u, v)\}=\left\{\left(u, v_{0}\right),\left(u, \zeta_{\frac{N}{d}} v_{0}\right), \ldots,\left(u, \zeta_{\frac{N}{d}}^{\frac{N}{d}-1} v_{0}\right)\right\},
$$

where v_{0} is any fixed $\frac{N}{d}$-th root of v and $\zeta_{\frac{N}{d}}:=e^{\frac{2 \pi i}{N} d}$. We see that there is an open dense subset of C_{d} of points having $\frac{N}{d}$ preimages. The other points have exactly one preimage. ψ_{d} is a ramified topological covering. The set of preimages of a point $P \in C_{d}$ is called the fiber over P with respect to ψ_{d}.

As we have seen in Section 5, the group μ_{N} of N-th roots of unity acts on C_{N}

$$
\begin{aligned}
\mu_{N} \times C_{N} & \rightarrow C_{N} \\
(\zeta, P) & \mapsto \varphi_{\zeta}(P) .
\end{aligned}
$$

Remark that the subgroup $I_{d}:=\left\langle\zeta_{N}^{d}\right\rangle, \zeta_{N}:=e^{\frac{2 \pi i}{N}}$, of index d in μ_{N} acts transitively on each fiber by permutation. Hence, the covering is Galois.

The action of μ_{N} on C_{N} induces an action of μ_{N} on the vector space $\Phi\left[C_{N}\right]$ of differential forms on C_{N}. This goes very similarly as for the definition of the induced action on $\Omega^{1}\left[X_{N}\right]$ (see Section 5). Indeed, we set

$$
\begin{aligned}
\mu_{N} \times \Phi\left[C_{N}\right] & \rightarrow \Phi\left[C_{N}\right] \\
(\zeta, \omega) & \mapsto \varphi_{\zeta}^{*} \omega
\end{aligned}
$$

Now, suppose that you have a differential form η on C_{d}. It is clear that its pullback $\psi_{d}^{*} \eta$ on C_{N} is invariant under the action of the subgroup I_{d}, because I_{d} preserves the fibers.

The converse is more subtle. Let $\omega \in \Phi\left[C_{N}\right]$ be invariant under the action of I_{d}. Does ω define a differential form $\left(\psi_{d}\right)_{*} \omega$ on C_{d} ? The answer to this question is positive, because I_{d} acts transitively on each fiber. Hence, for $Q \in C_{d}$, we can define $\left(\left(\psi_{d}\right)_{*} \omega\right)(Q)$ to be the unique linear form on $\theta_{C_{d}, Q}$ such that, for $P \in C_{N}$ with $\psi_{d}(P)=Q,\left(\left(\psi_{d}\right)_{*} \omega\right)(Q) \circ d_{P} \psi_{d}=\omega(P)$. This is well-defined, because $\forall P^{\prime} \in C_{N}$ with $\psi_{d}\left(P^{\prime}\right)=Q, \exists \xi \in I_{d}$ such that $\varphi_{\xi}\left(P^{\prime}\right)=P$ and then

$$
\omega(P)=\omega\left(\varphi_{\xi}\left(P^{\prime}\right)\right) \circ d_{P^{\prime}} \varphi_{\xi}=\left(\varphi_{\xi}^{*} \omega\right)\left(P^{\prime}\right)=\omega\left(P^{\prime}\right)
$$

by invariance of ω under I_{d}. Remark further that $\psi_{d}^{*}\left(\left(\psi_{d}\right)_{*} \omega\right)=\omega$. Indeed, let $P \in C_{N}$, then

$$
\psi_{d}^{*}\left(\left(\psi_{d}\right)_{*} \omega\right)(P)=\left(\left(\psi_{d}\right)_{*} \omega\right)\left(\psi_{d}(P)\right) \circ d_{P} \psi_{d}=\omega(P)
$$

The so-defined differential form $\left(\psi_{d}\right)_{*} \omega \in \Phi\left[C_{d}\right]$ is called the push-forward of ω with respect to ψ_{d}.

For a differential form ω on C_{N} and $d \mid N$, we have shown
ω is fixed under the action of I_{d} on $\Phi\left[C_{N}\right] \Leftrightarrow \exists \eta \in \Phi\left[C_{d}\right]$ such that $\psi_{d}^{*} \eta=\omega$.
Let's now consider the differential form $\omega_{n}(x, y)=y^{-n} \prod_{i=0}^{r}\left(x-\lambda_{i}\right)^{a_{i}} d x$ on C_{N}, where the a_{i} 's are integer. Under which condition on n is ω_{n} fixed by the action of I_{d} ? Well,

$$
\begin{aligned}
\forall \xi \in I_{d}, \quad \varphi_{\xi}^{*} \omega_{n}=\omega_{n} & \Leftrightarrow \forall \xi \in I_{d}, \quad \xi^{n} \omega_{n}=\omega_{n} \\
& \Leftrightarrow \forall k \in\left\{0, \ldots, \frac{N}{d}-1\right\}, \quad\left(\zeta_{N}^{d k}\right)^{n} \omega_{n}=\omega_{n} \\
& \Leftrightarrow \exists \ell \in \mathbb{Z} \text { s.t. } n=\ell \frac{N}{d}
\end{aligned}
$$

The differential forms which satisfy this for a d dividing N and different from N are the ones we want to get rid of, because "they come from under". This is equivalent to the fact that $(N, n) \neq 1$. Indeed, if the above equivalent conditions hold, $\frac{N}{d}$ is $\neq 1$ and divides both N and n. Conversely, suppose that $(N, n) \neq 1$, then ω_{n} is fixed under the action of $I_{\frac{N}{(N, n)}}$.

Definition 3 A differential form ω_{n} (resp. $\pi^{*} \omega_{n}$) on C_{N} (resp. X_{N}) such that $(n, N)=1$ and the linear combinations of such differential forms are said to be new. The vector subspace of $\Omega^{1}\left[X_{N}\right]$ consisting of all new forms on X_{N} which are holomorphic is

$$
\Omega^{1}\left[X_{N}\right]_{\text {new }}:=\bigoplus V_{n},
$$

where the sum is taken over the $n \in\{0, \ldots, N-1\}$ such that $\operatorname{dim} V_{n}>0$ and $(n, N)=1$.

The Jacobian variety $\operatorname{Jac}\left(X_{N}\right)$ of X_{N} is the abelian variety defined by the following quotient:

$$
\Omega^{1}\left[X_{N}\right]^{*} / \imath\left(H_{1}\left(X_{N}(\mathbb{C}), \mathbb{Z}\right)\right) .
$$

The vector subspace $\Omega^{1}\left[X_{N}\right]_{\text {new }}$ defines a subquotient of this quotient which corresponds to abelian subvariety of $\operatorname{Jac}\left(X_{N}\right)$. This abelian subvariety will be called the New Jacobian of X_{N} and denoted by $\operatorname{Jac}_{\text {new }}\left(X_{N}\right)$. Its dimension is equal to $\operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}\left[X_{N}\right]_{\text {new }}\right)$. By definition, we have

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}\left[X_{N}\right]_{\text {new }}\right)=\sum_{\substack{(n, N)=1 \\ 0<n<N}} \operatorname{dim}\left(V_{n}\right)=\frac{1}{2} \sum_{\substack{(n, N)=1 \\ 0<n<N}}\left(\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}\right) . \tag{15}
\end{equation*}
$$

Under the assumptions $N \nmid A_{0}, \ldots, A_{r}, \sum_{k=0}^{r} A_{k}$, we can apply Theorem 6.8 to get $\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=r$. This implies

$$
\begin{equation*}
\operatorname{dim} \operatorname{Jac}_{\mathrm{new}}\left(X_{N}\right)=\frac{r \varphi(N)}{2}, \tag{16}
\end{equation*}
$$

where $\varphi(N):=\sum_{\substack{n, N)=1 \\ 0<n<N}} 1$ is Euler's function.
Remark 10 The endomorphism algebra of $\operatorname{Jac}_{\text {new }}\left(X_{N}\right)$ contains $(\mathbb{O})\left(\mu_{N}\right)$.

8 Abelian Varieties Associated to Gauss' Hypergeometric Series

The family of curves, which is often associated to Gauss' hypergeometric series, as in [21], [22], is isomorphic to but not equal to the one we defined in Section 2. Indeed, our construction is based on the second integral representation (3) of $F(a, b, c ; z)$ and not on Euler's. Since the two families of curves are isomorphic, so are their Jacobian varieties. Hence, the New Jacobian defines an abelian subvariety of the Jacobian of the curve coming from Euler's integral representation, which is precisely the abelian variety $T_{a b c}(z)$ used by Wolfart. On the way to show this, we will have all intermediate results about genus, order of differential forms, dimensions, some of which will slightly correct some of Wolfart's assertions (see Remark 12). Remark 11 gives some light about the motivation coming from Wolfart's work.

Let's consider a hypergeometric series $F(a, b, c ; z)$ with rational parameters a, b, c and $-c \notin \mathbb{N}$. For $|z|<1$ and $c>b>0$, Euler's integral representation (2) can be written as

$$
\begin{equation*}
F(a, b, c ; z)=\frac{\mathcal{P}(z)}{\mathcal{P}(0)}, \quad \text { where } \quad \mathcal{P}(z)=\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-z x)^{-a} d x \tag{17}
\end{equation*}
$$

If $z \neq 0,1$ and $b, c-b \notin \mathbb{Z}$, this integral can be replaced up to an algebraic factor by a period $\int_{\gamma} \frac{d x}{y}$ on the projective curve $C(N, z)$ defined affinely by the equation

$$
y^{N}=x^{A}(1-x)^{B}(1-z x)^{C},
$$

where $N:=\operatorname{lcd}(a, b, c), A:=N(1-b), B:=N(1+b-c), C:=N a$. If we choose γ to be a loop on $C(N, z)$ whose projection in $\mathbb{P}^{P}{ }_{\mathbb{C}}^{1}$ under $(x, y) \mapsto x$ is a double contour loop around 0 and 1 with interior not containing $\frac{1}{z}$, we have the relation

$$
\int_{\gamma} \frac{d x}{y}=\left(1-\zeta_{N}^{-A}\right)\left(1-\zeta_{N}^{-B}\right) \int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-z x)^{-a} d x
$$

Let $X(N, z)$ denote the desingularization of $C(N, z)$ and π_{z} the desingularization morphism. We have

$$
\int_{\gamma} \frac{d x}{y}=\int_{\pi_{z}^{*} \gamma} \pi_{z}^{*}\left(\frac{d x}{y}\right)
$$

where $\pi_{z}^{*}\left(\frac{d x}{y}\right)$ is the pull-back of $\frac{d x}{y}$ on $X(N, z)$ and $\pi_{z}^{*} \gamma$ a lift of γ to $X(N, z)$.
Remark 11 These relations are the motivation for the whole construction, taking into account that a similar relation can be worked out for the integral in the denominator, as we shall see in Section 9. Indeed, these relations allow us to interpret (17) as a quotient of periods defined over $(\mathbb{O})(z)$ (this is the point of the assumption $a, b, c \in(\mathbb{O})$. As Wolfart pointed out, this is a key tool for the study of the set of algebraic points at which the series takes algebraic values (the so-called exceptional set). Indeed, if $z \in(\overline{\mathbb{O}}$, then the abelian varieties and the periods are defined over $(\overline{\mathbb{O}})$ and one can apply a consequence ([23] Satz 2) of Wüstholz's Analytic Subgroup Theorem to get a necessary condition on the corresponding abelian varieties for this quotient to be algebraic. This is a central observation in Wolfart's work [21], [22]. An explicit condition for z to lie in the exceptional set is determined in [4] for two hypergeometric series with monodromy group isomorphic to $S L_{2}(\mathbb{Z})$ and in [3] for a wider family of these series.

In order to apply the construction of New Jacobian to construct an abelian variety on which $\mathcal{P}(z)$ with $z \neq 0,1$ lives as a period, we first note the existence of an isomorphism between the curve $X(N, z)$ and a curve of the same shape as those defined in Section 2.

We define $C_{N}(z)$ to be the projective algebraic curve defined affinely by the equation

$$
y^{N}=x^{N-A-B-C}(x-1)^{B}(x-z)^{C}
$$

$X_{N}(z)$ to be its desingularization and $\pi: X_{N}(z) \rightarrow C_{N}(z)$ the desingularization morphism. Then the map

$$
\begin{aligned}
\kappa: C(N, z) & \rightarrow C_{N}(z) \\
\left(x_{0}: x_{1}: x_{2}\right) & \mapsto\left(x_{1}: x_{0}: x_{2}\right)
\end{aligned}
$$

is well-defined as one can verify using the equations in projective coordinates

$$
\begin{gathered}
C(N, z): x_{2}^{N}=x_{0}^{N-A-B-C} x_{1}^{A}\left(x_{0}-x_{1}\right)^{B}\left(x_{0}-z x_{1}\right)^{C} \quad \text { and } \\
C_{N}(z): u_{2}^{N}=u_{0}^{A} u_{1}^{N-A-B-C}\left(u_{1}-u_{0}\right)^{B}\left(u_{1}-z u_{0}\right)^{C} .
\end{gathered}
$$

Moreover, κ is clearly a morphism of algebraic varieties, which is equal to its inverse. Hence it is an isomorphism and the composition $\kappa \circ \pi_{z}: X(N, z) \rightarrow C_{N}(z)$ is a birational morphism. It follows that $X(N, z)$ is a nonsingular model of $C_{N}(z)$. By the uniqueness up to isomorphism of the desingularization, $X(N, z)$ and $X_{N}(z)$ are isomorphic (call this isomorphism $\tilde{\kappa}$). Following Definition 1, we will suppose that

$$
N \nmid N-A-B-C, B, C, N-A \quad \text { and } \quad(N, N-A-B-C, B, C)=1 .
$$

In particular, this implies $a, b, c-a, c-b \notin \mathbb{Z}$.
The two curves $X(N, z)$ and $X_{N}(z)$ being isomorphic, they have the same Euler characteristic. By Theorem 4.1, we find

$$
\begin{aligned}
& \chi(X(N, z)(\mathbb{C}))=-2 N+(N, A)+(N, B)+(N, C)+(N, N-A-B-C) \\
& g[X(N, z)]=N+1-\frac{1}{2}[(N, A)+(N, B)+(N, C)+(N, N-A-B-C)]
\end{aligned}
$$

Let $n \in\{0, \ldots, N-1\}$ and ω_{n} denote the following (rational) differential form on $C_{N}(z)$

$$
\frac{x^{a_{0}}(x-1)^{a_{1}}(x-z)^{a_{2}} d x}{y^{n}}
$$

Then, by the regularity conditions (13) Section 6.1 , the pull-back $\pi^{*} \omega_{n}$ on $X_{N}(z)$ is regular exactly when the following four conditions hold

$$
\begin{gather*}
a_{0} \geq \frac{n(N-A-B-C)+(N, N-A-B-C)}{N}-1 \\
a_{1} \geq \frac{n B+(N, B)}{N}-1 \\
a_{2} \geq \frac{n C+(N, C)}{N}-1 \tag{18}\\
a_{0}+a_{1}+a_{2} \leq \frac{n(N-A)+(N, A)}{N}-1
\end{gather*}
$$

For $n \in\{0, \ldots, N-1\}$, let V_{n} be the isotypical component of $\Omega^{1}\left[X_{N}(z)\right]$ of character χ_{n} for the action of μ_{N}. Then, Theorem 6.2 implies

$$
\operatorname{dim} V_{n}= \begin{cases}d_{n} & \text { if } d_{n} \geq 0 \tag{19}\\ 0 & \text { otherwise }\end{cases}
$$

where d_{n} is equal to

$$
\begin{aligned}
d_{n}= & \left.\frac{n(A+B+C)-(N, N-A-B-C)}{N}\right]+\left[1-\frac{n A+(N, A)}{N}\right] \\
& +\left[1-\frac{n B+(N, B)}{N}\right]+\left[1-\frac{n C+(N, C)}{N}\right] .
\end{aligned}
$$

In order to get d_{n} in this form, use that for $k \in \mathbb{Z},[x+k]=[x]+k$.
Remark 12 Let η_{n} denote the differential form $y^{-n} x^{b_{0}}(1-x)^{b_{1}}(1-z x)^{b_{2}} d x$ on $C(N, z)$. We can use the conditions (18) to determine when $\pi_{z}^{*} \eta_{n}$ is holomorphic on $X(N, z)$, since $\pi_{z}^{*} \eta_{n}$ is holomorphic on $X(N, z)$ exactly when $\pi^{*}\left(\kappa^{-1}\right)^{*} \eta_{n}$ is holomorphic on $X_{N}(z)$. This is the case exactly when the following four conditions hold

$$
\begin{gather*}
b_{0} \geq \frac{n A+(N, A)}{N}-1 \\
b_{1} \geq \frac{n B+(N, B)}{N}-1 \\
b_{2} \geq \frac{n C+(N, C)}{N}-1 \tag{20}\\
b_{0}+b_{1}+b_{2} \leq \frac{n(A+B+C)-(N, N-A-B-C)}{N}-1
\end{gather*}
$$

These conditions correct slightly the assertion of Wolfart ([22] Section 4) on the holomorphy conditions for differential 1-forms, while his assertion on the dimension of the isotypical components V_{n} for $n \in\{0, \ldots, N-1\}$ is corrected by (19).

Consider now the case $(n, N)=1$. Theorem 6.7 implies

$$
\operatorname{dim} V_{n}=-\left\langle\frac{n(N-A)}{N}\right\rangle+\left\langle\frac{n(N-A-B-C)}{N}\right\rangle+\left\langle\frac{n B}{N}\right\rangle+\left\langle\frac{n C}{N}\right\rangle .
$$

Using that $\forall x \in \mathbb{R} \backslash \mathbb{Z},\langle-x\rangle=1-\langle x\rangle$, we obtain

$$
\operatorname{dim} V_{n}=\left\langle\frac{n A}{N}\right\rangle+\left\langle\frac{n B}{N}\right\rangle+\left\langle\frac{n C}{N}\right\rangle-\left\langle\frac{n(A+B+C)}{N}\right\rangle
$$

Finally, in the case $(n, N)=1$, Theorem 6.8 implies

$$
\begin{equation*}
\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=2 \tag{21}
\end{equation*}
$$

By definition, the isomorphism $\tilde{\kappa}$ makes the following diagram commute

By (15) and (21), the vector space of newforms $\Omega^{1}\left[X_{N}(z)\right]_{\text {new }}$ has dimension $\varphi(N)$. It defines a vector subspace of $\Omega^{1}[X(N, z)]$ of the same dimension by pulling-back

$$
\Omega^{1}[X(N, z)]_{\text {new }}:=\tilde{\kappa}^{*}\left(\Omega^{1}\left[X_{N}(z)\right]_{\text {new }}\right) .
$$

This vector subspace defines a $\varphi(N)$-dimensional abelian subvariety $T_{a b c}(z)$ of the Jacobian variety $X(N, z)$, which is the abelian variety considered by Wolfart in [21], [22].

If $\pi_{z}^{*}\left(\frac{d x}{y}\right)$ is regular on $X(N, z)$ (cf. the regularity conditions (20)), we have

$$
\pi_{z}^{*}\left(\frac{d x}{y}\right)=\tilde{\kappa}^{*}\left(\pi^{*}\left(\kappa^{-1}\right)^{*}\left(\frac{d x}{y}\right)\right) \in \tilde{\kappa}^{*}\left(\Omega^{1}\left[X_{N}(z)\right]_{\text {new }}\right) .
$$

In this case, $\mathcal{P}(z)$ is, up to multiplication by an algebraic constant, a period on $T_{a b c}(z)$.

9 Abelian Varieties Associated to the Beta Function

In order to interpret Euler's integral representation (2) of $F(a, b, c ; z)$ with $a, b, c \in(\overline{\mathbb{O}})$ as a quotient of periods, we are left with the construction of an abelian variety on which the denominator of (2) lives as a period. We refer to Section 8 and specially to Remark 11 for a motivation. Also the procedure to derive this construction from the construction of the New Jacobian will be totally similar to that of Section 8. After all, it is only a (degenerated) specialization at $z=0$.

The integral $\mathcal{P}(0)$ in the denominator of Euler's integral representation as it is formulated in (17) is the Beta function

$$
B(b, c-b)=\int_{0}^{1} x^{b-1}(1-x)^{c-b-1} d x
$$

Let $M:=\operatorname{lcd}(b, c), P:=M(1-b), Q:=M(1+b-c)$ and $X(M, 0)$ be the desingularization of the projective curve $C(M, 0)$ defined affinely by

$$
y^{M}=x^{P}(1-x)^{Q}
$$

If $b, c-b \notin \mathbb{Z}$, we have

$$
\mathcal{P}(0)=\int_{0}^{1} \frac{d x}{y}=k \int_{\gamma} \frac{d x}{y}
$$

where $k \in\left(\overline{\mathbb{O}}, \frac{d x}{y}\right.$ is a differential form on $C(M, 0)$ and γ a lift on $C(M, 0)$ under $(x, y) \mapsto x$ of a double contour loop around 0 and 1 in \mathbb{C}. By the same argument as in Section 8, it is sufficient to work on a curve isomorphic to $C(M, 0)$. Hence, we define $C_{M}(0)$ to be the projective curve with affine equation

$$
y^{M}=x^{M-P-Q}(x-1)^{Q}
$$

and $X_{M}(0)$ to be its desingularization. The projective equations are

$$
\begin{gathered}
C(M, 0): x_{2}^{M}=x_{0}^{M-P-Q} x_{1}^{P}\left(x_{0}-x_{1}\right)^{Q} \quad \text { and } \\
C_{M}(0): x_{2}^{M}=x_{0}^{P} x_{1}^{M-P-Q}\left(x_{1}-x_{0}\right)^{Q}
\end{gathered}
$$

and there is an isomorphism

$$
\begin{aligned}
\kappa: C(M, 0) & \rightarrow C_{M}(0) \\
\left(x_{0}: x_{1}: x_{2}\right) & \mapsto\left(x_{1}: x_{0}: x_{2}\right) .
\end{aligned}
$$

The unicity up to isomorphism of the desingularization implies the existence of an isomorphism $\tilde{\kappa}: X(M, 0) \rightarrow X_{M}(0)$ such that the following diagram commutes

In order to apply our general construction, we will suppose that

$$
M \nmid M-P-Q, Q, M-P \quad \text { and } \quad(M, M-P-Q, Q)=1
$$

This implies $b, c, c-b \notin \mathbb{Z}$. Since the two curves are isomorphic, they have the same Euler characteristic. By Theorem 4.1, we have

$$
\begin{gathered}
\chi(X(M, 0)(\mathbb{C}))=-M+(M, P)+(M, Q)+(M, M-P-Q) \\
g[X(M, 0)]=1+\frac{1}{2}[M-(M, P)-(M, Q)-(M, M-P-Q)]
\end{gathered}
$$

For $n \in\{0, \ldots, M-1\}$, let ω_{n} be the (rational) differential form on C_{M} defined by

$$
\frac{x^{a_{0}}(x-1)^{a_{1}} d x}{y^{n}}
$$

By the regularity conditions (13), $\pi^{*} \omega_{n}$ is regular on X_{M} if and only if

$$
\begin{gather*}
a_{0} \geq \frac{n(M-P-Q)+(M, M-P-Q)}{M}-1, \\
a_{1} \geq \frac{n Q+(M, Q)}{M}-1 \tag{22}\\
a_{0}+a_{1} \leq \frac{n(M-P)-(M, P)}{M}-1 .
\end{gather*}
$$

Remark 13 For $n \in\{0, \ldots, M-1\}$, let η_{n} be the (rational) differential 1-form $y^{-n} x^{b_{0}}(1-x)^{b_{1}} d x$ on $C(M, 0)$. Then $\pi_{0}^{*} \eta_{n}$ is regular on $X(M, 0)$ if and only if $\pi^{*}\left(\kappa^{-1}\right)^{*} \eta_{n}$ is regular on $X_{M}(0)$. By the conditions (22), this is the case exactly when the following three conditions hold.

$$
\begin{gathered}
b_{0} \geq \frac{n P+(M, P)}{M}-1, \\
b_{1} \geq \frac{n Q+(M, Q)}{M}-1, \\
b_{0}+b_{1} \leq \frac{n(P+Q)-(M, M-P-Q)}{M}-1 .
\end{gathered}
$$

For $n \in\{0, \ldots, M-1\}$, let V_{n} be the isotypical component of $\Omega^{1}\left[X_{M}(0)\right]$ with character χ_{n}. Theorem 6.2 implies

$$
\operatorname{dim} V_{n}= \begin{cases}d_{n} & \text { if } d_{n} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
d_{n}= & {\left[\frac{n(M-P)-(M, P)}{M}\right] } \\
& +\left[1-\frac{n(M-P-Q)+(M, M-P-Q)}{M}\right]+\left[1-\frac{n Q+(M, Q)}{M}\right] \\
= & {\left[\frac{n(P+Q)-(M, M-P-Q)}{M}\right] } \\
& +\left[1-\frac{n P+(M, P)}{M}\right]+\left[1-\frac{n Q+(M, Q)}{M}\right] .
\end{aligned}
$$

In the case $(n, N)=1$, it follows from Theorem 6.7 that

$$
\begin{aligned}
\operatorname{dim} V_{n}= & -\left\langle\frac{n(M-P)}{M}\right\rangle+\left\langle\frac{n(M-P-Q)}{M}\right\rangle \\
& +\left\langle\frac{n Q}{M}\right\rangle \\
= & \left\langle\frac{n P}{M}\right\rangle+\left\langle\frac{n Q}{M}\right\rangle \\
& -\left\langle\frac{n(P+Q)}{M}\right\rangle
\end{aligned}
$$

and from Theorem 6.8 that

$$
\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=1
$$

Together with (15), this implies that the vector space $\Omega^{1}\left[X_{M}\right]_{\text {new }}$ of new differential forms on X_{M} has dimension $\frac{\varphi(M)}{2}$. Set $\Omega^{1}[X(M, 0)]_{\text {new }}:=\tilde{\kappa}^{*}\left(\Omega^{1}\left[X_{M}\right]_{\text {new }}\right)$. Then $\Omega^{1}[X(M, 0)]_{\text {new }}$ defines and abelian subvariety $T_{a b c}(0)$ of $\operatorname{Jac}(X(M, 0))$ of dimension $\frac{\varphi(M)}{2}$. If $\pi_{0}^{*}\left(\frac{d x}{y}\right)$ is regular on $X(M, 0)(c f$. Remark 13), then $\mathcal{P}(0)=B(b, c-b)$ is, up to multiplication by an algebraic factor, a period on $T_{a b c}(0)$.

Remark 14 In its Appendix to [20], Rohrlich constructed an abelian variety on which the Beta function is a period as a quotient of the Jacobian of the Fermat curve. That construction and the one given here are isomorphic.

References

[1] P. Appell, Sur les fonctions hypergéométriques de deux variables. Jour. de Math., 3ème sér. VIII (1882), 173-216.
[2] N. Archinard, Abelian Varieties and Identies for Hypergeometric Series. PhD thesis, ETH Zurich, 2000. http://e-collection.ethbib.ethz.ch.
[3] , Exceptional Sets of Hypergeometric Series. J. Number Theory 101(2003), 244-269.
[4] F. Beukers and J. Wolfart, Algebraic values of hypergeometric functions. In: New Advances in Transcendence Theory, (ed. A. Baker), Cambrige University Press, 1986.
[5] E. Brieskorn and H. Knörrer, Ebene Algebraische Kurven. Birkhäuser, 1981.
[6] C. Chevalley and A. Weil, Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers. Abh. Hamburger Math. Sem. 10(1934), 358-361.
[7] P. Cohen and J. Wolfart, Modular embeddings for some non-arithmetic Fuchsian groups. Acta Arith. 56(1990), 93-110.
[8] P. B. Cohen and J. Wolfart, Algebraic Appell-Lauricella functions. In: Special Differential Equations (ed. M. Yoshida), Proceedings of the Taniguchi Workshop, 1991, 150-164,
[9] , Fonctions hypergéométriques en plusieurs variables et espaces des modules de variétés abéliennes. Ann. Sci. École Norm. Sup. (4) 26(1993), 665-690.
[10] P. B. Cohen and G. Wüstholz, Applications of the André-Oort Conjecture to transcendence. In: A Panorama in Number Theory, ed. G. Wüstholz, Cambrige University Press, 2001.
[11] H. Darmon, Modularity of fibres in rigid local systems. Ann. of Math. 149(1999), 1079-1086.
[12] \qquad Rigid local systems, Hilbert modular forms, and Fermat's last theorem. Duke Math. J. 102(2000), 413-449.
[13] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy. Inst. Hautes Études Sci. Publ. Math. 63(1986), 5-89.
[14] S. Edixhoven and A. Yafaev, Subvarieties of Shimura varieties. Ann. of Math., to appear.
[15] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili. Rendiconti di Palermo VII(1893), 111-158.
[16] I. R. Shafarevich, Basic Algebraic Geometry. Volumes 1 and 2, Springer-Verlag, 1994.
[17] H. Shiga and J. Wolfart, Criteria for complex multiplication and transcendence properties of automorphic functions. J. Reine Angew. Math. 463(1995), 1-25.
[18] T. Terada, Problème de Riemann et fonctions automorphes provenant de fonctions hypergéométriques de plusieurs variables. J. Math. Kyoto Univ. 13-3(1973), 557-578.
[19] M. van der Put and F. Ulmer, Differential equations and finite groups. J. Algebra 226(2000), 920-966.
[20] H. Gross (with an appendix by D. Rohrlich), On the periods of abelian integrals and a formula of Chowla and Selberg. Invent. Math. 45(1978), 193-211.
[21] J. Wolfart, Fonctions hypergéometriques, arguments exceptionels et groupes de monodromie. Publ. Math. Univ. P. et M. Curie, Problèmes Diophantiens 79(1985-86), 1-24.
[22] \longrightarrow Werte hypergeometrischer Funktionen. Invent. Math. 92(1988), 187-216.
[23] J. Wolfart and G. Wüstholz, Der Ueberlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen. Math. Ann. 273(1985), 1-15.
[24] G. Wüstholz, Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen. Ann. Math. 129(1989), 501-517.

McGill University
Montreal, Quebec
e-mail: archinard@math.mcgill.ca

[^0]: Received by the editors April 25, 2002; revised December 6, 2002.
 AMS subject classification: 11, 14 .
 (C)Canadian Mathematical Society 2003.

