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1. Intrdouction. In this note we consider the problem of determining the stress on the
boundary y = 0 of the elastic half-plane y ^ 0 when there are prescribed body forces acting in
the interior and the boundary is free from applied stress. Expressions for the components of
stress at a general point of the half-plane when the imposed body force is concentrated at a
single point have been derived by Melan [1], Sneddon [2] and Green [3], each author making
use of a different method.

The method employed in [2]—see also pp. 415-422 of [4]—consists in superposing on
the known solution of the stress field due to a point force acting at an interior point of the
whole plane, a solution of the second basic problem for a half-plane which leads to the con-
dition of zero applied stress on the boundary. This, like the other methods cited, leads to
quite a lengthy calculation to determine the distribution of stress in the interior of the half-
plane, but, in the analysis of practical problems in which this solution is used, most interest is
attached to calculating the distribution of stress and the form of the displacement vector on
the boundary. Here we make use of an elementary property of the Laplace transform to
calculate these surface values.

In §2 the basic formulae corresponding to an arbitrary distribution of body forces are
derived. In the next three sections the forms of surface stress corresponding to three special
cases are considered—body forces acting in a direction normal to the boundary (§3), point
force (§4) and body forces derivable from a potential function (§5). Finally, in §6, expressions
are derived for the components of the surface displacement.

The equations of plane strain (in the classical theory of elasticity) are assumed throughout;
the solutions corresponding to a state of plane stress can easily be deduced by means of the
usual trivial changes in the values of the elastic constants.

2. The basic formulae. We consider the distribution of stress in the half-plane y ^ 0 when
the boundary is free from applied stress and there are body forces \_X(x, y), Y(x, y)~\ acting on
the body whose density is taken to be p. We assume that the components of the stress tensor
all tend to zero as r -* oo, where r =j(x2+y2), y^O.

If we take the Fourier transforms of the equations of equilibrium

dx dy dx dy
we find that

0, (2.1)

y y y 0, (2.2)
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where we have written

V(27I)J-OO

etc., D denotes the operator d\dy and we have taken

P[pX(x, y); x - K J ] = P(£, y), &[pY(x, y); x -» £] = Q(£, y). (2.3)

Similarly we find that the stress-strain relations

^ 8x

SUy

dy

in which n denotes the rigidity modulus and r\ the Poisson ratio of the half-plane, are equivalent
to the equations

= (l-ij)Z«-ijZw, (2.4)

= ( 1 - I J ) Z , , - I J Z X , , (2.5)

= lxy, (2.6)
where

UM, y) = ^["*(*> j '

If we make the representation

, JO = 2/*D>F«, >0, (2.7)
with

, 0) = «P«, 0) = 0, (2.8)

we find that the equations (2.1), (2.2), (2.4), (2.5), (2.6) have solution

EM = 2/t(D
2G + <D), S,, = 2jitfDG, Z , ,= -2 / iCF + §2G), (2.9)

where the function (?(<!;, j ) satisfies the fourth order ordinary differential equation

(1- , ) (D 2 -{ 2 ) 2 C = -[»»D2+(l-fjK2]T(5, y ) - [ ( l - f f ) D 2 + ^ 2 ] * « , y). (2.10)

If the boundary is free from applied stress, we have the conditions

oxy(x, 0) = 0, ajx, 0) = 0,

and it follows from equations (2.9), (2.8) that these are equivalent to the relations

DGtf, 0) = 0, G(£,0) = 0. (2.11)
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The values of D2G(£, 0) = G2(f), D*G(Z, 0) = G3(0 are not known but we note from the first
of the equations (2.9) that

O. (2.12)

We solve the equation (2.10) by taking the Laplace transform of both sides and expressing
the result in terms of

Z, p) = 2[G(Z, y); y^p]=T G(§, y)e~" dy.
J

Because of equations (2.11) we find that
; p] = p2G, 2>[D4G; p] = pAG-PG2-Gz,

so that equation (2.10) is equivalent to the relation

where

A«, P) = (l-i/)CpG2 + G3)-[ijpa + ( l - ^ 2 ] * « , pi + nVJ.*, 0)

-[(l-i/)j>2 + itf2]*(£, P)H1-1)%(S, 0). (2.13)

Now if the components of stress are to vanish as y -* oo, G(£,p) cannot have terms such as

In other words p = | f | must be a double zero of A(£, />) regarded as a function of/?. Hence
we have the conditions

tf , 0), (2.14)
and

^ , « , I f I). (2.15)

If we substitute the expression for G2(£) given by this last equation into equation (2.12), we
obtain the required expression for 2XX(^, 0) and hence the formula

ajx, 0) = 2fi^-1[G2(^); ?-> x] (2.16)

for the determination of the surface stress.

3. Body forces normal to the boundary. An important special case arises when the body
force is always normal to the boundary, i.e. when X(x, y)=0 and hence $(<!;, y) = 0. In that
case equation (2.14) reduces to

G2(0 = (l-nr^vtf, I c l)+2ij 111 T«, | z I)}
and equation (2.15) to

(3.1)
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Now if we write

?(£,/>) = *l*{Y(x, y);

it is easily shown that

so that equation (3.1) reduces to

ajx, 0) = -j£- ?-\{\ -2f/)F(£, \Z | ) - K I ?,(£, \t I); S -> x]. (3.2)

Now, by the definition of the Fourier and Laplace transforms,

V(27I)J-» Jo
so that

Similarly we have that

VC27I)J-oo Jo
from which it follows that

If we substitute these values into equation (3.2) we obtain the relation

nj-oo

from which to derive the surface stress.
For instance the surface stress due to a body force of total strength P distributed uniformly

over the strip y = h, \ x\ < a and acting normally to the x-axis is given by the equation

m _ - - i •• • - . ( x - a ) 2 / ( f 7 - l )
K, V) 1

The integration is elementary and we find that

(3.5)

where 0, = tan"1 {(x-a)/h}, 02 = tan"1 {(x + a)/h), r\ = (x-a)2 + h2 and r\ =
D2
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4. Solution for a point force. Another special case of some interest is that in which a point
force F is acting at the point (0, h), (h > 0) in the direction of the x-axis. We then have

pX = F8(x)8(y-h), PY = 0,

so that

From equations (2.15) and (2.16) we find that in this case

from which it is easily deduced that

If we take F = P sin 9 in this equation and p Y(u, ft) = —P cos 9 8 (a) 8(P-h) in equation
(3.3), we find that the surface stress due to a point force P acting at the point (0, h) (h > 0), in a
direction which makes an angle 9 with the negative direction of y is given by the equation

• 0 )

5. Conservative body forces. Finally we consider the special case in which the body forces
are conservative, i.e. there exists a function V(x, y) such that

dV dV
X(x,y)=--, Y(X,y)=--.

It is then easily shown that

where

S, p) = #1 SF{ V(x, y)\x-+l)\y^p\. (5.2)

If we substitute from equations (5.1) into equation (2.15) and insert the resulting expression in
equation (2.16), we find that

1-f /

Using the fact that

rV(a,
J0
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and that

we find that the surface stress is given by the equation

6. The surface displacement. In a similar way we can derive expressions for the compo-
nents ux(x, 0), uy(x, 0) of the surface displacement. From equations (2.4) and (2.9) we find that

from which it follows immediately by using equations (2.8) and (2.11) that

i.e. that

{iC1G2(O; £-+*}. (6.1)

If we substitute the expression for G2(O given by (2.15), we find that

ux(x, 0) = *~»{2iji sgn £*« , | { |) + /^p(4:, I « I)

+2(l-r,)i sgn « ^(^, | £ !) + « * , « , K I): « - x}. (6.2)

From equations (2.6) and (6.1) we find that

Utf, 0) = r2[(l-i?)G3(O+(l-if)<D^, O) + f j ^ , 0)]

and substituting the value of G3(^) given by equation (2.14), we find that

uy(x,0)= ^ - 1 [ ( l - 2 f / ) ? ( ^ K | ) - K | i F p « ) K | ) + O ( ^ K | ) ; g-»x]. (6.3)

For instance, if the body forces are derivable from a potential function V(x, y), we find
from equations (5.1), (6.2) and (6.3) that

ux(x, 0) = V-J^P jr- i[i sgn { 7«, | € |); € - x],

">(x> 0) = f^'^v^' I«D+ I«I FP(̂ . I € I); € -

The integrations are elementary and we find that

nil

and
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