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Abstract

Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure
as well as for practical polyhedral computations. In this note, we study symmetry groups
preserving the linear, projective and combinatorial structure of a polyhedron. In each case
we give algorithmic methods to compute the corresponding group and discuss some practical
experiences. For practical purposes the linear symmetry group is the most important, as its
computation can be directly translated into a graph automorphism problem. We indicate how
to compute integral subgroups of the linear symmetry group that are used, for instance, in
integer linear programming.

1. Introduction

Symmetric polyhedra occur frequently in diverse contexts of mathematics. Polyhedra in general
are central to the theory of mathematical optimization (mathematical programming), and
the main objects of study in linear and integer linear programming. In applications such as
transportation logistics or machine scheduling, symmetric polyhedra are frequently studied,
notably the Travelling Salesman, Assignment, and Matching polyhedra. For these and further
examples we refer to [35] and the numerous references therein. Polyhedra also play prominent
roles in other parts of mathematics, for example in algebraic geometry, and in particular in
the theory of toric varieties [6].

For the analysis of high-dimensional polyhedra it is important to know their symmetries.
Furthermore, for many important tasks in polyhedral computations, such as linear and
integer linear programming, the representation conversion problem, or volume computations,
symmetry exploiting techniques are available (see [4, 27, 37]). Even commercial optimization
software like [39, 43] includes some techniques for symmetry exploitation by now. To a large
extent, the methods used depend on the kind of symmetry that is available and how it
is presented. For instance, if we know the group of all affine symmetries of a polyhedron
coming from a linear programming problem, we can reduce the problem dimension in case the
utility function is also invariant under the group. As we discuss in this paper, the group of
affine symmetries has the advantage that it can be practically computed using only partial
information, for instance, from a description of the polyhedron by linear inequalities.

The main purpose of this paper is to provide a comprehensive overview of existing techniques
to practically compute different types of symmetry groups of a polyhedron. We provide a
collection of computational recipes for the main polyhedral symmetry groups of interest, which
grew out of our own computational experience. Our general approach is the translation of a
polyhedral symmetry finding problem into a problem of determining all the combinatorial
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automorphisms of a colored graph. Although these graph automorphism problems are not
completely understood from a complexity theoretical point of view (see [19]), there exist
sophisticated software tools for their practical solution [40, 44, 46, 47]. All algorithms
explained here are available within the GAP package polyhedral [41]. The group of all affine
symmetries, or the linear symmetry group, of a polyhedron can also be computed with the C++
tool SymPol [49]. Note that similar computational tasks for special classes of lattice polytopes
are performed by PALP [22, 45], which arose from works on the classification of so-called
reflexive polyhedra (see [20, 21]).

The paper is organized as follows. In § 2 we define the three most important polyhedral
symmetry groups and explain some of the relations among them. They are: the linear symmetry
group, the projective symmetry group and the combinatorial symmetry group. In the following
sections we consider each of them separately. We start with the linear symmetry group in § 3,
which from a practical point of view is probably the most interesting one. Depending on
the context of application, certain subgroups of the linear symmetry group have been shown
to be important. In §§ 3.1–3.3 we describe specific computational tools for subgroups that
we encountered in integer linear programming and in problems arising in the computational
geometry of positive definite quadratic forms. In § 3.4 we provide some practical pointers for
the necessary computations with vertex and edge colored graphs. Section 4 deals with the
projective symmetry group, which has not received much practical attention so far, as an
algorithm for its computation has been missing. Here, as a main theoretical contribution of
our paper, we give a new characterization of the projective symmetry group and from it derive
an algorithm for its computation. Finally, in § 5, we give practical recipes for the computation
of the full combinatorial symmetry group of a polyhedron.

2. Polyhedral symmetry groups

In this section we define the basic objects that we study in this article: polyhedral cones and
their symmetry groups. We note that our study of polyhedral cones also covers polytopes by
the use of homogeneous coordinates, as we explain below.

2.1. Polyhedral cones

A polyhedral cone C in the vector space Rn is defined as the set of vectors satisfying a finite
number of linear (homogeneous) inequalities. By the Farkas–Minkowski–Weyl theorem there
exists a second (dual) description

C = {λ1v1 + . . .+ λpvp | λi ∈ R>0}

with a minimal set of generating vectors v1, . . . , vp and extreme rays

Ri = R>0vi.

Without loss of generality, we assume that C is full-dimensional, that is it has dimension n,
and that it does not contain a non-trivial vector space. Note that, while the extreme rays of C
are uniquely determined under this assumption, the generating vectors are not.

A face of a polyhedral cone C is the intersection of C with a supporting hyperplane, that
is, with a hyperplane {x ∈ Rn | aTx = 0} for some a ∈ Rn such that C is contained in the
halfspace {x ∈ Rn | aTx > 0}. Faces are partially ordered by setwise inclusion, which gives a
combinatorial lattice that is called the face lattice of C. The dimension of a face is defined as
the dimension of the smallest linear subspace containing it.

Facets of C are faces of dimension n − 1. The set of facets and the set of extreme rays are
uniquely determined by C and the problem of passing from one description to the other is
called the dual description or representation conversion problem.
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A polytope P is the convex hull of a finite set of vectors {vi | 1 6 i 6 M} in Rn. By
using homogeneous coordinates for the vi, that is the vectors v′i = (1, vTi )T , and considering
the polyhedral cone C defined by {v′i | 1 6 i 6 M}, we can actually embed P into C and
translate the notions introduced for polyhedral cones to polytopes. Note that the passage
to homogeneous coordinates gives us a canonical identification of a given polytope P with
a uniquely defined polyhedral cone C = C(P ). For more information and background on
polyhedra and polytopes we refer to [38].

2.2. Symmetry groups

In this section we define three different symmetry groups of polyhedral cones and discuss
relations among them.

Combinatorial symmetries. Let Fk denote the set of k-dimensional faces (k-faces) of C.
Such k-faces are identified with the set of extreme rays contained in them.

Definition 1. The combinatorial symmetry group Comb(C) of C is the group of all
permutations of extreme rays that preserve Fk for all 0 6 k 6 n− 1.

In particular, Comb(C) is a subgroup of the symmetric group Sym(p) on p elements, where p
is the number of extreme rays. The combinatorial symmetry group is precisely the permutation
group in Sym(p) which preserves the face lattice of C.

It is well known that Comb(C) is actually determined by Fn−1 alone: Comb(C) is isomorphic
to the automorphism group of the bipartite facet-ray-incidence graph. Indeed, there is generally
no simpler way to compute Comb(C), as this problem is graph isomorphism complete even for
simple or simplicial polytopes (see [17]). For the construction of this bipartite graph we must
know both representations of C, namely the extreme rays and the facets. However, in practice,
usually only one of these descriptions is known.

Projective symmetries. Let GL(C) be the group of invertible matrices A ∈ GLn(R) which
preserve the cone C setwise: AC = C. These transformations induce a projective symmetry of
the cone by permuting its extreme rays.

Definition 2. The projective symmetry group Proj(C) of C consists of all permutations
σ ∈ Sym(p) such that there exists a matrix A ∈ GL(C) with ARi = Rσ(i) for 1 6 i 6 p.

It is easy to see that the projective symmetry group is a subgroup of the combinatorial
symmetry group. Note, however, that GL(C) and Proj(C) are not isomorphic since the kernel
K of the homomorphism GL(C)→ Proj(C) is non-trivial. It contains, for instance, all dilations.
In group-theoretic terms, GL(C) ∼= K × Proj(C) (cf. Theorem 8).

We note that in a more general setting of symmetries of a configuration of points in a
projective space over a field (for example over C), we can define GL(C) and Proj(C) as above,
but K does not need to be split from GL(C). See Remark 9 for a simple example of the latter,
and [15, 16] for the related group-theoretic notions.

Linear symmetries. Let v = {vi | 1 6 i 6 p} be a set of generators for the extreme rays
{Ri | 1 6 i 6 p} of a polyhedral cone C.

Definition 3. The linear symmetry group Linv(C) of C (with respect to v) is the set of all
permutations σ ∈ Sym(p) such that there exists a matrix A ∈ GLn(R) where Avi = vσ(i) for
1 6 i 6 p.

The group defined by such matrices A is denoted by GLv(C) and is isomorphic to Linv(C).
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Symmetries of polytopes. In the particular case of a polytope P in Rn with an associated
cone C = C(P ) in Rn+1 generated by {v′i = (1, vTi )T | 1 6 i 6 p} any A ∈ GLv′(C) is of the
form

A =

(
1 0
b B

)
,

that is, it describes an affine transformation x 7→ Bx + b of Rn preserving P . If we
speak of the linear symmetry group of the polytope P we mean the group Linv′(C) for the
specific set of generators v′ obtained from the coordinates of vertices v of P . This group is
isomorphic to the group of all affine transformations of Rn that preserve P . If we speak of
the projective symmetry, respectively combinatorial symmetry group, of the polytope P we
simply mean Proj(C), respectively Comb(C).

Relations and differences among symmetries. For every polyhedral cone C and every set of
generators v we have the subgroup relations

Linv(C) 6 Proj(C) 6 Comb(C).

Both inclusions can be strict as the example of Figure 1 shows. Further, for each of the three
symmetry groups we can define a corresponding notion of equivalence. Two cones C and C′
with generators v and v′ are (linearly, projectively, combinatorially) equivalent if there is a
(linear, projective, combinatorial) symmetry mapping C onto C′, respectively v onto v′.

Remark 1. Our notion of projective equivalence should not be confused with the one used
in projective geometry (cf. for example [5]). The latter would lead to much coarser equivalence
of cones than is meaningful.

Example 1. In Figure 1 we give examples of those notions for the cube. Note that
coordinates of vertices are given in R3; corresponding polyhedral cones are given by
homogeneous coordinates in R4. We note that in R2 it is well known that any two n-gons
are combinatorially equivalent. If n = 4 they are also projectively equivalent by Theorem 6
but this does not generalize to n > 4.

In § 4 we prove that the projective symmetry group Proj(C) can be realized as Linv(C)
for a suitable choice of vectors v. However, in [3, 13, 38] some polytopes are given whose
combinatorial symmetries cannot be realized as projective symmetries.

Using the implementation in [41] we have computed the linear, projective and combinatorial
symmetry group of 4313 polytopes available from the web page of Paffenholz [50]. For these
examples, there is only one case where the projective symmetry group is larger than the linear
symmetry group. This example was the one obtained by applying the construction E2 of [29]
to the 4-simplex; it is projectively equivalent to the dual of the Johnson polytope J(5, 2).
For 75 of the 4313 examples, the combinatorial symmetry group is larger than the projective
symmetry group. The additional symmetries are in most cases a factor of 2 but in two cases
reached a factor of 36.

3. Computing Linv(C)

In this section we give algorithms to compute the linear symmetry group Linv(C) and certain
subgroups occurring in applications like combinatorial optimization.

The linear symmetry group is easier to compute in practice than either the projective or
the combinatorial symmetry group; at least in the typical situation where we have only a
generator representation (or only an inequality representation) for the input. Furthermore,
the computation of the linear group is used as a subroutine in our algorithms to compute the

https://doi.org/10.1112/S1461157014000400 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000400


symmetry groups of polyhedra 569

Figure 1. Four polytopes in R3. The classes of equivalence under linear, projective and combinatorial
equivalence are ({P1, P2}, {P3}, {P4}), ({P1, P2, P3}, {P4}) and ({P1, P2, P3, P4}) respectively.

projective and the combinatorial symmetry groups. A practical method to compute the linear
symmetry group is based on the following theorem.

Theorem 2 [4]. Let v = {vi | 1 6 i 6 p} be a set of generators for the extreme rays of a
cone C. Let Q be the following positive definite matrix

Q =

p∑
i=1

viv
T
i . (1)

Further, let G(v) be the complete undirected graph on p vertices {1, . . . , p} with edge colors
wi,j = vTi Q

−1vj . We obtain the linear group Linv(C) as automorphism group of the colored
graph G(v).

This theorem reduces the determination of Linv(C) to the computation of the automorphism
group of an edge colored graph G(v). At the end of this section, in § 3.4, we give some general
recipes to deal with such graphs.

In the particular case of a polytope P ⊂ Rn generated by {vi | 1 6 i 6 p} with associated
polyhedral cone C generated by {v′i = (1, vTi )T | 1 6 i 6 p}, the matrix Q−1 allows one to
define a Euclidean scalar product on Rn for which GLv′(C) is the group of affine isometries of P .

Let us note that one can compute Linv(C) for polytopes with a few thousand vertices using
Theorem 2 together with the methods to work with colored graphs presented in § 3.4. For
polytopes with a large vertex set some reduction may be necessary. For instance, one idea
used in [25], for which the polytope of interest has about 108 vertices, is to compute the
stabilizer of a vertex.

In high dimensions a key bottleneck is the computation of the inverse of the matrix Q.
One approach to the problem is to compute the inverse using double precision floating point
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numbers. A tolerance number tol has to be chosen and values of Q−1ij which are within tol
have to be grouped. One then computes the automorphism group of the colored graph for the
grouped colors and checks if the obtained graph automorphisms can actually be represented
by matrices of GLv(C). If they cannot, then tol has to be decreased or double precision is not
enough.

3.1. GLn(Z) symmetries

In some applications, like integer linear programming, the goal is to find some GLn(Z)
subgroup of GLv(C), rather than the full linear symmetry group. We define GLv(C,Z) =
GLv(C) ∩GLn(Z). We assume vi ∈ Zn in this subsection. If the {vi | 1 6 i 6 p} span Zn as a
Z-lattice, then GLv(C,Z) = GLv(C). However, in general this equality does not hold and we
need additional ideas for computing GLv(C,Z). Below we list some possible strategies.

Using an auxiliary lattice. For a positive definite symmetric matrix Q the automorphism
group GQ is defined as

GQ = {A ∈ GLn(Z) | AQAT = Q}
and can be interpreted as the automorphism group of a lattice, that is of a discrete additive
subgroup of the integral vectors. The group GQ can thus be computed with the algorithm of
Plesken and Souvignier [31] implemented in ISOM/AUTO.

If A ∈ GLv(C,Z) then one gets easily that AQAT = Q for the positive definite matrix
Q =

∑p
i=1 viv

T
i . So GLv(C,Z) ⊂ GQ. We can obtain GLv(C,Z) from GQ by computing the

setwise stabilizer. In principle, the Plesken–Souvignier algorithm can be adapted to include
this stabilization: as the matrices A are generated row by row in a backtrack algorithm, we can
check whether the current set of rows of A stabilizes a projection of {v1, . . . , vp} accordingly.
If it violates this stabilization property, we may discard the entire candidate branch.

The Plesken–Souvignier algorithm computes a set S ⊂ Zn of short lattice vectors, which
may itself be a difficult task. Then a backtrack search on S is employed to compute GQ. If we
briefly ignore the computational cost of S, the lattice approach has the advantage of working
with an n × n matrix instead of a p × p matrix. Thus for polyhedra which are generated by
many rays and for which S is not too difficult to compute this may be a viable alternative.

Example 2. A particular class of polytopes that we encountered with this property are
so-called consecutive ones polytopes (see, for example, [28]). These arise as the convex hull of
m×n matrices with 0, 1 entries satisfying a consecutive ones property. Because these polytopes
have about 2m·n vertices in dimension mn, the graph construction for computing symmetries
is infeasible even for small m and n. The linear symmetries can nevertheless be obtained very
quickly in small dimensions by using the strategy described above.

Iterating over group elements. If the group GLv(C) is known then GLv(C,Z) can be
obtained by iterating over all group elements and selecting the integral elements.

This method is actually quite efficient if GLv(C) is not too large. For large groups it can be
made more efficient by an intermediate subgroup algorithm, which we now explain.

Given three groups G1 ⊂ H ⊂ G2, let G1 and G2 be fully known and H only be described
by an oracle. That is, for every g ∈ G2 we can decide whether g ∈ H or not. Our goal is to
compute an explicit representation of the group H. We can do a double coset decomposition
of G2 using the subgroup G1:

G2 =

s⋃
i=1

G1giG1

with gi ∈ G2 and G1giG1 ∩G1gi′G1 6= ∅ if and only if i = i′. Suppose that g ∈ H, then since
G1 ⊂ H, for every f, f ′ ∈ G1 we have fgf ′ ∈ H. So, for a given g ∈ G2 either G1gG1 ⊂ H
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or G1gG1 ∩H = ∅. This allows a reduction in the number of oracle calls. Additionally, if we
found a g ∈ G2 − G1 that belongs to H then we can replace G1 by the group generated by
g and G1 and recompute the double coset decomposition. The underlying assumption to get
good performance using the intermediate subgroup algorithm is that the index [G2 : G1] is not
‘too large’.

Example 3. This method was used with success in [9] for v = {±v1, . . . ,±vn} with {vi}
being a basis of Rn. In that case G2 = GLv(C) and G1 was chosen to be the group generated
by transpositions of the vi and sign changes inducing integral matrix transformations. In
order for the intermediate subgroup algorithm to be efficient, one needs to find a sufficiently
large group G1; unfortunately there is no systematic method known to do that. Note that
the technique used for computing GLv(C) actually works for any finite set of vectors v, not
necessarily generating a polyhedral cone.

Adding elements to C. If the generators vi of C integrally generate Zn then GLv(C) =
GLv(C,Z). Hence, if one is able to add vectors W = {w1, . . . , wr} to the generating set of C
such that any elements of GLv(C,Z) will preserve W then this group can be obtained by the
same method used for GLv(C), this time applied to the set {v1, . . . , vm, w1, . . . , wr}. Although
adding vectorsW works quite well in specific examples, we do not know of a general algorithm
to obtain such a set W .

Example 4. One such case is considered in [11] when computing the Delaunay† tessellations
of an n-dimensional lattice L. For more information on Delaunay tessellations of lattices in
general we refer the interested reader to [36].

We denote by Isom(P ) the group of isometries of a Delaunay polytope P and by IsomL(P )
the group of isometries of P that also preserve the lattice L. In order to obtain the group
IsomL(P ) with help of the Plesken–Souvignier algorithm we set up a homogenized problem:
we define an (n+1)-dimensional lattice L′ spanned by all (0, v) and (1, v−c) with c the center
of the Delaunay sphere around P for v ∈ L. Then the automorphism group of L′ contains an
index 2 subgroup isomorphic to IsomL(P ) and the involution −IdL. The Plesken–Souvignier
algorithm can be used to compute the automorphism group of the lattice L′ under the side
constraint that a set S of vectors is kept invariant. In our case, we use the homogenized vertices
of P and −P as this set S, which gives us the desired group IsomL(P ). See [11] for more details
and [41] for an implementation of this technique.

Stabilizer on integral embeddings. Let us consider L = Zn as a lattice. The group GLv(C)
does not necessarily stabilize L and so it defines an orbit O(L) = {L1 = L,L2, . . . , Lk}. The
group GLv(C,Z) is then the stabilizer of L in GLv(C).

Let L′ = Zv1 + . . .+Zvm be the lattice spanned by the vj . Since the vectors vj are assumed
to be integral we have L′ ⊂ L. Any element g ∈ GLv(C) preserves L′ setwise as it permutes
the vj . Therefore we have the inclusion L′ = g(L′) ⊂ g(L) = Li for some i. On the other hand,
for every index i there exists g in GLv(C) with g(L) = Li, showing L′ ⊂ Li for every i. Let
d ∈ N be the smallest integer such that Li ⊂ (1/d)L′ for every i.

By choosing a basis w = (w1, . . . , wn) of (1/d)L′ we can conjugate GLv(C) into a finite
subgroup H of GL(n,Z). In the basis w, the sublattices Li are expressed with integral
coordinates. Since L′ ⊂ Li for all i we can actually quotient out by L′ and this corresponds to
a mapping of H into a finite subgroup Hd of GL(n,Z/dZ). Thus GLv(C,Z) can be obtained
as a stabilizer of a finite set, that is, L/L′.

†We note that Delaunay is often spelled Delone, as the latter is a straightforward English transliteration of
his name in Cyrillic.
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This stabilization computation can be accelerated by using the divisors of d. For any divisor
h of d we can map GL(n,Z/dZ) to GL(n,Z/hZ). By using a sequence of divisors (di)16i6l
with d1 = 1, dl = d and di|di+1 we can obtain a sequence of stabilizers that converges to the
desired stabilizer.

In the case of a Delaunay polytope P in a lattice L we can simplify those constructions a
little. The finite group Aut(L) of isometries of L preserving 0 is identified with the group of
isometries of the quotient Rn/L. The isobarycenter c of P is expressed as (1/m)v with v ∈ L
and m ∈ N and the group IsomL(P ) is identified with the stabilizer of c ∈ Rn/L by Aut(L).
For any divisor d of m we can consider the stabilizer in Rn/L′ with L′ = (1/d)L and the
factorization of m gives a sequence of stabilizers that converges to IsomL(P ). See [11, 41] for
more details.

3.2. Symmetries of integer linear programming problems

In integer linear programming, one optimizes over the intersection of a polyhedron with the
integer lattice. From a mathematical point of view, the natural symmetries thus preserve
the polyhedron and the integer lattice, that is, they are GLn(Z)-symmetries. As far as we
know, these general symmetries are not used in existing integer optimization software. Instead,
the common practice is to consider only coordinate symmetries, that is, permutations of
coordinates that are automorphisms of the polyhedron. These symmetries turn out to be easier
to compute, and also straightforward to work with in integer linear programming solvers.

Several authors have been concerned with ways to compute coordinate symmetries, by
reducing the problem to a graph automorphism problem (see [2, 26, 32, 34]). Coordinate
symmetries are isomorphic to the automorphisms of the following complete bipartite graph.
Its vertex set is the union {v1, . . . , vp} ∪ {x1, . . . , xn} of generators (coming from inequalities)
and variables. Between each pair vi and xj we add an edge colored by the coefficient of
variable xj in generator vi. This bipartite edge colored graph is simpler to handle than the
complete colored graph required for more general symmetries. In integer programming we also
have an objective function, which has to be considered for symmetry computation. We can
deal with this by coloring the graph vertices that correspond to the variables x1, . . . , xn by
their respective objective coefficient.

Using this graph and transformation techniques detailed in § 3.4, the coordinate symmetries
of 353 polytopes from mixed integer optimization were computed in [30] (cf. [33]). Some of the
larger instances, which had more than one million variables or facets, were still computationally
tractable. In 208 polytopes a non-trivial symmetry group was found. For the 50 smallest
problems, with dimension less than 1500, we also computed the linear symmetry group. We
found that in 6 out of these 50 cases the linear symmetry group is larger than the coordinate
symmetry group. All these linear symmetries are realized by integral matrices.

3.3. Centralizer subgroups

We now give an algorithm for centralizer subgroups that is useful particularly in applications
in the geometry of numbers; several examples follow at the end of the section. For a given set
B ⊂Mn(R) we want to find the group

GLv(C,B) = {A ∈ GLv(C) | AB = BA for B ∈ B},

that is, the group of elements in GLv(C) that preserve a set B pointwise by conjugation.
Without loss of generality we may assume that the set B is linearly independent, contains the
identity matrix and is written as {B1, . . . , Br} with B1 = In. We denote by Linv(C,B) the
corresponding isomorphic permutation group which is a subgroup of Linv(C).

Theorem 3. If B = {B1, . . . , Br} is a set of n × n-matrices with B1 = In then the group
Linv(C,B) is the group of permutations σ preserving the directed colored graph with edge and
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vertex colors

wij = (vTi Q
−1B1vj , . . . , v

T
i Q
−1Brvj) with Q =

p∑
i=1

viv
T
i .

Proof. If A ∈ GLv(C,B) then ABi = BiA and Avi = vσ(i). Hence one gets by summation
that AQAT = Q or equivalently Q−1 = ATQ−1A (obtained from Q−1 = (AT )−1Q−1A−1 by
left and right multiplication). So, if one writes hkij = vTi Q

−1Bkvj then one gets

hkij = vTi Q
−1Bkvj

= vTi A
TQ−1ABkvj

= (Avi)
TQ−1Bk(Avj)

= hkσ(i)σ(j).

So, any A induces a permutation of the p vertices preserving the vector edge color wij .
Suppose now that σ ∈ Sym(p) satisfies wij = wσ(i)σ(j). Then, since B1 = In we have

vTi Q
−1vj = vTσ(i)Q

−1vσ(j). By an easy linear algebra computation (see [4, 10] for details) we

get that there exists A ∈ GLn(R) such that Avi = vσ(i). If one writes wi = Q−1Avi then

wTi ABkvj = vTi A
TQ−1ABkvj

= vTi Q
−1Bkvj

= hkij

= hkσ(i)σ(j)

= vTσ(i)Q
−1Bkvσ(j)

= vTi A
TQ−1BkAvj

= wTi BkAvj .

Since the families {vj} and {wi} span Rn we get ABk = BkA.

There are many contexts where the above theorem is useful.

Example 5. If one wishes to find the group of elements A ∈ GLn(Q[
√

5]) then one way to
do so is to express the elements as elements of GL2n(Q) that commute with the multiplication
by
√

5. This is very useful when working with Humbert forms whose symmetry group in
GLn(Z[

√
5]) correspond to a small subgroup of the full group in GL2n(Z).

Example 6. If one wishes to find the elements belonging to GLn(H), with H the Hamilton’s
quaternions, then the above method can also be applied; GLn(H) acts on Hn by multiplication
on the left and it is characterized in GL4n(R) by the fact that it commutes with scalar
Hamiltonian multiplication on the right.

Example 7. If one wishes to compute the group GLv(C,W ) of elements of GLn(R)
preserving a polytope C and a vector space W , then the above method can also be applied.
Any such element will be an isometry for the scalar product defined by Q−1 in the proof of
Theorem 3 and so will commute with the orthogonal projection on W .
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Let us finally note that one could wish for a similar characterization for elements of GLv(C)
that preserve a set B setwise by conjugation and so compute normalizer groups. We do not
know of such and actually think that a similar characterization is not possible.

3.4. Computing with vertex and edge colored graphs

Many of the strategies presented above depend on the computation of the automorphism group
of a graph whose vertices and/or edges are colored. The complexity of the graph isomorphism
problem is uncertain. It is one of the rare problems in NP which is neither known to be
NP-complete nor in P.

For practical computation there exists graph isomorphism software (see [40, 44, 46–48])
that can compute automorphism groups of graphs. Such programs usually use the partition
backtrack algorithm and can compute the automorphism groups of large graphs but their
run time is exponential in the worst case. These programs usually cannot handle edge colored
graphs and suffer from a performance penalty when using digraphs. Hence, one needs reduction
techniques. There are several techniques for reducing an edge colored graph to a vertex
colored graph (a complete graph with only two edge colors). We describe two of them in
more detail here.

Reduction by intermediate nodes. One transformation described in [34] replaces each
c-colored edge {a, b} with an intermediate c-colored vertex m, which has edges connecting it to
a and b. Starting with a complete graph on n vertices, the transformed graph has n+n(n−1)/2
vertices which makes this transformation expensive. For the bipartite edge colored graphs that
occur in § 3.2 this can be improved by an idea given in [32]. Instead of adding intermediate
vertices for all edges, we combine some of those with the same color. Define the bipartition as
(S, S′). For each i ∈ S let Xi,c ⊆ S′ be the set of vertices which are incident to i with an edge
of color c. Then it is enough to introduce an intermediate c-colored vertex m with edges to i
and to all elements of Xi,c. For many integer optimization problems these sets Xi,c are often
large, thus the number of vertices in the graph is usually substantially reduced. If |S| > |S′|,
it may be advantageous to combine edges the other way around.

Reduction by superposition. For general edge colored graphs we use the following method
proposed in the user manual of nauty [46]. Suppose that we have M edge colors. Then any
color can be expressed as a 0/1 word of length dlog2(M)e. Therefore the automorphism group
can be obtained from superposition of dlog2(M)e vertex colored graphs as follows. For 1 6 i 6
dlog2(M)e let Gi have the same vertices as the original edge colored graph which we want to
transform. Two vertices a, b are connected by an edge in Gi if and only if there is an edge e
between a and b in the original graph G and the binary color word of e has a one at its ith
position. To get the final superposition graph, take the union of the Gi, coloring all vertices in
Gi by some color i. The resulting graph thus has ndlog2(M)e vertices where n is the number of
vertices of the original graph. This solution has good complexity estimates but the preceding
method is often the best for the bipartite graphs from integer optimization (see [30, 33]).

Dealing with digraphs. We finally note that colored digraphs can be transformed into
colored graphs with twice the number of vertices. Let γ and γ′ be two colors that do not occur
as an arc or vertex color. Color the uncolored vertices with γ, and construct a colored bipartite
graph as follows. Each vertex a corresponds to a pair {a, a′}, with a retaining the color and a′

uncolored. For each vertex and for each arc of the original graph edges are added: edges (a, a′)
of color γ′ for each vertex a and edges (a, b′) for each arc (a, b), retaining the color of (a, b).

4. Computing Proj(C)

For a given polyhedral cone C, the group Proj(C) is the group of permutations of extreme
rays that are induced by a linear transformation preserving C. We give a method allowing the
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computation of the projective group in practice. It is based on a decomposition for polyhedral
cones and on some linear algebra tests.

A polyhedral cone C generated by extreme rays E = {Ri | 1 6 i 6 p} in an n-dimensional
vector space V is said to be decomposable if there exist two non-empty subspaces V1, V2 such
that E = (E ∩ V1) ∪ (E ∩ V2) and V = V1 ⊕ V2.

Theorem 4. For a polyhedral cone C generated by E = {Ri | 1 6 i 6 p} in an n-dimensional
vector space V , there is a unique decomposition

V =
⊕

16k6h

Vk

with
E =

⋃
16k6h

E ∩ Vk

and the cone Ck generated by E ∩ Vk being non-decomposable. This decomposition can be
computed in time O(pn2).

Proof. The existence of the decomposition is obvious since the vector space V is finite
dimensional and so the decomposition process has to end at some point. The uniqueness
follows immediately from the fact that if there are two decompositions by Vk and V ′l then the
family of subspaces Vk ∩ V ′l also defines a decomposition.

The method for computing a decomposition is the following. First select some generators
vi of Ri. Then find an n-element set S ⊂ {1, . . . , p} such that {vi | i ∈ S} is a basis of V ,
for example, by Gaussian elimination in O(pn2) arithmetic operations. Every vector vi for
1 6 i 6 p is then written as vi =

∑
k∈S αk,ivk. The supports

Si = {k ∈ S | αk,i 6= 0}
determine the edges of a hypergraph on n vertices. The connected components of this
hypergraph correspond to the summands of the decomposition of V . Finding the connected
components can be done in time O(pn).

Remark 5. The master’s thesis of Golynski [14] describes how to use divide and conquer
and fast matrix multiplication to reduce the complexity of computing a basis of V to O(pn1+δ)
for 0 6 δ 6 0.3727.

Besides being useful for giving an algorithm for computing Proj(C), the notion of
decomposability is useful for classifying some polytopes.

Theorem 6. Let us take n > 3.
(i) The number of classes of non-decomposable polyhedral cones in Rn with n + 1 extreme

rays under projective equivalence is b(n− 1)/2c.
(ii) The number of classes of polyhedral cones in Rn with n+1 extreme rays under projective

equivalence is {
p(p− 1) if n = 2p,

p2 if n = 2p+ 1.

Proof. Let us take v1, . . . , vn+1 to be the generators of a cone C in Rn. Up to scalar multiples,
there is a unique non-trivial linear dependency relation of the form

0 =

n+1∑
i=1

αivi with αi ∈ R.
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Let us assume that C is non-decomposable. This is equivalent to αi 6= 0 for all i. Since we
are considering projective equivalence, we can replace generators vi by positive multiples. So,
only the signs of the αi matter and so by permutation of the generators only their number
n+ and n−. The case n+ = 0 is impossible since it implies that all generators are zero. The
case n+ = 1 is equally impossible since it implies that one generator is a positive sum of other
generators. So, n+ > 2 and by symmetry n− > 2. Moreover, n+ + n− = n+ 1. Since one can
flip the signs, this gives f(n) = b(n/2)c projective types and (i) holds.

For (ii) it suffices to remark that if αi = 0 then we can remove vi from the discussion and
consider a lower-dimensional cone. So, the number of projective types of polyhedral cones with
n+ 1 generators in Rn is

∑n
k=3 f(k).

From the above theorem it follows that any two 4-gons in R2 are projectively equivalent.
The above decomposition allows one to determine the projective symmetry group. We say

that two cones have the same projective isomorphism type if there is a bijective linear map
between them.

Theorem 7. For a polyhedral cone C generated by rays E = {Ri | 1 6 i 6 p} in a vector
space V , uniquely decomposed into V =

⊕
16k6h Vk as in Theorem 4, let Ck be the cone

generated by E ∩ Vk.
If the projective isomorphism type j for 1 6 j 6 q occurs nj times among the Ck then we

have the equality

Proj(C) =

q∏
j=1

Proj(Ckj ) o Sym(nj)

where o stands for the wreath product and Ckj is a representative for the jth type.

Proof. Suppose that we have an element f ∈ Proj(C). This element permutes the Ck but
must also preserve the projective isomorphism types. Hence, it belongs to the above-mentioned
product. The reverse inclusion is trivial.

We now discuss a method for computing the projective symmetry group of a non-
decomposable polyhedral cone C. Combined with the above theorem, this will allow us to
compute the projective symmetry group of arbitrary polyhedra. We first present the following
structural result.

Theorem 8. Suppose C is a non-decomposable polyhedral cone generated by rays {Ri | 1 6
i 6 p}. Then:

(i) we have the isomorphism
GL(C) ∼= R∗+ × Proj(C);

(ii) there exist vectors vi such that Ri = R+vi and

Linv(C) = Proj(C) .

Proof. Let us denote by µ the natural surjective homomorphism (with kernel K) from GL(C)
to Proj(C). For A ∈ K we have ARi = αiRi with αi > 0. If the values αi were not all the
same then this would automatically give a decomposition of the space (since each class of rays
with the same multiplier will be subdimensional) contradicting the non-decomposability of C.
Thus K = {λI | λ ∈ R∗+}.

Let us write G = {f ∈ GL(C) | det f = ±1}. The kernel of µ restricted to G is trivial. So G is
isomorphic to Proj(C). Any f ∈ GL(C) is uniquely written as f = λg with g ∈ G and λ ∈ R∗+.
Hence statement (i) follows.
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To show (ii) we can, by (i), identify Proj(C) with the subgroup G of GL(C). This identification
is unique, as G is the subgroup of elements of finite order. For each Proj(C)-orbit Ok of extreme
rays we choose a representative ray Rk ∈ Ok and a vector vk such that Rk = R+vk. For each
element R ∈ Ok we can find an f ∈ G such that R = f(Rk). If there is another f ′ ∈ G such
that R = f ′(Rk) then h(vk) = Cvk with h = f−1f ′ and C > 0. Since h ∈ G, it has finite order,
say, m, and hm(vk) = Cmvk = vk, implying C = 1. This means that f(vk) is uniquely defined.
It is then clear that for this choice of generators Proj(C) = Linv(C).

Remark 9. The statements of Theorem 8 cease to hold in a more general setting of
a configuration of points in a projective space over C. In the following we construct a
counterexample.

Example 8. First we take the group G characterized as 2 · S−4 (namely, number 28 in GAP

the database of small groups [42]) and its faithful 2-dimensional representation over C. The
center of G in this representation is ± Id2. We then take an element of order 8 in G and
compute one of its eigenspaces, corresponding to an eighth primitive root of unity. There are
six images of the eigenspace under G. Thus we obtain a transitive action of G on a 6-tuple of
lines and so on 6 points in P 1(C). The action on the six lines defines a group S4. But G is not
isomorphic to 2× S4.

Theorem 10. Suppose C is a non-decomposable cone generated by extreme rays {Ri | 1 6
i 6 p} in Rn. Testing if a permutation σ ∈ Sym(p) belongs to Proj(C) can be done in O(p3n)
time.

Proof. Let us slightly abuse notation and denote by Vµ = (vµ(1), . . . , vµ(p)) the matrix with
columns being a set of generators for the Ri, that is, Ri = R+vi, for 1 6 i 6 p, permuted
by a permutation µ. Respectively, let Uµ denote the submatrix of Vµ consisting of its first n
columns, and V = Vid, U = Uid. Without loss of generality, U is invertible.

The sought matrix A ∈ GL(C), a preimage of σ, must satisfy Avi = αivσ(i), αi > 0, for each
1 6 i 6 p. In the matrix form this can be written as AV = Vσ diag(α1, . . . , αp). In particular,
AU = Uσ diag(α1, . . . , αn), implying

A = Uσ diag(α1, . . . , αn)U−1. (2)

This implies
Uσ diag(α1, . . . , αn)U−1V = Vσ diag(α1, . . . , αp). (3)

This is a homogeneous linear system having np equations and unknowns αi, for 1 6 i 6 p. This
system can be solved by, for example, Gaussian elimination in O(p3n) arithmetic operations.

Denote by SP the solution space of (3). A solution α is acceptable if and only if α > 0 (the
latter implies det(A) 6= 0 by (2)). These conditions are open conditions, so if there is one such
solution then there is an open ball of such solutions of dimension q = dimSP, as well. But
we know by Theorem 8 that q 6 1 for non-decomposable cones. If q = 0 then σ /∈ Proj(C). If
q = 1, we can find a nonzero solution α of (3) and test that ±α > 0. If there is no such α,
we conclude that σ /∈ Proj(C). Otherwise, picking the right sign of α, we find A using (2) and
conclude that σ ∈ Proj(C).

Theorem 10 gives a constructive way to compute Proj(C). Combining with the intermediate
subgroup algorithm to compute Comb(C) given in § 5 gives a more practical method to
compute Proj(C). An easy situation is when Linv(C) = Comb(C), which of course implies
Linv(C) = Proj(C).

Let us take αi > 0. The group Linαv(C) (where every generator vi is scaled by αi) depends
on α and is a subgroup of Proj(C). By Theorem 8 there exists α such that Linαv(C) = Proj(C)
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and it is interesting to know when equality occurs. For any α > 0 the group Linαv(C) is a
permutation group acting on p points which defines an orbit partition OP(α) of {1, . . . , p}.

Theorem 11. (i) If {αi | 1 6 i 6 p} and {α′i | 1 6 i 6 p} are two sets of positive multipliers
and OP(α) = OP(α′) then Linαv(C) = Linα′v(C).

(ii) If {αi | 1 6 i 6 p} is a set of positive multipliers and Linαv(C) is transitive on {1, . . . p}
then Linαv(C) = Proj(C).

Proof. Let us prove (i). We decompose C into non-decomposable components Ck for
1 6 k 6 h and denote by Sk the corresponding subset of {1, . . . , p}. Let us take an orbit
O under Gα = Linαv(C). If x ∈ O ∩ Sk and H = StabGα(Sk) then Theorem 7 giving
the expression of the projective symmetry group in terms of a wreath product is also valid
for the linear automorphism group. This implies that the orbit of x under H is exactly O∩Sk.
Our assumption OP(α) = OP(α′) implies that O∩Sk is also an orbit under H ′ = StabGα′ (Sk).
Furthermore, by the non-decomposability of Ck we know that αl is determined up to some
constant factor for l ∈ O ∩ Sk. Thus there exists a β > 0 such that αl = βα′l for l ∈ O ∩ Sk.
This implies that the linear automorphism groups of Ck for {αivi | i ∈ Sk} and {α′ivi | i ∈ Sk}
are equal. Since OP(α) = OP(α′) we know that the isomorphism type of the component Ck
under Gα and Gα′ are the same. Since both groups are actually direct products of wreath
products they are necessarily equal.

To prove (ii), note that by Theorem 8 there exists some multiplier vector α′ such that
Gα′ = Proj(C). We see that Gα is a subgroup of Gα′ so OP(α) is a partition induced from
OP(α′) by splitting some orbit. But by transitivity OP(α) is reduced to only one component
so OP(α) = OP(α′) and (ii) follows.

By using item (ii) above one can conclude in some cases that the linear group is actually
the projective group.

5. Computing Comb(C)

In this section we present a method to compute the combinatorial symmetry group Comb(C)
of a cone C.

Recall that Comb(C) is the maximal symmetry group of a polyhedral cone that preserves
the face lattice. For many polyhedral computations, this is the largest group of symmetries
that can be exploited. Although no efficient methods are known for the general case, in this
section we describe some techniques that can be useful in certain practical computations. The
general idea is to construct a ‘sandwich’ G1 6 Comb(C) 6 G2 between groups G1 and G2 that
are easier to compute. We also present a possible use of the intermediate subgroup algorithm
for computing Comb(C).

5.1. Preliminaries

Definition 4. For an integer k > 1, the group Skelk(C) of a polyhedral cone C is the group
of all permutations of extreme rays that preserve Fl for all 0 6 l 6 k.

Assuming that C has p extreme rays, we in particular have Skel1(C) = Sym(p). Moreover,
Skelk+1(C) 6 Skelk(C) and Skeln−1(C) = Comb(C). For every integer k > 1 we have the
inclusion

Linv(C) 6 Proj(C) 6 Comb(C) 6 Skelk(C). (4)

We note that for 4-dimensional polyhedral cones C, the group Comb(C) is actually equal
to Skel2(C), due to Steinitz theorem for 3-dimensional polytopes (see [38, Chapter 4]).
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Assuming that we know the set Fk of k-dimensional faces, the group Skelk(C) is isomorphic
to the automorphism group of a vertex colored graph on p+ |Fk| vertices. The reason is that if
an automorphism preserves all the k-dimensional faces, then it preserves all the intersections
and so all the faces of dimension at most k. The k-dimensional faces Fk are thus described by
the set S of extreme rays contained in them and so we can build a bipartite graph on p+ |Fk|
vertices that encodes this relation.

5.2. Lucky sandwich

By the chain of inclusions in (4), the group Comb(C) is located between two groups which
are both automorphism groups of colored graphs. If we can prove that for some k0 we have
Linv(C) = Skelk0(C) then we conclude that Comb(C) = Linv(C) and we are finished. This is the
most common method (see [7, 8]) for computing combinatorial symmetry groups: determine
the set of faces of dimension at most k0, determine Skelk0(C), test if the elements of Skelk0(C)
are actually in Linv(C) and if yes obtain Skelk0(C) = Comb(C). But this does not always work
since in some cases Linv(C) 6= Comb(C). One case where it is guaranteed to work is for simple
polytopes, that is, ones for which every vertex is adjacent to exactly n other vertices; for these
polytopes Comb(C) = Skel2(C) (see [1, 12, 18]).

Typically, the number of k-dimensional faces becomes impractically large for some
intermediate values of k. An alternative method for computing Comb(C) is simply to compute
the whole set of facets and then compute Skeln−1(C) = Comb(C) directly. The problem with
this method is that the set of facets may be too large for this approach to work and sometimes
the facets are precisely what we want to compute in the end.

5.3. Computing intermediate subgroups

We now apply the intermediate subgroup algorithm of § 3.1 to computing Comb(C). The
containing group G2 is taken to be Skelk0(C) and the contained group G1 is taken to be
Linv(C).

We need an oracle to decide whether a permutation lies in Comb(C). Let us assume that
we have computed the orbits of facets of C up to G1. The possible methods for doing such a
computation are reviewed in [4]. Denote by O1, . . . , Or the orbits of facets, for which we select
some representative F1, . . . , Fr. They are encoded by their extreme ray incidence as subsets
S1, . . . , Sr ⊂ {1, . . . , p}. A permutation σ ∈ Sym(p) belongs to Comb(C) if and only if any
image σ(Si) is in a G1-orbit of one of our representatives Sj . Such in-orbit tests are done using
permutation backtrack algorithms [23, 24] that are implemented, for example, in GAP [42] and
PermLib [48].

Based on this oracle, the intermediate subgroup algorithm allows us to compute Comb(C)
without having to iterate over all elements of Skelk0(C) and test whether they belong to
Comb(C). It is not clear how to do much better since in general one needs the facets in order
to get Comb(C).
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