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ON QUASISIMILARITY FOR SUBNORMAL 
OPERATORS, II 

BY 

J O H N B. C O N W A Y * 

ABSTRACT. Let S be a subnormal operator and let sd(S) be the 
weak-star closed algebra generated by S and 1. An example of an 
irreducible cyclic subnormal operator S is found such that there is a 
T in s&(S) wrth-S and T quasisimilar but not unitarily equivalent. 
However, if S is the unilateral shift, Tesd(S), and S and T are 
quasisimilar, then S = T. 

This paper will show that any analytic Toeplitz operator that is quasisimilar 
to the unilateral shift must be unitarily equivalent to it. 

Unlike normal operators, two similar subnormal operators need not be 
unitarily equivalent. The first example of this unfortunate phenomenon seems 
to be due to Donald Sarason ([5], Solution 156). Many examples of this are now 
known. In fact, the subnormal operators that are similar to the unilateral shift 
have been characterized [2], and these include many operators that are not 
shifts. 

With such examples one might wonder if any interesting questions remain to 
be asked. Indeed, there are. One class of such questions is obtained by insisting 
that the similar subnormal operators have additional properties. For example 
in [4] the author and R. F. Olin asked the following question. If S is a 
subnormal operator and Tesi(S), the weak * (viz., ultraweakly) closed algebra 
generated by S, and if S and T are similar, must S and T be unitarily 
equivalent? Warren Wogen [8] gave an example which showed the answer to 
this question to be "No". 

However Wogen's example of S had the property that sd(S) could be split 
into the direct sum of two algebras, and this property was vital for establishing 
that the operator T in s&(S) was not unitarily equivalent to S. 

This led the author and Olin to ask if the question has an affirmative answer 
if it is also assumed that S is irreducible. 

In this note an example of an irreducible subnormal operator S is given such 
that S and —S are similar but not unitarily equivalent. On the positive side, it is 
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shown that if S is the unilateral shift, T G ^ ( S ) ( = {T4>:C^GHGO}), and S and T 
are quasisimilar, then S and T must be unitarily equivalent. 

This paper is a continuation of [3] and some of the same notation and 
terminology will be used. 

For any compactly supported measure /ut on C, let S^ be multiplication by z 
on H2(n), the closure of the polynomials in L2(ja). If N^ denotes multiplica­
tion by z on L2(n), then N^ is the minimal normal extension of S^. 

Let m be normalized arc length measure on dD; so Sm is the unilateral shift. 
Put jut = m + 8(5), where S(|) denotes the unit point mass at \. Let S^S^ and 
T = —S. It follows that S and Sm are similar. Indeed, it is easy to show that 
there is a constant C such that 

c||p|2^<||p|2dm<J|p|2^ 
for every polynomial p, whence the similarity is immediate. 

Thus T is similar to (~) — Sm; but Sm = - S m , so T~Sm~S. On the other 
hand, the minimal normal extension of T is - N ^ and —N^ and N^ are not 
unitarily equivalent. Hence, S and T cannot be unitarily equivalent. Finally, 
because S~Sm and Sm has no idempotents in its commutant, S is irreducible. 
(The author would like to thank the referee for this simplification of his 
original example.) 

Recall that if S and T are operators, S and T are said to be quasisimilar if 
there are operators X and Y such that ker X= (0), X and Y have dense range, 
and XS = TX, SY=YT. 

THEOREM 1. If S is the unilateral shift of multiplicity one, Tesd(S), and S and 
T are quasisimilar, then S and T are unitarily equivalent. 

Before proving the theorem, recall that for S = Sm, si(S) = {S}' = 
{T^-.cfyeH00}. If 4>eH™ and T^ is unitarily equivalent to S, then T is an 
isometry; hence <£> is an inner function. Moreover, H2Q<f)H2 = (range T^)1- is 
one-dimensional. Thus, T^ is unitarily equivalent to S iff 

1 — az 

where 0< |8<27r and | a | < l . 
To prove the theorem a result from [2] is needed. Since the contents of this 

thesis have not been published, a proof of the result will be included. 

THEOREM 2 (Clary [3]). If T is a subnormal operator and T is quasisimilar to 
the unilateral shift, then ae(T) = o~ap(T) = dB. 

Here cre and crap denote the essential spectrum and the approximate point 
spectrum, respectively. 

To prove Theorem 2, two lemmas are necessary. 
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LEMMA 1. If n is a measure on dO that is equivalent to m and log (d^ildm)e 
^(m), then for every compact subset K of D there is a constant C such that for 
every polynomial p and every point a in K, 

|p(a)|2<C2J|p|2^. 

Proof. This lemma is known, though a reference is lacking. In any case, the 
proof is easy. The hypothesis implies there is an outer function / in H2( = 
H2(m)) such that \f\2 = d^ldm ([7], p. 53). If l / :L2Gx)-*L2(m) is defined by 
Ug = gf, then U is a unitary and UH2(n) = H2. 

For | a | < l , let ka(z) = (l-âz)-\ If h e H 2 , then (h,ka)H2 = h(a). Also 

||fca||
2 = ( l - | a l 2 ) - 1 - For any polynomial p, 

\f(a)p(a)\2 = \(Up, kaU
2 = \(p, i r ^ W ) | 2 

^Jlpl^jVxi2^) 
= (l-\a\2rl\\p\2d». 

Let r = max{|a|:aeK}; so r<\. Also, because / is outer, min{|/(a)|:aeK} = 
M > 0 . It follows from the above inequality that 

|p(a)|2 < [Af2(1 - r2)]-1 J|p|2 d t̂ 

whenever aeK. • 

LEMMA 2. If fx is a measure on D~, /UL0 = JUL 1dD, and JUL0 is equivalent to m with 

log(d|LL0/dm) in Lx{m), then if v = yu | (D~\K) for some compact subset K of 

Proof. Let C be the constant obtained in Lemma 1 when the measure in 
Lemma 1 is replaced by JUL0. Hence, 

J|p|2 ^ < J|p|2 rfM, = £ |p|2 d/ut -+- J|p|2 dz, < Ciut(iC) J|p|2 d^0+ J|p|2 ^ 

< [ i + C|Lt(K:)]J|p|2^. 

Hence Sv « S^. • 

Proof of Theorem 2. It follows from [1] that a ( T ) = D " ; so dû Ça a p(T). 
Because T is pure ([3], Proposition 2.3), T has no eigenvalues. Hence o-^iT) ç 
ae(T). Because T is cyclic, d imfranCT-A)]^ 1 for all scalars A. Thus, cre(T) = 
c7ap(T). It remains to show that crap(T)çdD. 

Because T—S^T^S^ where /UL is a measure supported on D~ and if 
jLx0 = JU, 1dD, then /x0 is equivalent to m and log(djxO/dm) e ^(m). (This is from 
[2]; the condition is also sufficient for T to be similar to Sm. Another proof of 
necessity is to be found in Theorem 4.2 of [3]. Also see [6].) If 0 < r < l , let 
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Ar ={z: r < | z | < 1} and put vr = JLL | Ar. By Lemma 2, S^ « SVr for 0 < r < 1. Thus 
o-ap(SfX) = crap(SVr)ço-ap(iVVr)ç support * ^ A r . Since r was arbitrary, o-ap(S^)ç 
dû. • 

Proof of Theorem 1. Since Tes4(S), T=T4> = <f>(S) for some <j> in H°°. Note 
that to show that T = S, it suffices to show that 4> is inner. Indeed, if <£ is inner 
and T^ ~ S, then T^ is a pure cyclic isometry and, hence, dim(H2©cf>H2) = 1. It 
follows that <f) is a single Blaschke factor and so T^ = S. 

To show that <$> is inner, it suffices to show that <£(D)=D and <f> is 
one-to-one. But from [1], a(T) = a(S) = 0~; hence <J>(D)~ = D~. Since <f>(0) is 
open, (f(D)çD. If a e O , then Theorem 2 implies that a^<jap(T). Thus 
r a n ( T - a ) is closed. Because T is cyclic and a e cr(T), r a n ( T - a ) has codimen-
sion 1. But r a n ( T - a ) is invariant for S. It follows that r a n ( T - a ) = 
((f)-a)H2 = BH2, where B is a single Blaschke factor. Therefore <f>-a must 
have a zero of multiplicity one in O. This shows that <£(D) = B and c/> is 
one-to-one. • 

BIBLIOGRAPHY 

1. W. S. Clary, Equality of spectra of quasisimilar hyponormal operators, Proc. Amer. Math. 
Soc, 53 (1975), 88-90. 

2. W. S. Clary, Quasisimilarity and subnormal operators, Ph.D. thesis, University of Michigan, 
1973. 

3. J. B. Conway, On quasisimilarity for subnormal operators, Illinois, J. Math., 24 (1980), 689-702. 
4. J. B. Conway and R. F. Olin, A functional calculus for subnormal operators, II, Memoirs 

Amer. Math. Soc, vol. 184, 1977. 
5. P. R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Princeton, 1967. 
6. W. W. Hastings, Subnormal operators quasisimilar to an isometry, Trans. Amer. Math. Soc, 

256 (1979), 145-161. 
7. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J. 

(1962). 
8. W. R. Wogen, On some operators with cyclic vectors, Indiana Univ. Math. J., 27 (1978), 

163-171. 

INDIANA UNIVERSITY 

BLOOMINGTON, INDIANA 47405 

https://doi.org/10.4153/CMB-1982-004-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-004-2

