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In a recent paper1 I have discussed the families of quadrics in
[2n] which are obtained by causing the members to have the greatest
possible number of fixed [n — l]'s or " generators." It was found
possible to fix four \n — l]'s in general position; the family of
quadrics through these possessed a "base" variety, common to all
the members, which consisted of a highly degenerate FB_X. Here I
consider the same problem for quadrics in \2n + 1], find how many
generators may be assigned arbitrarily and discuss the common part
of the quadrics which pass through such generators.

Now quadrics in a [2n + 1] S have generating [n]'s. The freedom
of the quadrics in 8 is (2n + 1) (n + 2) and the postulation of an [n]
for quadrics is \ (n + 1) (n + 2), so that the greatest number of [n]'s
which can be independently assigned to a quadric in S is the greatest
integer in (2n + 1) (« + 2)/| (n + !)(» + 2), i.e. in 4 — 2j(n +1) , and
this is clearly always 3 for positive n. We shall therefore consider
the family of quadrics in 8 restricted to contain three generally
placed [n]'s, and our problem will be to find the complete intersection,
or "base," of the quadrics of the family. We observe that the
problem is not directly analogous to that described in our previous
paper; it is in fact much simpler, as the degeneracy which caused
complication there no longer exists, the base consisting of a single
variety.

The freedom of the family of quadrics is \(n + 2) (n — 1) so
that the base might be expected to be a variety of dimension
2n — in(n+ 1). But it is found in fact to consist of a variety of
dimension n + 1, that is, the dimension of the base is higher than
might be expected from the freedom of the family. The base variety
is in fact the dual of one of the " determinantal " manifolds studied
by Room2. Furthermore it is found that through any point of the

1 L. M. Brown, Proc. Edinburgh Math. Soc. (2), 5(1938), 125.
2 See in particular T. G. Room, Proc. London Math. Soc. (2), 36 (1933), 1. In the

notation of that paper the base variety is ) | n + 1, 2 | , [2n + 1](.
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variety there goes one line and also one [n]; varieties of this type
have been widely discussed1.

One minor point may be settled immediately; let us refer for
simplicity to the case of a quadric in [5]. If this is a genuine quadric
(i.e. not a cone), it contains two systems of generating planes, and
any two planes in the same system will intersect. I t follows that it
is impossible to find three generators of a genuine quadric in [5] which
are all skew, for at least two must belong to the same system; and
consequently through three planes in general position in [5] there are
no genuine quadrics (they are in fact all cones with line vertices, the
lines being the doubly-infinite set meeting the three planes). Never-
theless, we shall continue to consider three planes in general position,
and not concern ourselves with the genuineness or otherwise of the
quadrics through them, and similarly in other cases where the same
point may arise.

1. Let p, q, r be three [w]'s in a [2n + 1] S. Through r take any
[n + 1] P. I t cuts p and q in points P and Q, and in no position can
it cut in more, for if, say F cut p in a line I, then I must cut r, and p
and r would not be skew. The line PQ cuts r in a point R. Now any
quadric through F must be a line-cone with vertex PQ (or perhaps a
cone of higher type whose vertex contains PQ), so let us project from
PQ into a [2n — 1] S. Then p, q, F project into three [n — l]'s p', q ,
r' in 2, and these must be skew for all positions of F. Now for a
general position of F the number of linearly independent quadrics
through such a triad is \n(n— 1), so the number of linearly inde-
pendent quadrics through F is also \n (n — 1). But since the number
of linearly independent quadrics in the whole family is \n(n + 1) it
follows that there are n linearly independent quadrics not through F.
These cut F in quadrics of F through r and through PQ; each there-
fore consists of r and an [n] through PQ. But n linearly independent
[n]'s in an [n + 1] cut in a line, so the quadrics cut in r and in PQ;
i.e. F cuts the base in r and PQ. Now F was any [n + 1] through r,
and so the base consists of such lines as PQ, i.e. of the locus of all
the lines meeting p, q, r.

We have however to guard against the possibility that for some
special position of F the number of quadrics through it should be

] See H. W. Richmond and F . Bath, Proc. Cambridge Phil. Soc, 22(1924), 319,
where a bibliography is given ; in our connection see in particular two papers by
C. Segre, Rend, di Palermo, 5 (1891), 192 and 30 (1910), 87.
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more than the normal number \n (n — 1). We shall do this if we
prove that \n(n — 1) is always the number of quadrics in 2 through
p', q', r' for any position of p', q', r' in which they remain skew.

The number of linearly independent quadrics in £ is n (2n +1) .
The postulation of a single [n — 1] p' is \n (n + 1). If the postulation
of a second [n — 1] q' is less than \n (n + 1) it implies that any quadric
J through p' which is made to pass through any quadric j of q' will
contain q'. Take j to be two [n — 2]'s of q', a and b. Then we may
take as the quadric J through p', a, b the pair of [2w — 2]'s consisting
of p'a and any [2ra — 2] through b. But unless q' meets p' this
quadric J does not contain q'. Consequently if p' and q' are skew
their combined postulation is n(n+l). If now the additional
postulation of a third [n — 1] r' is less than \n (n + 1) it implies that
if a quadric K through p' and q' passes through a quadric k of r', then
K must contain r'. But if we take k to be two [n — 2]'s c, d of r', we
may take K as the [2w — 2]-pair p'c, q'd; and unless r' meets p' or q'
this quadric K does not contain r'. Consequently the combined
postulation of p', q', r' is fn (n + 1) and so by the customary argument
the number of quadrics in S through p', q', r' is \n (n — 1).

Now we have in the paper mentioned above shown that the locus
of lines meeting three [n]'s in S is a Vn+1 of order n + 1. Let us
call it V.

The base consists of the single Fm+1 V, of order n + 1, the locus of
the lines meeting p, q, r.

2. A most noteworthy property of the variety V is that it is
ruled not merely by lines, but also by [n]'s. The lines of V set up a
projective relationship between the [w]'s p and q, and if Alt .. . . ,
An+1 is any simplex in p and Bx, -Sn+i *

ne corresponding simplex
in q, then any point of 1) may be written as

A (tx A 1 + . . . . + tn+1 An+1) + / * ( < ! £ ] + . . . . + tn+1 B n + 1 ) ,

when lines are obtained by varying A and /*, and [n]'s are obtained by
varying the parameters tx .. .. tn+1. In fact V may be denned as the
locus of lines joining corresponding points of two projectively related
[»]'s, or as the locus of [n]'s joining corresponding points of n + 1
projectively related lines. Room, in the reference cited and else-
where, considers a large class of varieties obtained in this manner.
In particular he finds a rational map of the dual of V. It is however
easy to find a map of V by direct projection. If rrr is a general [n— 1]
in r, and we project V from cr into a skew [n + 1] T, then any point
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of V projects into a single point of T, and a general point of T is pro-
jected from just one point of V; there is thus a map (i.e. a (1, 1)
relationship) of V on T. A general line of T joined to v> gives a
general [n -f 1] A through cr, and this cuts V in a conic. Now the
prime-sections of V cut this conic in two points, and therefore the
maps in T of the prime-sections are quadric primals of T; call them
<J>-quadrics. The [n\ r projects from CT into a poinb P of T, and those
lines of V which meet nr project into the points of an [n — 1] p of T.
If A is an [n + 1] through r, then it cuts 1) in one line outside of r, so
the <D-quadrics all pass through P; and if A is an [n + 1] through cr
and through a line I of V meeting cr, then A meets V in I and a second
line m, so a line of T meeting p must represent a line, so all the
O-quadrics contain p. A simple freedom argument shows that the
two conditions of passage through P and p are the sole conditions on
the <I>-quadrics of T. We may observe that if n is more than 2, the
<J>-quadrics will all be cones.

It is perhaps worth mention in conclusion that methods analogous
to those employed above yield rational maps of certain of the other
varieties considered in our previous paper. For example, the locus
V2 of planes in [9] meeting a [5] in a line and three [3]'s in points is a
V\; then a map of V2 may be made in a [5] T where the <P-primals are
cubic primals passing through a F | U and having a line I as double-
line, where U is the locus of lines meeting three planes, and Ha a line
of U.
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