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We consider the two-dimensional steady channel flow of a rarefied gas over a
backward facing step in the limit of large Knudsen numbers. The free-molecular
problem is solved analytically for both diffuse and specular-reflecting channel
boundaries, and the solutions are validated through comparison with direct simulation
Monte Carlo calculations. Prescribing the density and temperature differences between
the inlet and outlet external equilibrium conditions, the results for the density- and
temperature-drop-driven flows are analysed and contrasted, revealing higher flow
velocities and mass flow rates in the former. While the flow rate is unaffected
by the step geometry in the specular case, it increases with the step size in the
diffuse-reflecting set-up. At conditions where small flow velocities occur, flow
detachment is observed in the form of streamlines connecting the step edge stagnation
points. Considering the problem at finite Knudsen numbers, the collisionless-flow
regime breaks down at higher Knudsen numbers for lower gas speed flows, followed
by the occurrence of step flow separation and recirculation.
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1. Introduction
The flow over a backward step is a canonical problem in fluid mechanics, which has

been studied extensively over the years as a model problem for illustrating fluid flow
over a sharp discontinuity (Morgan et al. 1984; Chen et al. 2018). Considered as a
benchmark set-up for describing flow separation and reattachment phenomena, a large
number of works have investigated the two-dimensional problem in incompressible
viscid media, and studied passive and active means by which the separated zone may
be monitored (e.g. Lai, Yue & Platzer 2002; Park et al. 2007). Other works have
examined the counterpart compressible problem (as in Chow & Shih (1977); Bolgar,
Scharnowski & Kahler (2018)), where transonic and supersonic flow velocities take
place. Regardless of the magnitude of flow velocity, it has been established that fluid
viscosity is essential for the occurrence of edge separation, whereas ideal (irrotational)
flows exhibit attached flow profiles (King & Blood 1987).
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Ongoing developments in the field of micro-electro-mechanical systems (MEMS)
have led to an increasing number of investigations on microfluidic flows, ubiquitously
encountered in small-scale devices containing micro-channel geometries (Karniadakis,
Beskok & Aluru 2005; Kandlikar et al. 2006). Motivated by the overwhelming
complexity of channels networks contained in microfluidic chips (Thorsen, Maerkl &
Quake 2002), the study of heat and mass transfer phenomena in non-straight channel
geometries has become the focus of several works. In the context of rarefied gas
flows, these have included, among others, studies on the effects of channels bending
(Sharipov & Graur 2012; Liu et al. 2018), gradual section expansion (Naris, Tantos &
Valougeorgis 2014; Graur et al. 2015; Hemadri, Parade & Bhandarkar 2016; Tatsios
et al. 2017) and geometrical irregularities, including sudden expansion and contraction
(Agrawal, Djenidi & Antonia 2005; Gat, Frankel & Weihs 2008; Hong, Zhen & Yang
2008; Varade, Agrawal & Paradeep 2014).

In line with the above set of works, the channel flow over microscale steps has
been investigated and recently reviewed (Kherbeet et al. 2016). Focusing on the
limit of small Knudsen (Kn) numbers, several studies have applied continuum-limit
models to describe and monitor the detachment and reattachment phenomena in
a slightly rarefied gas (Beskok 2001; Baysal, Erbas & Koklu 2004; Bao & Lin
2011). The majority of works have otherwise used the direct simulation Monte
Carlo (DSMC) method to analyse the backward step flow at arbitrary Knudsen
numbers. To this end, Xue et al. (2005) applied DSMC calculations to characterize
the effect of gas rarefaction on the flow regime, and reported on sudden ‘jumps’ in
the hydrodynamic fields at the step section at large Kn conditions. Roohi, Mahdavi
and co-workers (Darbandi & Roohi 2011; Mahdavi et al. 2014; Mahdavi & Roohi
2015) conducted numerical simulations to analyse the effects of step temperature and
gas heat transfer on the flow field. More recently, Gavasane, Agrawal & Bhandarkar
(2018) demonstrated the occurrence of the Knudsen paradox in a micro-step channel
geometry. The counterpart three-dimensional problem was earlier considered by Hsieh,
Hong & Pan (2010).

A common observation in the above work is that step flow detachment is essentially
a low Knudsen number phenomenon, confined to the continuum-limit and early
transition regimes. With increasing Kn, the detached zone diminishes and reattachment
occurs closer to the step. At attached-flow conditions, pronounced hydrodynamic-field
gradients appear at the step junction, and a zone of low velocity (with attached
streamlines) forms in the vicinity of the step (Agrawal et al. 2005; Xue et al. 2005).
In several cases, step flow detachment was also reported at inlet-based Knudsen
numbers as high as Kn≈ 10 (Darbandi & Roohi 2011; Mahdavi & Roohi 2015).

As the above observations are based on DSMC computations, their scope is
inevitably limited by the drawbacks of the numerical method and may benefit from
direct analysis of the kinetic model. Focusing on the limit of large gas rarefaction,
the primary objective of the present contribution is to provide such an insight
through rigorous investigation of the free-molecular flow problem. We consider a
two-dimensional micro-step set-up, and construct a steady semi-analytical solution
in the free-molecular regime, for both diffuse and specular-reflecting channel walls.
Arbitrary ratios are allowed between the inlet and outlet gas equilibrium conditions.
Different from previous studies, the calculation highlights the distinct effects of
specular and diffuse walls, leading to qualitatively disparate flow fields. Collision-free
DSMC calculations are used to support the analytical results. While flow detachment
(in the ‘conventional’ form of flow recirculation and reattachment) does not occur
at free-molecular conditions, the results do indicate a detached zone in the vicinity
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FIGURE 1. Schematic of the micro-step channel geometry.

of the step at sufficiently small flow velocities. The detached zone combines the
step edge stagnation points with connecting flow streamlines. Notably, this result
could not be effectively revealed by means of the DSMC scheme, as the simulation
statistical noise obscures the flow signal at the small velocities involved. Considering
finite rarefaction rates, the work characterizes the breakdown of the collisionless-flow
conditions with decreasing Kn, highlighting the specific effects of molecular collisions,
and the consequent occurrence of step flow separation.

In the next section, the kinetic problem is stated. The free-molecular limit is
analysed in § 3, followed by an outline of the DSMC algorithm in § 4. The work
results, discussing the free-molecular regime and the effect of molecular collisions at
high Knudsen numbers, are presented in § 5. Our conclusions are given in § 6.

2. Statement of the problem
Consider a perfect monatomic gas passing through a two-dimensional channel with

a step, as described in figure 1. The channel x∗-wise length is l∗ = l∗u + l∗d, where l∗u
and l∗d denote the sizes of its left (upstream) and right (downstream) parts, respectively
(hereafter, asterisks denote dimensional quantities). The step, located at x∗ = 0, is of
length h∗s , and the channel inlet (at x∗=−l∗u) and outlet (at x∗= l∗d) widths are h∗in and
h∗out, respectively. It is assumed that the inlet and outlet channel sections are connected
to equilibrium-set reservoirs, where the gas is maintained at thermodynamic (ρ∗in, T∗in)
and (ρ∗out, T∗out) equilibrium densities and temperatures, respectively. Gas particles
entering the inlet and outlet sections are then distributed according to the equilibrium
Maxwellian distributions

f ∗in(c
∗
· x̂∗>0)=

ρ∗in

π3/2U∗3thin

exp
[
−

c∗2

U∗2thin

]
and f ∗out(c

∗
· x̂∗<0)=

ρ∗out

π3/2U∗3thout

exp
[
−

c∗2

U∗2thout

]
,

(2.1a,b)
where U∗thin

=
√

2R∗T∗in and U∗thout
=
√

2R∗T∗out denote the gas mean thermal speeds at
the inlet and outlet reservoirs, respectively, and R∗ marks the specific gas constant.
Additionally, c∗ = (c∗x, c∗y, c∗z ) denotes the vector of molecular velocities, and x̂∗ is
a unit vector in the x∗-direction. Strictly, equation (2.1) should be valid only at
free-molecular conditions, whereas end-effect corrections (resulting in an effective
correction to the channel length) need to be taken into account at finite Knudsen
numbers (see, e.g. Pantazis, Valougeorgis & Sharipov (2013)). To facilitate the
discussion, we nevertheless apply the conditions (2.1) also at finite Knudsen numbers,
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889 A22-4 A. Manela and L. Gibelli

as the focus of our work is on collisionless- and near-collisionless-flow regimes.
Gas–surface interactions of the gas particles with the channel boundaries are modelled
via the Maxwell boundary condition (Sone 2007),

f (x∗b, y∗b, c∗ · n̂∗ > 0)= α
ρ∗b (x

∗

b, y∗b)
π3/2U∗3thb

exp
[
−

c∗2

U∗2thb

]
+ (1− α)f (x∗b, y∗b, c∗ − 2(c∗ · n̂∗)n̂∗),

(2.2)
where the relative α and (1 − α) parts of the gas molecules are emitted diffusely
and specularly, respectively, at each point (x∗b, y∗b) along the boundaries. Here, n̂∗
denotes a unit normal vector directed into the gas, ρ∗b (x

∗

b, y∗b) is a yet unknown
function associated with the mass flux of particles emitted from the boundary and
U∗thb
=
√

2R∗T∗b is the mean thermal speed based on the boundary temperature T∗b .
The channel solid boundaries are assumed isothermal and with the common inlet
reservoir temperature T∗in. Consideration of different wall temperatures, as studied in
Mahdavi et al. (2014) and Mahdavi & Roohi (2015), may be readily carried out, but
is not followed here to simplify presentation (see § 6).

To render the problem dimensionless, we scale the position by the inlet width h∗in,
the velocity by U∗thin

, and the density and temperature by ρ∗in and T∗in, respectively. The
system description is then governed by the channel reduced geometrical measures

l, lu and hs (2.3)

of its total length, upstream-part size (with ld = l− lu fixed thereby) and step width,
together with the outlet reservoir properties

ρout and Tout (2.4)

of the gas density and temperature, respectively. In what follows, we study the
flow field in the channel at rarefied flow conditions, focusing on the limit of high
rarefaction rates. Towards this end, we assume steady flow conditions, and start by
analysing the free-molecular limit of the problem. The analytical results are then
compared with DSMC predictions, to validate the collisionless description, test the
breakdown of the free-molecular regime and assess the effect of molecular collisions.
No restrictions are placed on the values of ρout and Tout, which allows for the analysis
of the flow field at arbitrary pressure and temperature differences between the channel
inlet and outlet reservoirs.

3. The free-molecular limit
Considering two-dimensional and steady conditions, and neglecting the effect of

molecular collisions, the kinetic problem in the free-molecular regime is governed by
the collisionless Boltzmann equation,

cx
∂f
∂x
+ cy

∂f
∂y
= 0, (3.1)

stating that the probability density function f (x, y, c) is constant along ‘free flight’
(constant velocity) trajectories of a particle, and varies with changes in (cx, cy). Since
molecular collisions are absent, such variations may occur only due to surface–particle
interactions, prescribed by the scaled form of (2.2):

f (xb, yb, c · n̂> 0)= α
ρb(xb, yb)

π3/2
exp[−c2

] + (1− α)f (xb, yb, c− 2(c · n̂)n̂). (3.2)
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Free-molecular gas flows over backward facing steps 889 A22-5

The solid wall condition (3.2) is supplemented by the non-dimensional counterpart of
(2.1),

fin = f (x=−lu, 0 6 y 6 1, cx > 0)=
1

π3/2
exp[−c2

] and

fout = f (x= ld,−hs 6 y 6 1, cx < 0)=
ρout

π3/2T3/2
out

exp
[
−

c2

Tout

]
,

 (3.3)

prescribing the state of incoming particles at the inlet and outlet sections, respectively.
The problem formulated in (3.1)–(3.3) is analysed separately for the cases of fully
diffuse (α= 1; § 3.1) and fully specular (α= 0; § 3.2) walls. These two extreme cases
may be considered as limit realizations of completely accommodating and reflecting
boundaries, respectively. Diffuse scattering takes place over ‘rough’ surfaces, where
the colliding particles attain thermal equilibrium with the reflecting wall and evaporate
accordingly. Specular interactions occur when the incident molecules collide with a
solid surface and rebound elastically as if hitting a perfectly smooth wall. While
none of these idealized scenarios appears to exist in reality, it is commonly accepted
that wall reflections from ‘engineering’ surfaces may be described, in a variety of
applications, as a combination of diffuse and specular interactions, as formulated in
(3.2). The combined diffuse–specular (0< α < 1) case then composes the two limits,
and is therefore not considered hereafter in detail.

3.1. Diffuse-reflecting walls
Setting α= 1 in (3.2), the state of each gas particle in the channel is determined by its
last reflection from one of the channel (free or solid) boundaries. The general solution
for the problem is therefore given by

f (x, y, c)=
ρ̃(x, y, c)
π3/2T̃3/2

exp
[
−

c2

T̃

]
, (3.4)

where T̃ is the prescribed temperature of the emitting boundary, and ρ̃(x, y, c) is
an unknown function to be determined. Given a particle position (x, y) and its in-
plane velocity vector (cx, cy), the identity of its last emitting boundary is uniquely
determined. A similar description has been applied previously to approximate the flow-
field pattern obtained in a grooved channel at collisionless-flow conditions (Naris &
Valougeorgis 2007).

Calculation of ρ̃(x, y, c) is carried out by imposing the impermeability condition,∫
c·n̂>0

(c · n̂)f (xb, yb, c) dc+
∫

c·n̂<0
(c · n̂)f (xb, yb, c) dc= 0, (3.5)

along each of the solid channel boundaries. Here, the first and second integrals express
the separate contributions of the outgoing and incoming particles to the macroscopic
gas velocity normal to the wall, respectively. At a given location, incoming particles
may arrive from different channel boundaries, and their respective contributions should
be accordingly accounted for.

We demonstrate the derivation of the walls impermeability conditions by detailing
the calculation of the equation at the downstream wall, along which 0 6 x 6 ld and
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FIGURE 2. Geometrical construction of the impermeability condition at a point (x,−hs)
along the downstream wall ld. (a) A point location where the inlet section and the left
part −lu 6 x 6 1 + ld − ∆l of the upper boundary are obscured. (b) A point where the
lower part 0 6 y 6 1 − ∆in of the inlet section is obscured. The points are marked by
filled circles, and the dashed lines separate channel domains of particles arriving from the
different boundaries. The angles αs, αl, αout and αin denote the section angles associated
with each boundary.

y=−hs. Using (3.2) with α= 1, the contribution of the reflected particles integral in
(3.5) is ∫

c·n̂>0
(c · n̂)fd dc=

ρd(x)
2
√

π
, (3.6)

where the subscript d denotes that the function is evaluated at a point along
the downstream wall. A less straightforward calculation is required to obtain the
contribution of the incoming particles (c · n̂<0 integral) term in (3.5). Here, depending
on the specific location at the wall and the channel geometry, particles may arrive
from either the inlet, upper wall, outlet or step boundaries, whereas no particles are
transmitted from the ‘obscured’ upstream lu surface. This is illustrated in figure 2,
where the dashed lines separate channel domains of particles arriving from the
different boundaries. Kinematically, these lines confine the cx/cy ratio of in-plane
molecular velocity components pertaining to particle emittance from each surface.
Considering reflections from the upper and inlet boundaries, cases where 0 6 x 6 hslu

(shown in figure 2a) and hslu < x 6 ld (depicted in figure 2b, and occurring only in
channels where hslu < ld) should be distinguished. In the former, particles may arrive
from the −x/hs 6 x 6 ld interval of the upper l boundary, marked by ∆l, and not
from the inlet section. In the latter, particles may be transmitted from the entire l
boundary and the upper 1− hs − hslu/x 6 y 6 1 portion of the channel inlet, denoted
by ∆in.

The particle kinematics is next followed to express the contributions of the incoming
particles from each of the surfaces to the impermeability condition (3.5). For particles
reflected from the outlet section, it is seen from figure 2 that (ld− x)/(1+hs)6 cx/cy<

∞ with both cx, cy 6 0. Making use of (3.3), we find

∫
c·n̂<0

(c · n̂)fout dc =
∫ 0

−∞

∫ ((x−ld)/(1+hs))|cy|

−∞

∫
∞

−∞

cy fout dcz dcx dcy

=
ρout
√

Tout

4
√

π

(
ld − x

√
(1+ hs)2 + (ld − x)2

− 1
)
. (3.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.46


Free-molecular gas flows over backward facing steps 889 A22-7

For particles arriving from the step wall, x/hs 6 |cx/cy|<∞ with cx > 0 and cy 6 0.
Using (3.4), the integral contribution in this case is given by∫

c·n̂<0
(c · n̂)fs dc=

1
π3/2

∫ 0

−∞

∫
∞

(x/hs)|cy|

∫
∞

−∞

cyρs

(∣∣∣∣cy

cx

∣∣∣∣ x− hs

)
exp[−c2

] dcz dcx dcy,

where the argument in ρs= ρs(y) relates each x-location along ld with a point y along
the step for a particle arriving with a velocity ratio cx/cy. Appropriate change of
variables and cy, cz integrations then yield

∫
c·n̂<0

(c · n̂)fs dc=−
x

4
√

π

∫ 0

−hs

(p+ hs)ρs(p)
[(p+ hs)2 + x2]3/2

dp. (3.8)

Considering to the upper l boundary for the case illustrated in figure 2(a), it is
observed that (x− ld)/(1+ hs)6 cx/|cy|< x/hs, with −∞< cx <∞ and −∞< cy 6 0.
Subsequently,∫

c·n̂<0
(c · n̂)fl dc=

1
π3/2

×

∫ 0

−∞

∫ (x/hs)|cy|

((x−ld)/(1+hs))|cy|

∫
∞

−∞

cyρl

(
x−

cx

|cy|
(1+ hs)

)
exp[−c2

] dcz dcx dcy,

where a different change of variables and cy, cz integrations yield

∫
c·n̂<0

(c · n̂)fl dc=−
(1+ hs)

2

4
√

π

∫ ld

−x/hs

ρl(p)
[(1+ hs)2 + (x− p)2]3/2

dp. (3.9)

For the case shown in figure 2(b), the same expression holds for the l-surface, yet
with the lower integration limit −x/hs replaced by −lu. Using (3.3), the additional
contribution of the inlet section between hslu < x 6 ld is∫

c·n̂<0
(c · n̂)fin dc =

∫ 0

−∞

∫ (x/hs)|cy|

((x+lu)/(1+hs))|cy|

∫
∞

−∞

cy fin dcz dcx dcy

=
1

4
√

π

(
x+ lu

√
(1+ hs)2 + (x+ lu)2

−
x√

h2
s + x2

)
. (3.10)

Summing equations (3.6)–(3.9) in (3.5), we obtain the impermeability condition along
0 6 x 6 hslu

2ρd(x)− x
∫ 0

−hs

(p+ hs)ρs(p) dp
[(p+ hs)2 + x2]3/2

− (1+ hs)
2
∫ ld

−x/hs

ρl(p) dp
[(1+ hs)2 + (x− p)2]3/2

= ρout
√

Tout

(
1−

ld − x
√
(1+ hs)2 + (ld − x)2

)
, (3.11)
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889 A22-8 A. Manela and L. Gibelli

whereas for hslu 6 x 6 ld

2ρd(x)− x
∫ 0

−hs

(p+ hs)ρs(p) ds
[(p+ hs)2 + x2]3/2

− (1+ hs)
2
∫ ld

−lu

ρl(p) dp
[(1+ hs)2 + (x− p)2]3/2

=
x√

x2 + h2
s

−
lu + x

√
(1+ hs)2 + (x+ lu)2

+ ρout
√

Tout

(
1−

ld − x
√
(1+ hs)2 + (ld − x)2

)
.

(3.12)

Following similar arguments, the impermeability conditions at all other solid walls
are derived. Skipping the technical details for brevity, the equations obtained along
the lower upstream (−lu 6 x 6 0, y= 0) and step (x= 0,−hs 6 y< 0) walls are

2ρu(x)−
∫ ld

−lu

ρl(s) ds
[1+ (x− s)2]3/2

= 1−
lu + x

√
1+ (x+ lu)2

+ ρout
√

Tout

(
1−

ld − x
√

1+ (ld − x)2

)
(3.13)

and

2ρs(y)− (y+ hs)

∫ ld

0

sρd(s) ds
[s2 + (y+ hs)2]3/2

+ (y− 1)
∫ ld

0

sρl(s) ds
[s2 + (1− y)2]3/2

= ρout
√

Tout

(
y+ hs√

l2
d + (y+ hs)2

+
1− y√

l2
d + (1− y)2

)
, (3.14)

respectively. Along the upper (y = 1) wall, the cases −lu 6 x < −ld/hs (where no
particles arrive from either the step or ld walls, occurring in channels where ld/hs< lu),
−ld/hs 6 x 6 0 (where the step surface is obscured) and 0 < x 6 ld (where particles
arrive from all walls) should be treated separately. For the −lu 6 x < −ld/hs and
−ld/hs 6 x 6 0 intervals, the impermeability conditions read

− 2ρl(x)+
∫ 0

−lu

ρu(p) dp
[1+ (x− p)2]3/2

=−1+
lu + x

√
1+ (x+ lu)2

− ρout
√

Tout

(
1+

x
√

1+ x2

)
and

−2ρl(x)+
∫ 0

−lu

ρu(p) dp
[1+ (x− p)2]3/2

+ (1+ hs)
2
∫ ld

−xhs

ρd(p) dp
[(1+ hs)2 + (x− p)2]3/2

=−1+
lu + x

√
1+ (x+ lu)2

− ρout
√

Tout

(
1−

ld − x
√
(1+ hs)2 + (ld − x)2

)
, (3.15)

respectively, whereas along 0< x 6 ld:

−2ρl(x)+
∫ 0

−lu

ρu(p) dp
[1+ (x− p)2]3/2

+ x
∫ 0

−hs

(1− p)ρs(p) dp
[(1− p)2 + x2]3/2

+ (1+ hs)
2
∫ ld

0

ρd(p) dp
[(1+ hs)2 + (x− p)2]3/2

=−1+
lu + x

√
1+ (x+ lu)2

− ρout
√

Tout

(
1−

ld − x
√
(1+ hs)2 + (ld − x)2

)
. (3.16)
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FIGURE 3. Division of the channel domain into zones affected by the different boundaries
at different locations. The point locations are denoted by filled circles and the channel
subdomains I, II and III are distinguished as referred to in the text. The dashed
lines separate channel zones of particles arriving from the different boundaries, with
αu, αs, αd, αl, αout and αin marking the sections associated with each boundary.

Conditions (3.11)–(3.16) form a set of coupled integral equations for the boundaries
density fluxes ρu(x), ρs(y), ρd(x) and ρl(x), where the inlet and outlet section
contributions serve as non-homogeneous forcing terms. In the case where the
inlet and outlet reservoirs are kept at the same conditions, ρout = Tout = 1, the
uniform ρu(x) = ρs(y) = ρd(x) = ρl(x) = 1 solution is satisfied. For any non-trivial
combination of ρout and Tout, the equations are solved numerically by discretizing the
fluxes along the boundaries. To this end, the fluxes are represented by their discrete
values at equally spaced points along the walls, and the integral terms are evaluated
using Simpson’s rule. This yields a system of coupled non-homogeneous algebraic
equations which are solved numerically. Converged results were obtained with a
scaled discretization step of ≈10−3 along the boundaries. This, nevertheless, required
a minor computational effort compared with the numerical DSMC computations
described in § 4.

Having calculated the fluxes, the probability density function in (3.4) is obtained,
and the hydrodynamic fields may be calculated via appropriate quadratures over the
velocity space. Specifically, the density ρ, the x- and y-velocity components ux and uy
and the pressure p, are given by (Sone 2007)

ρ(x, y)=
∫
∞

−∞

f dc, ux(x, y)=
1

ρ(x, y)

∫
∞

−∞

cx f dc, uy(x, y)=
1

ρ(x, y)

∫
∞

−∞

cy f dc,

and p(x, y)=
2
3

∫
∞

−∞

[(cx − ux)
2
+ (cy − uy)

2
+ c2

z ] f dc,


(3.17)

whereas the temperature T = p/ρ, in accordance with the gas equation of state.
At each (x, y) location, the above integrations should average the contributions of
the particles arriving from the various boundaries, in accordance with the channel
geometry. Similarly to the calculation of the boundary fluxes, particles may arrive at a
given point from only part of the channel boundaries, while other parts are obscured.
This is illustrated by figure 3, where the channel is divided into three zones – namely,
the upstream zone I (−lu 6 x 6 0 and 0 6 y 6 1), the downstream zone II (0< x 6 ld
and 0 6 y 6 1) and the step zone III (0 6 x 6 ld and −hs 6 y < 0). While particles
arrive at all points in zone II from any of the boundaries, the step and part (or all) of
the ld wall are obscured in zone I, as shown by figure 3(a). In zone III, no particles
may arrive directly from the upstream lu wall, and cases where the upper l and inlet
boundaries are totally or partially obscured should be distinguished, as illustrated in
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figure 3(b). The integrations specified in (3.17), for which details are skipped for
brevity, should be carried out in accordance with the above geometrical restrictions,
to yield the required (x, y) dependencies of the hydrodynamic fields.

3.2. Specular-reflecting walls
In qualitative difference from the diffuse-scattering (α = 1) case, the macroscopic
impermeability conditions are trivially satisfied for a specular-reflecting wall (α = 0
in (3.2)), where the particles undergo mirror-like reflections with the value of the
probability density function conserved. The particles in the channel may acquire
either the inlet or outlet Maxwellian distribution (see (3.3)), and the problem solution
reduces to distinguishing, at each (x, y) location, between the distributions, based on
the direction of the in-plane (cx, cy) velocity vector of the particle.

Considering the upstream (x 6 0) part of the channel, it is clear that

f (x 6 0, y, c)=

{
fin, cx > 0,
fout, cx < 0,

(3.18)

as particles with cx > 0 and cx < 0 originate inevitably from the inlet or outlet section,
respectively. Making use of (3.17) and the equation of state, the hydrodynamic fields
at the channel upstream part are given by the uniform values

ρ(x 6 0, y)= 1
2(1+ ρout),

ux(x 6 0, y)=
1

√
π(1+ ρout)

(1− ρout
√

Tout), uy(x 6 0, y)= 0,

p(x 6 0, y)=
1
2
−

2ux

3
√

π
+

u2
x

3
+ ρout

(
Tout

2
+

2ux
√

Tout

3
√

π
+

u2
x

3

)
,


(3.19)

and T(x 6 0, y) = p/ρ, indicating a uniform one-dimensional flow in the x-direction.
As will be illustrated in § 5 (see figures 5 and 6), this is markedly different from the
diffuse wall set-up, where non-uniform two-dimensional flows occur at x 6 0.

The particle sorting and consequent calculation of the hydrodynamic fields become
less straightforward in the downstream x> 0 part of the channel. While particles with
cx < 0 originate solely from the outlet reservoir (and thus acquire f = fout), those with
cx > 0 may arrive from either the inlet or outlet boundary. Here, the step wall acts
as a ‘reflecting source’ for particles originating from the outlet section, by reversing
the sign of their x-velocity component. It is this kinematic constraint that results in
the non-uniformity and two-dimensionality of the flow field for x > 0, as calculated
below.

To track the origin of a cx> 0 particle located at (xp> 0,−hs 6 yp 6 1), its trajectory
should be followed backwards to the section x= 0, where it has either passed through
0< y< 1 (acquiring f = fin), or was emitted from the step −hs < y< 0 wall (and thus
originated from the outlet section with f = fout). At first, particles arriving ‘directly’ at
(xp, yp) from x= 0 without colliding with the upper (y= 1) or lower (y=−hs) wall
are distinguished through

f (x 6 0, y, c)=

{
fin, (yp − 1)cx/xp 6 cy 6 ypcx/xp,

fout, ypcx/xp < cy 6 (yp + hs)cx/xp,
(3.20)
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which covers the cy ∈ [(yp − 1)cx/xp, (yp + hs)cx/xp] interval for all cx > 0. Particles
with cy < (yp − 1)cx/xp or cy > (yp + hs)cx/xp then arrive at (xp, yp) after one or more
emissions from the upper or lower boundaries. The number Ncoll of these collisions is
given by

Ncoll = floor
{∣∣∣∣cy

cx

∣∣∣∣ xLC

1+ hs

}
, (3.21)

where

xLC =


x−

∣∣∣∣cx

cy

∣∣∣∣(y+ hs), cy > 0 (yLC =−hs)

x−
∣∣∣∣cx

cy

∣∣∣∣(1− y), cy < 0 (yLC = 1)
(3.22)

denotes the x-coordinate of the last collision of a particle with a wall (at yLC =−hs

or yLC= 1) before arriving at (xp, yp), and floor{·} marks the round value of a number
from below. The surface location where the particle has first collided with either of
the boundaries after x= 0 is then

xFC = xLC −Ncoll

∣∣∣∣cx

cy

∣∣∣∣ (1+ hs), (3.23)

and the corresponding value of yFC (=−hs or 1) is determined by the sign of cy at
(xp, yp), and whether Ncoll is even or odd. Having calculated xFC and yFC, the sorting
of the inlet- and outlet-originating particles is completed as, for yFC =−hs,

f =

{
fin, |cy/cx|> hs/xFC,

fout, |cy/cx|6 hs/xFC,
(3.24)

while for yFC = 1,

f =

{
fin, |cy/cx|< 1/xFC,

fout, |cy/cx|> 1/xFC.
(3.25)

The above procedure should be repeated at all desired (x, y) locations in the x> 0
part of the channel, to determine the solution for f (x, y, c) in the five-dimensional
phase space. The hydrodynamic fields are then calculated by means of equation
(3.17). A geometrical illustration of the sorting procedure is presented in figure 4.
The figure shows divisions of the x> 0 part of the channel into sections of particles
originating from the inlet and outlet sections and arriving at a given location (marked
by a bold circle) for hs= 1 (figure 4a) and hs= 2 (figure 4b) step sizes. The numbers,
where appearing, specify the values of Ncoll at the indicated sections. With increasing
|cy/cx|, Ncoll increases, and the transition between the fin and fout sections becomes
more and more frequent. The contribution of these sections becomes more dominant
with increasing xp → ld, as a relatively larger number of particles experience more
sidewall collisions prior to arriving at (xp, yp).
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4

FIGURE 4. Division of the x> 0 downstream part of a specularly reflecting channel into
sections of particles originating from the inlet (blue) and outlet (red) at a given location
(xp, yp). Channels with step sizes (a) hs = 1 and (b) hs = 2 are presented. The numbers,
where appearing, denote the number Ncoll of particle–wall collisions occurring between 0<
x< xp, prior to particle arrival at (xp, yp).

4. Numerical scheme: DSMC method

The direct simulation Monte Carlo method is the most widely used method for
simulating non-equilibrium gas flows. The method was initially introduced for gas
simulations as a direct numerical coding of the dynamics of a dilute gas (Bird 1994),
and was later on shown to yield results which converge, in a suitable limit, to the
solution of the Boltzmann equation (Wagner 1992). Within the DSMC framework,
the velocity distribution function of the gas molecules is represented by a number of
computational particles. The computational domain is divided into a mesh of cells with
the size of the cells being 1x∗, which is smaller than the particles’ mean free path λ∗.
Particles motions and interactions are decoupled over a time step 1t∗, being shorter
than the local mean free time τ ∗ between collisions. In each time step, the particles
are first translated as if they do not interact with each other. Then, the particles are
sorted into computational cells and collisions are evaluated stochastically, conserving
the collision momentum and energy invariants. The computational cells are then used
to evaluate the macroscopic fields, which are obtained through weighted averages of
the particle properties.

In the present work we apply the DSMC algorithm to analyse the micro-step
problem for arbitrary, and particularly large, Knudsen numbers, Kn= λ∗/h∗in� 1. The
collisionless-limit results reported in § 5.1 were computed by disregarding the collision
step in the simulations, whereas the numerical solutions in § 5.2 were calculated using
the hard-sphere model of molecular interactions. The two-dimensional computational
domain was divided into cells of equal size not exceeding 1x∗ = 0.01λ∗, and the
time step was set no larger than 1t∗ = 0.002τ ∗. At the initial state, the simulation
domain contained no particles. Then, at each time step, computational particles were
inserted from the outlet and inlet sections, by sampling the flux of the Maxwellian
distributions specified in (2.1). Computational particles crossing the inlet and outlet
boundaries from inside the channel were removed from the simulation domain, and
diffuse or specular reflections were applied to describe the scattering from the channel
solid walls. The simulation was followed until a steady state was formed, by letting
the transient behaviour evolve into a time-independent solution. The calculation of
the macroscopic quantities commenced after a steady state was reached, with the
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sampling time duration determined by requiring that the relative statistical error does
not exceed 0.05 of the signal. The average number of particles per cell was taken
to be ≈ 25, and a typical computation lasted a few hours using a single processor
Intelr CoreTM i7-8700 machine (12M Cache, up to 4.60 GHz). To verify the accuracy
of the results, a convergence analysis (not detailed here for brevity) was carried out.
This has indicated that our simulation predictions are nearly unaffected by a decrease
in the above-mentioned cells size and time step, or by an increase in the number of
particles taken per cell, thus ensuring the grid independence of our DSMC data.

While it is commonly accepted that free-molecular DSMC calculations are less
demanding than finite Knudsen simulations, the geometrical singularities present in
the current set-up have made the analysis in the ballistic regime relatively challenging.
Specifically, since sharp discontinuities occur in the vicinity of the step edges, an
exceedingly larger number of cells were required to obtain the fine details of the
solution in these areas. Molecular collisions, where present, were found to smoothen
these discontinuities, and reduce the cost of describing the flow details near the step
corners. This makes the analytical solution derived in § 3 of particular significance,
even from the computational point of view.

5. Results
Our results are next presented for the collisionless-flow regime (§ 5.1), where the

effects of different outlet gas conditions (ρout and Tout) and different wall conditions
(diffuse or specular) are considered. To investigate the separate impacts of reservoir
density and temperature non-uniformities, we distinguish between ‘density-driven’
(ρout < 1, Tout = 1) and ‘temperature-driven’ (ρout = 1, Tout < 1) flow set-ups, and seek
to rationalize the differences between purely diffuse and purely specular channels in
each case. In § 5.2, the effect of collisions at large (yet finite) Knudsen numbers is
introduced, to characterize the breakdown of the free-molecular regime, and observe
the flow-field variations with decreasing Kn. To simplify the presentation, we fix the
channel wall sizes to lu = ld = hs = 1. In cases specified, the step size hs is varied
from its nominal unity value.

5.1. Free-molecular regime
Focusing on free-molecular conditions, figure 5 first validates the ballistic analytical
solution through comparison with collisionless DSMC results. The figure shows
x-variations of the density and x-velocity fields at a constant value of y = 0.002,
slightly above the step level y = 0. The results are presented for both diffuse- and
specular-reflecting channels. Density- and temperature-driven flow set-ups (with
ρout = 0.1 and Tout = 0.1, respectively) are shown in figures 5(a,b) and 5(c,d),
respectively. The agreement between collision-free DSMC and analytical results
is very good in all cases, supporting the accurateness of both schemes. Any small
discrepancies may be attributed to the statistical scattering inherent in DSMC output,
which is particularly visible in the specular wall set-up data. Based on the agreement
in figure 5, as well as in all other parameter combinations studied, further results
in this section are based on the analytical solution only, which requires only minor
computational effort to carry out. The breakdown of the free-molecular regime with
decreasing Kn is discussed in § 5.2, where the effect of molecular collisions is
introduced.

Inspecting the results in figure 5, the occurrence of a ‘jump’ in most of the
hydrodynamic field values at the step section x = 0 is remarkable. This agrees with
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FIGURE 5. Comparison between the free-molecular analytic (lines) and DSMC (symbols)
solutions for (a,b) density-driven (ρout = 0.1, Tout = 1) and (c,d) temperature-driven (Tout =

0.1, ρout = 1) flow set-ups. The black solid lines and crosses denote results for a channel
with diffuse walls, and the blue dashed curves and circles mark data for a channel with
specular walls. All comparisons are made at y= 0.002 along −1 6 x 6 1.

previous DSMC investigations (Agrawal et al. 2005; Xue et al. 2005), reporting on a
similar system trend at high Knudsen numbers, and may be rationalized based on the
free-molecular flow analysis in § 3. To this end, it is recalled that particles reflected
from the step wall cannot arrive directly at the upstream x < 0 part of the channel.
Specifically, in a diffuse-reflecting channel, passage to the x < 0 part may occur
only after an additional particle collision takes place with the downstream ld wall, or
the x > 0 part of the upper l boundary. For specular-reflecting surfaces, passage of
step-emitted particles to the upstream part of the channel is precluded at any stage.
Common to both diffuse and specular configurations, it is this ‘invisibility’ of the
step to the −lu 6 x< 0 end of the channel that results in sharp variations of the flow
field at x = 0. Following similar reasoning, these gradients are expected to reduce,
as observed in Agrawal et al. (2005) and Xue et al. (2005), with a decrease in the
Knudsen number, since molecular collisions result in indirect transfer of momentum
from the step wall to the upstream channel section.

While previous works have focused on channels with diffuse-reflecting boundaries
only, the current results exhibit significant differences between these and the
counterpart specular-reflecting configurations. In line with the specular wall analysis
in § 3.2, the hydrodynamic fields in this case retain the constant values predicted
by (3.19) for x < 0, whereas x- and y-variations are viewed for diffuse-reflecting
channels. Notably, the density field retains its same constant value also for x> 0 in
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FIGURE 6. The free-molecular flow field in (a,b) density-driven (ρout = 0.1, Tout = 1) and
(c,d) temperature-driven (Tout = 0.1, ρout = 1) flow set-ups: (a,c) and (b,d) show results for
channels with diffuse and specular walls, respectively. The contours and colourmaps show
the flow streamlines and gas speeds, respectively.

the temperature-driven specular case (see the blue line and circles in figure 5c). This
value remains unchanged also with y, which makes the temperature-driven flow in
a specular-reflecting channel incompressible, regardless of the imposed temperature
drop. As shown later on (see figure 9), this result is valid only in the free-molecular
regime, whereas particle collisions, even to a small extent, turn the flow compressible.
For later reference it is also noted that the x-velocity amplitudes obtained in the
density-driven case are higher than in the temperature-driven case, although generated
by the same imposed pressure drop, pout = ρoutTout = 0.1. In addition, the velocity
amplitude is, in most cases, larger in the specular compared with the diffuse wall
set-up at fixed outlet conditions.

An overview of the flow field (streamlines and velocity amplitudes) generated in the
density- and temperature-driven cases is presented in figure 6, which also compares
between diffuse (figures 6a and 6c) and specular (figures 6b and 6d) reflecting
channels. Inspecting the streamline contours, the flow appears fully attached to the
step in all cases, with markedly low flow speeds in the vicinity of the step. In line
with the results in figure 5, the flow speed in the density-driven case is significantly
(more than twice) larger in the density-driven compared with the temperature-driven
case. The extent of the speed jump at x=0 (equivalent to the sharp gradients observed
in figure 5 in the density and x-velocity component at x= 0) reduces with increasing
distance y from the step edge singularity.

Further insight into the above results may be obtained by inspecting the effects of
problem parameters on the gas mass flow rate,

ṁ=
∫ 1

0
ρ(x< 0, y)ux(x< 0, y) dy=

∫ 1

−hs

ρ(x> 0, y)ux(x> 0, y) dy, (5.1)
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passing through the channel. Mass conservation considerations impose that ṁ is
constant along the channel, and it is therefore sufficient to calculate its value at a
single x-location. In the specular-reflecting case, substituting equation (3.19) into (5.1)
and integrating, we find

ṁspecular =
1

2
√

π
(1− ρout

√
Tout), (5.2)

indicating that the flow rate vanishes where ρout
√

Tout = 1. Backward (with ux > 0)
and forward (ux < 0) facing step flows occur for ρout

√
Tout < 1 and ρout

√
Tout > 1,

respectively. The result in (5.2) is independent of the channel dimensions, and, in
particular, of the step size, and is identical to the mass flow rate obtained through
an infinitely thin slit (Cercignani 1975). The linear and square-root dependencies of
ṁ on ρout and Tout, respectively, reflect the larger x-velocities obtained in the former
case, as presented in figure 5 (cf. the dashed lines and circles in figures 5b and 5d).

While the channel geometry has no effect on the value of ṁ in the specular-
reflecting set-up, it does alter the result for diffuse scattering walls. Different from
the specular case, a particle entering the channel from the inlet reservoir may not
leave it from the outlet when diffuse conditions are imposed. This results in reductions
in both the flow speed, as reflected by the results in figures 5 and 6, and the overall
mass flow rate, demonstrating the diminished ‘permeability’ of a diffuse channel to
free-molecular gas transfer. Previous works have considered the effects of channel
size and boundary conditions on free-molecular gas transfer in straight (non-stepped)
channels, based on Clausing’s integral equation (Clausing 1932) and follow-up
approximations (e.g. Berman 1965; Helmer 1967). The particular impact of channel
step on the free-molecular flow rate is discussed below.

Figure 7 shows the effects of the outlet conditions ρout and Tout, as well as the
step size hs, on the value of ṁ in the collisionless-flow regime, for both diffuse- and
specular-reflecting channels. The dashed curves illustrate expression (5.2) for ṁspecular,
showing the linear and square-root dependencies on ρout and Tout in figures 7(a)
and 7(b), respectively, and the independence on hs in figure 7(c). Inspecting the
effect of diffuse wall conditions on ṁ, the comparison between the dashed and solid
lines illustrates the reduction in the mass flow rate compared with the specular wall
set-up. Thus, while ṁ = 0 in both configurations for ρout = Tout = 1, the mass flow
rate in the diffuse case is consistently lower by ṁdiffuse/ṁspecular ≈ 0.58 in figures 7(a)
and 7(b). The specific effect of the step size is shown in figure 7(c), where hs is
varied for the density-driven (ρout = 0.1, Tout = 1; black lines) and temperature-driven
(ρout = 1, Tout = 0.1; blue curves) flow set-ups. Different from the specular wall
configuration, ṁ is monotonically increasing with hs in the diffuse case, starting
from its straight channel value at hs = 0, and reaching a plateau for hs & 1. Notably,
although the step is obscured from the inlet section (as there are no particles emitted
from the step and directly reaching the inlet; see § 3.1), it does affect the axial flow
velocity and flow rate through the back reflection of particles arriving from the outlet,
and the impact on the upper (l) and downstream (ld) wall density fluxes, ρl(x) and
ρd(x). For the choices of parameters made in figure 7(c), this leads to an increase
in ṁdiffuse of more than 15 % between its non-stepped (hs = 0) and stepped (hs & 1)
values. The highest value of ṁdiffuse is nevertheless smaller than its counterpart ṁspecular
value, yielding the above-mentioned common ṁdiffuse/ṁspecular ≈ 0.58 ratio in the cases
presented.

Having studied the gas behaviour at large density and temperature drops between
the inlet and outlet reservoirs, it appears of interest to examine the collisionless-flow
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FIGURE 7. Effects of the (a) outlet density ρout, (b) outlet temperature Tout and (c) step
height hs, on the mass flow rate ṁ in the free-molecular regime. Solid and dashed curves
show results for channels with diffuse and specular walls, respectively. In (a,b), hs = 1,
with Tout = 1 in (a), and ρout = 1 in (b). In (c), the ρout = 0.1 and Tout = 0.1 notations
pertain to density-driven (with Tout= 1) and temperature-driven (with ρout= 1) flow set-ups,
respectively.

regime in cases where smaller thermodynamic non-uniformities are imposed. As
smaller thermodynamic drops result in lower flow velocities, the DSMC scheme
becomes increasingly inefficient for ρout, Tout→ 1 due to a significant decrease in the
simulation signal to noise ratio. It is in this limit where the analytic solution becomes
of particular value to study the free-molecular flow field, as described below.

Based on previous DSMC investigations (Xue et al. 2005; Darbandi & Roohi 2011;
Mahdavi et al. 2014; Mahdavi & Roohi 2015; Gavasane et al. 2018), it is expected
that no flow detachment (in the form of step separation and recirculation) occurs at
free-molecular conditions. This is supported by the results in figure 6, showing fully
attached streamline profiles at the step in set-ups with high density and temperature
drops. Yet, qualitatively different results are obtained at lower imposed drops, as
illustrated in figure 8. The figure presents the effects of increasing Tout and the step
size hs on the velocity field in the downstream x ∈ [0, 1], y ∈ [−hs, 0] part of the
channel, for ρout = 1. Each panel of the figure shows the flow streamlines (contours)
and gas speed (colourmaps) at a given combination of Tout and hs. The results are
based on the analytic solution, as the exceedingly low flow velocities (|u| � 0.01)
encountered in the vicinity of the step for these parameter combinations prohibit
efficient application of the DSMC scheme (see the above discussion).
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FIGURE 8. Effects of the step size ((a,b) hs = 1; (c,d) hs = 3) and outlet temperature
((a,c) Tout = 0.4; (b,d) Tout = 0.8) on the flow streamlines (curves) and gas speed
(colourmaps) in the vicinity of the step wall (zone III) at free-molecular conditions. In all
cases, ρout = 1, and the channel walls are diffusely reflecting. The dashed curves depict
streamlines originating and ending at the (0, 0) and (0, −hs) edges of the step surface,
respectively.

In a qualitative difference from the flow pattern in figure 6, the results in figure 8
indicate a zone in the vicinity of the step surface where the flow streamlines originate
and end at the step (0, 0) and (0, −hs) edge points, respectively. Marking these
streamlines by dashed curves, the extent of this zone increases with increasing
Tout→ 1 and hs, occupying nearly half of the downstream ld wall for the Tout = 0.8
and hs = 3 combination in figure 8(d). This is accompanied by an overall decrease
in the flow velocity amplitude, as depicted by the speed colourmaps. Along each of
the dashed streamlines the gas translates from the upper (0, 0) to the lower (0,−hs)

stagnation points. Notably, this ‘detached’ zone is quantitatively different from the
recirculation-flow pattern common at lower Knudsen numbers, where closed contour
streamlines are formed (see, e.g. figures 10d–f ). The present type of flow detachment
may nevertheless be of fundamental and practical significance, as the gas located in
the dashed streamline zone is separated from the bulk fluid by not transporting to
the channel outlet section. With decreasing Tout and hs, higher gas velocities occur
at the step wall, and the separated zone becomes thinner, as presented in figure 8(a).
A similar behaviour, not presented here, was also obtained in the density-driven
flow (ρout → 1, Tout = 1) and specular-reflecting channel set-ups. Since higher flow
velocities are obtained in these configurations (see figures 5b and 6a,b), relatively
larger ρout→ 1 values are required to observe detached gas layers of a similar size
to those shown in figure 8.
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FIGURE 9. Breakdown of the free-molecular regime with decreasing Knudsen number:
x-variations at y = 0.01 of the (a,c) density and (b,d) x-velocity fields for (a,b) ρout =

0.1, Tout = 1 and diffuse-reflecting boundaries; (c,d) ρout = 1, Tout = 0.1 and
specular-reflecting boundaries. The solid line shows the free-molecular solution and the
symbols mark DSMC data at the indicated values of Kn.

5.2. Effect of molecular collisions
Having examined the collisionless regime in detail, we turn to discuss the backward
step flow problem at relatively high, yet finite, Knudsen numbers. This is important to
assess the range of validity of the free-molecular description at high Kn, and to gain
insight into the qualitative effect of non-frequent molecular collisions on the gas flow
field.

To start, figure 9 examines the breakdown of the free-molecular regime with
decreasing Knudsen number. Applying DSMC calculations, the figure shows
x-variations of the density and x-velocity component at a constant y= 0.01, comparing
the free-molecular (solid line) and finite-Kn (symbols) distributions. Figures 9(a) and
9(b) present a density-driven flow set-up (ρout = 0.1, Tout = 1) with diffuse-reflecting
boundaries, whereas figures 9(c) and 9(d) show a temperature-driven configuration
(ρout = 1, Tout = 0.1) with specular-reflecting walls. For easy reference, the outlet
reservoir conditions replicate those considered in figures 5 and 6.

Focusing on the density-driven set-up in figures 9(a) and 9(b), it is observed that
the collisionless description remains valid till Kn ≈ 1, where molecular collisions
result in a slight smoothing of the sharp jump obtained at x= 0. The free-molecular
field turns invalid for Kn . 1, where the effect of molecular collisions becomes more
significant and results in large discrepancies from the collisionless result, as shown
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FIGURE 10. Effects of the Knudsen number ((a,d) Kn= 5; (b,e) Kn= 1; (c, f ) Kn= 0.1)
and outlet reservoir conditions ((a–c) ρout = 0.1, Tout = 1 and diffuse-reflecting walls;
(d–f ) ρout = 1, Tout = 0.1 and specular-reflecting walls) on the flow streamlines (curves)
and gas speed (colourmaps).

by the triangle-marked Kn = 0.1 curve. While a qualitatively similar breakdown
is observed in the temperature-driven flow set-up in figures 9(c) and 9(d), it is
remarkable that observable differences (up to ≈4 %) are found even at Kn= 100. It is
therefore noted that the breakdown of the collisionless regime occurs at much higher
Knudsen numbers in the set-up where lower flow speeds occur (cf. figures 6a and 6d).
Here, even a seemingly slight impact of collisions results in a visible departure from
the incompressible free-molecular state.

Further insight into the breakdown of the collisionless regime is gained by
inspecting the effect of decreasing Kn on the overall gas flow speed and streamlines.
This is carried out in figure 10, which presents results for the diffuse-reflecting
(figures 10a–c) and specular-emitting (figures 10d–f ) configurations considered in
figure 9. Starting with the former, it is observed that the flow field remains nearly
unchanged between the Kn= 5 and Kn= 1 set-ups in figures 10(a) and 10(b), which
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are essentially identical with the collisionless-flow map in figure 6(a). This is in
agreement with the results in figures 9(a) and 9(b), showing that the collisionless
description remains effective up to Kn≈ 1 in this case. At Kn= 0.1, however, the flow
map in figure 10(c) indicates an increase in the gas speed, accompanied by some
irregularities in the flow streamlines in the vicinity of the step. At slightly lower
Knudsen numbers, these irregularities form into a distinct flow recirculation zone
near the step. It is, therefore, within the transition between the attached and detached
flow profiles, where increasing flow speeds occur in the bulk, and recirculating gas
velocities first appear at the step, that the free-molecular description breaks down.

A similar observation, yet at considerably larger Knudsen numbers, can be
made in the specular-reflecting set-up presented in figure 10(d–f ). Here, according
to figures 9(c) and 9(d), the breakdown of the free-molecular regime takes place
at a much higher Kn ≈ 100. Reducing Kn further, the results in figure 10(d) show
that step detachment occurs already at Kn = 5, and intensifies considerably (in
terms of both velocity amplitude and recirculation zone size) with decreasing Kn.
Characterized by lower speeds compared with the counterpart density-driven set-up,
the temperature-driven flow is found to be more susceptible to detachment from the
step at relatively higher levels of rarefaction.

In detecting flow separation in previous continuum investigations, an inspection of
the wall shear stress variations along the downstream ld surface has been undertaken,
with a change in its sign identifying the flow reattachment point. Notably, this does
not provide an appropriate criterion in the present problem, where large Knudsen
number flows over diffuse- and specular-reflecting walls are considered. First, our
results demonstrate that flow separation occurs also in specular-reflecting channels (see
figure 10d–f ), where the wall shear stress identically vanishes, with no change in sign
permitted. Additionally, as illustrated by figure 8, the pattern of flow detachment at
free-molecular conditions is composed of streamlines connecting the step edge points,
not coinciding with any point along the downstream surface. Thus, rather than tracing
the value of the wall skin friction, we suggest observing the quantitative pattern of
the flow velocity field as a direct measure for the occurrence of flow separation.
Specifically, flow detachment is determined in cases where coherent reverse flow is
observed in the vicinity of the step, composing streamlines that do not commence
or terminate at the inlet or outlet sections, and combining simultaneous negative
and positive x- and y-velocity components, respectively. This direct criterion, which
appears more appropriate in the current context, reveals the inefficiency of using the
wall shear stress measure for detecting flow separation, and further demonstrates the
significance of our results.

As the discussion in this section relies on DSMC calculations only, more rigorous
analysis is desirable to clarify the effect of molecular collisions on the formation of
step flow detachment. A starting point for such a calculation may be an inverse-Kn
power series representation of the solution to the Boltzmann equation, where the
present collisionless description serves as a leading-order approximation. Obtaining
higher-order correction terms may then assist in shedding light on the effects of
particle interactions on step separation and reattachment phenomena. It may also be
useful in extending the results in figure 8, for the free-molecular stagnation point
detachment, to cases where molecular collisions occur. These topics will be addressed
in a future work.

6. Conclusion
We studied the two-dimensional steady channel flow of a rarefied gas over a

backward facing step in the limit of large Knudsen numbers. The free-molecular
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problem was solved analytically for both diffuse- and specular-reflecting channels,
and the solutions were validated through comparison with collision-free DSMC
calculations. Prescribing the density and temperature differences between the inlet
and outlet external conditions, the results for density- and temperature-drop-driven
flows were analysed, revealing higher flow velocities and mass flow rates in the
former. While the flow rate was unaffected by the step geometry in the specular
case, it was found to increase with the step size in the diffuse-reflecting set-up.
At conditions where small flow velocities occur, free-molecular flow detachment
was observed in the form of streamlines connecting the step edge stagnation points.
Considering the problem at finite Knudsen numbers, the collisionless-flow regime was
shown to break down at higher Knudsen numbers for lower gas speeds, followed by
the occurrence of step separation and recirculation flows.

Reviewing existing studies on rarefied gas flows over micro-steps (Beskok 2001;
Baysal et al. 2004; Xue et al. 2005; Hsieh et al. 2010; Bao & Lin 2011; Darbandi
& Roohi 2011; Mahdavi et al. 2014; Mahdavi & Roohi 2015; Gavasane et al.
2018), the current work presents several new findings that are of fundamental and
practical significance. In contrast to the common view, it is first demonstrated that
step detachment may occur at free-molecular conditions, identified by a unique
velocity profile. It is then shown that ‘conventional’ flow detachment, in the form
of a recirculating flow reattaching along the downstream channel wall, may occur
at high (yet finite) Knudsen conditions, which are not captured by the collisionless
description. Different from existing works, the present contribution considers the
impact of replacing the (previously studied) diffuse with specular wall conditions on
the flow characteristics. Unlike in a diffuse-reflecting channel, the step is completely
obscured from the upstream part of a specular channel, resulting in uniform flow
along its upstream section (see figures 6b and 6d). This, in turn, results in mass flow
rates that are larger in the specular-reflecting configuration, and are unaffected by the
step geometry. Comparing the set-ups of temperature- and density-drop-driven flows,
our work rationalizes the higher flow rates in the latter. Making use of expression
(5.2) for ṁspecular, the respective linear and square-root dependencies of the specular
channel flow rate on the density and temperature drops are attributed to the lower
gas velocities obtained in the temperature-driven case, making it more susceptible
to flow separation. The free-molecular analysis is also useful for rationalizing the
previously reported steep flow-field gradients obtained at the step section at high
Knudsen numbers (Agrawal et al. 2005; Xue et al. 2005), and explains their decay
with decreasing Kn (see figure 5 and its discussion).

The present work may be followed in several directions. A relatively straightforward
extension would be the analysis of the effect of thermal boundary conditions on the
gas flow field in the ballistic regime. Relevant in a diffuse wall set-up, this may be
carried out by either varying the wall temperatures, as carried out in Mahdavi et al.
(2014) and Mahdavi & Roohi (2015) using the DSMC method, or by changing the
type of conditions from isothermal- to heat-flux-prescribed walls. In a different context,
the free-molecular description may be also useful in analysing the impact of wall
geometry on the Knudsen diffusivity (namely, the effective permeability) of a gas in a
porous medium, where the pore size is small compared with the molecular mean free
path (Celestini & Mortessagne 2008). Here, the effect of pore boundary conditions
should be significant, as demonstrated in previous studies (Santra & Sapoval 1998;
Arya, Chang & Maginn 2003; Krekelberg et al. 2011).

A more elaborate extension of the present contribution would be a direct analysis of
the effect of molecular collisions on the system state based on the Boltzmann kinetic
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equation. Inspecting the results in figure 10, it appears that step flow separation and
reattachment may occur at relatively large Knudsen numbers. Using the collisionless-
flow description as a leading-order approximation, it may therefore be possible to
expand the solution for the Boltzmann equation in inverse powers of the Knudsen
number, and obtain higher-order corrections that may shed light on the microscopic
description of gas-flow detachment. This, as well as the above, consist of topics for
future investigations.
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