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Abstract. Here we prove that almost all interval exchange transformations which
reverse orientation, in at least one interval, have a periodic point where the derivative
is - 1 . Therefore they are periodic in an open neighborhood of the periodic point.

1. Introduction
Let n be in Z, n>2, and An be the positive cone in R", that is, the set of all
A = (A,, . . . , \n) in R" where A, > 0 for all i. Let A be in An. We set

This gives a partition of (0, |A|), |A| = AJ+ • • • +An, into n open intervals

Let a be a permutation on { 1 , . . . , n}, and

We set /?r = ACA"). Let F be a subset of { 1 , . . . , «}. We define T= r(aF>A), the
[or, F, A) interval exchange transformation with flip set F, on the interval (0, |A|) by

'(()_,, if igFandxeT,-,
TX ' ~ ' - « - • - - - "" ' (o-i , i f i eFandxeT, .

T preserves measure and reverses orientation on F,, for i in F, otherwise T preserves
orientation. If F is empty, we say that T is a standard interval exchange trans-
formation and we denote it by T((T>A). For convenience, we define T in £> =
(0, |A|)\{>3, , . . . , Ai-J, in the case where limxT/3. Tx ̂  limxlft Tx, for every 1 < i < n:
otherwise, T exchanges less than n intervals and has less than n - 1 discontinuities.

In general, standard interval exchange transformations have good ergodic proper-
ties. Now we recall some basic results on these maps.

We call T minimal, if for almost all x in D, the orbit of x, o(x) — {T"x: n e Z}, is
dense in the closed interval [0, |A|]. Let 5J, be the set of all irreducible permutations
a on { 1 , . . . , n} such that a{\,... J} = { 1 , . . . , j} if, and only if j = n. We say that
A in An is irrational, if the only rational relations between A,, . . . , An are multiples
of |A| = A,+ • • • +AB. This gives a criterion for the minimality of T.

t Supported in part by CNPq Grant 30.1456/80.
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516 A. Nogueira

THEOREM (Keane [1]). Let a in S'n and A in An be irrational, then the interval
exchange T(CTF) is minimal. Therefore, for almost all A in An, T(tr,\) is minimal.

Throughout the paper the 'almost all' concerning interval exchanges is with respect
to the Lebesgue measure in the positive cone An.

For interval exchanges, minimality does not imply unique ergodicity (see Sataev
[2]). The latter means that the only invariant Borelian measures for T are the positive
multiples of the Lebesgue measure on the interval (0, |A |). Neither does the irrational-
ity condition for A imply unique ergodicity for the (cr, A) interval exchange, with
o- in S'n (see Keane [3]). However we have the following result.
THEOREM (Masur [4] and Veech [5]). If cr is in S'n, then for almost all A in An the
interval exchange T(o.A) is uniquely ergodic.

Earlier, Veech [6] had proved this result for standard exchanges in the case n = 4.
It was noticed by Keane [1] that for n = 3 the problem could be reduced to rotations
on the circle, the case n = 2 intervals, where unique ergodicity is equivalent to the
irrationality of A,/1A|.

Here we prove that the opposite to what happens for standard interval exchanges,
occurs for interval exchanges with flips: in general they are not minimal.

Let &„ be the collection of all nonempty subsets of {1,. . . ,«}.
THEOREM 1. Let a be in S'n and F in 3Fn, then for almost all A in An there exists a
point x0 = xo(\) in (0, | A |) and a positive integer k = k( A) such that for the interval
exchange T= T(<T>FA)

7**0 = x<, and -— x o = - l . (3)
\ ax )

Moreover, this is an open property in An.
A point x0 which satisfies (3), is called a flipped periodic point for T, in this case

there is a nonempty interval / such that

T2kx = x, for all x in /.

Therefore, Theorem 1 implies that, for almost all A in An, 7"(o.FA) is nonergodic. We
call the set {x0, Tx0,..., Tk~lx0} a flipped periodic orbit of T. In particular, if k = 1,
we say that x0 is a flipped fixed point for T.

It is worthwhile to mention that Keane [1] had noticed that any exchange of two
intervals with one flip is periodic.

There are interval exchanges with flips which are minimal. An example is the
following: Let 0< a <j be irrational and

'j-ct+x, ifO<x<a

5 + x-a, ifa<x<|
Tx='

f+(f-x), if |.

A-x, i f f < x < l .
T is an interval exchange on the interval (0,1) which reverses orientation in
(1.1)^(1.1)- T3 restricted to the interval (0,|) is a rotation by a, therefore T is
uniquely ergodic.
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An interesting example is given by Gutierrez [7]. There he proves that on any
nonorientable surface of genus >4 (i.e., a torus with at least two cross-caps) there
exists a C°° vector field which has dense nonorientable trajectories on the surface.
In order to do this, he constructs a minimal interval exchange with flips, say T, such
that any Poincare's first return map induced on an interval by T has flips. The
non-orientability of the trajectories comes from this property. In [8], the author
introduces a method to construct such minimal interval exchanges and is able to
show that inside this class, there are nondenumberable many ones which are uniquely
ergodic. According to our present result (Theorem 1), this is in some sense the best
possible claim one can make about minimal interval exchanges with flips.

2. The inducing process
Before we state some preliminary results, some remarks are in order.

If the permutation is reducible, the interval exchange cannot have a dense orbit.
So, as far as Theorem 1 is concerned, we just have to care about irreducible
permutations. In order to have an interval exchange with flips which is discontinuous
at j3,, fo; 1 < i < n, that is,

lim Tx 7^ lim Tx,

it is not necessary that

o-(i + l)*o-(i) + l, (4)

as it is the case for standard ones. The transformations studied in [7,8] do not
satisfy (4) for every i.

Theorem 1 is a consequence of a simple fact which is exploited in the proof. Let
T be an interval exchange with flips defined in D and / <= D be an open interval.
Assume that for a certain k > 1

(i) InTkI* 0,
(ii) TkI is a translated flipped image of /.

Therefore Tk has a flipped fixed point in / n TkI. We will show that this occurs
very often with interval exchanges with flips.

Let a be in S'n and F in &„. We set

We identify \a>F with An. Therefore, for almost all T= T(o. F A) in A^F, we have
either (a) Ao.-'(n)<An or (b) An<Ao.-'(n). Let 7 = (0, x,) be an open interval, where

_ f |A|-Aa->(n), i
1 l|A|-An, i

For almost all y in /, we define

in case a,
in case b.

jTy itTyel,
I Ty , otherwise.

U is called the Poincare first return map induced on / by T. This suitable defined
map was introduced by Rauzy [9]. We define for almost all T in A^F, the transfor-
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mation
(cr, F,A)eSl x ^ x A ^ ( ( r ' , F', A')eSnx&nxAn,

where U= r(o.jF. A.} and this triple is given by:

Case a. (i) If n £ F,

(ii) If neF,

if a~\n)£F, F' =

fc. (i)

(5)

if n^F, F' = {i"eF: i
{i€F: /<cr~1(n)}u{c7

H, ifi = a~'(n) and F' = F.

cr(i) + l, otherwise.

(i), if cr(i) <(r(n)

o-(i) + l, otherwise

"'(n)}; otherwise F' = F\{o-~'(n)}. In any case

, [A,, if i<n
\\n -Ao.-^,,), otherwise.

V(i), i f i so-^C)

cr(i-l), otherwise,

'(n)}u{i '+l:i€F and i><r~1(n)}; otherwise, F' =
I) + 1}U{I + 1: ie F and i><r~1(n)},

A,, ifi<o-~'(n)

An, ifi =
A,_1; otherwise.

(ii) If O--'(n)eF,

if ni?F,F = {ie
otherwise.

F' = {ieF:

a(i), if i<a--\n)
a(n), if i = <r~\n)

cr(i-l), otherwise

An,
A(r-'(
A,-_i,

if i <o--1(n)
if i = <r~1(»i)
if i = cr~l(n)
otherwise.

and

and
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We have neglected the set of all A such An = Xa--'(n)- As we have noticed above,
for each fixed pair (a; F) in S'n x ZFn, there are two choices for (cr', F') in the image
by 3? (5), namely {<TX, Ft) in case a, otherwise (o-2, F2) (see (6)).

" " l . ^ l

K,F
(6)

Ao-2if2

For almost all A in ACTjF, there exist an n x n matrix E = E(\), with det £ = ±1,
such that

A=£A'.
Case a.

f = n and7 = cr"'(«),

Case b.

_ f 1, if i =j or / = n ;
!> lo , otherwise

1, if i=jand i<cr~'(«)

/ = i +1 and o^Vn):

= n
<T i(n), otherwise

.0, otherwise.

We call E an elementary matrix. If we can carry on this process k times, we get
that

We call the sequence Ak(\) = £ , • • • En the expansion of A. In case this process
cannot be carried beyond the kgth stage, we say that A has a finite expansion, namely
A,(A) , . . . , ^ ( A ) . Otherwise, A has an infinite expansion. In this paper, we prove
that the latter form a vanishing set in ACT>F. For standard interval exchanges (without
flips), it is known that they form a full measure set.

Now we give an example where the expansion is finite, let (o-, F, A) in S'n x &n x An

be such that <r{n) = n-\, F contains n and Ao.-'(n)< An. Let (cr', F', A') be the image
of (cr, F, A) by £% (5). We have that cr'(n) = n, therefore cr' is not irreducible. This
implies that 0t is not defined at (a', F', A'), so the process has only one stage.

Let A be a matrix, if all entries of A are positive real numbers, we write A > 0.
At the kth stage of the inducing process, we recall that A = AkX

(k}. Let T, be the
image of T by $ and Tk the image of 7"fc_,. Let xk be the left endpoint of the
interval where Tk is defined, therefore xk is a decreasing sequence XO = |A| and

\ (Jc) _i _i \ (fc)
**fc — " 1 t ' * ' i A n .

Let Ajj be the entries of An and / , , . . . , / „ the intervals exchanged by Tk. A{j is
the number of times the interval i, visits the interval T, (see (2)) before returning
to (0, xk).

LEMMA 2.1. Let T= T(o.FA) be minimal and A irrational, then there exists a positive
integer m such that at the mth stage the matrix Am > 0.
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Proof. First we prove that there exist positive integers fc, and k2 such that xkl = /?„_!
and xfc, = )8n_2 (see (1)).

For any positive k such that xk >/?„_,, then xk_l-xk = \j for some l < i < n .
Therefore there exists fe, such that

Xk, + \ <Pn-l — xk1,

and this implies that xkl = j8n_,, otherwise /3n_i would be a discontinuity point for
Tkl which would be ommited by the sequence xk.

If xk>pn-2, for any positive fc, then x ^ - x ^ equals A,, for some l < i < « , or
xfci_,—xfcl. As above there exists k2 such that xfc2 = /3n_2.

The same reasoning proves that there exist positive integers 1,, and 12 such that

Let Tk2 be equal to T^tF.X) and /3j = A', + - - - + K\, for l < i < n . We note that
fix,..., f}n-3 are also discontinuity points for Tk2 which is an exchange of n intervals,
therefore /?n_3 equals ^'n-x or /3J,_2. So there exists fc3 such that xfcj = /3n_3. Besides
there exists 13 such that x,3 = /3"_3.

Therefore for any 1 < i < n, there exist fc; and 1, such that xki = /3n_, and x,. = /}£_,-.
Let l=min{/cn, l n } , so X , < | A | / 2 . Therefore |A(k)| goes to zero as /c->+oo.

Since T is minimal, there exist positive integers m and rtj, for any l < i , 7 < n ,
such that r r"/, c r f , where Ilt... ,In are the intervals exchanged by Tm. Moreover,
Tr" acts on /; as a translation, it may be a flipped translation. This means that the
entries of the matrix Am at mth stage are all positive, Am > 0. •

3. Proof of theorem 1
Let A be a positive n x n matrix with det ,4 = ±1. Let Cj = Z"=1 Ay be the norm of
the yth column of A. We define

p(A)= max ^ . (7)
lsj,l<n C,

We denote by An_, the n -1 simplex

AB_, = {A6AB:|A|=1}

and by v the Lebesgue measure on An_,. We set

Au
Z U A A , , . , . (8)

Now we consider interval exchanges on the interval (0,1). Let a in S'n and F in
&„ be fixed. We set A^p = {T(cr>F>A): A € An_J. We identify A^p with An_, and consider
the Lebesgue measure v on ACT>F.

Let To in the ACT F be fixed and assume that at the mth stage of the inducing
process we have the matrix Am. Therefore {T(o.FA): A e£Am&n_}} is the set of all T
in Ao.F associated with Am.

Let m be fixed, then there are only finitely many possible matrices Am defined
by T in ACTF. Let A .̂mF be the disjoint union U£AAn_u where Am runs over all
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possible matrices Am. Almost all T in A^p which is not in A^p, has a flipped
periodic orbit. Otherwise, T= T(<rFA) would have been defined by a A which is not
irrational and they form a vanishing set.

L E M M A 3.1 (Veech [10]). Let A>0 be an nxn matrix with detA = ±l. Then the

Jacobian of Z£A (8) on An_, is given by

/A(yi) = , .„, for all u in An_,.

In particular,

v(!£Ab. ) = (9)
« ! c , • • • cn'

where Cj is the norm of the jth column of A.
Let T— T(o.FA). We note that ifi is in F and A ,> | , then Thas a flipped fixed point.

LEMMA 3.2. Let Ak > 0 be a matrix corresponding to the kth stage in the expansion
of a certain T in ACTF. Then the probability of Tin ^AkAn^1 having a flipped periodic
point is greater than (1 +p(Ak))~".

Proof. For simplicity, we set A = Ak.
Let Ay.2, = {A e A,,.,: A! > i} , by Lemma 3.1

f [••-«! fl--,--».-
^/_2,) duA du2 • ••

J 1/2 Jo Jo

1

( C 1 M 1 + - - - + C B M B ) " '

where un = \ — ul—---— «„_]. It follows from a simple change of variables that

K ^ A ^ ) = n ! c i ( c 2 + C i ) . . . ( C n + Ci).

Almost all T in i?AAn_, is an interval exchange with flips. Let Tk be the transforma-
tion defined at the kth stage by T, therefore Tk is an interval exchange with flips.
If Tk flips the first interval, the probability of T in i^A, , . , having a flipped periodic
point is at least the ratio between the volume of J^UAj/i, and the volume of the
whole image of Z£A,

K^AJ/2) c 2 - - - c
>

where p(A) is defined in (7). Otherwise, Tk flips another interval and the lemma
follows. •

We call A* F the set of all r(<TiF>A) in A ^ such that the expansion of T, namely
Am = Am(\), is finite, or there exists an increasing sequence mk such that the
subsequence p(Amk) is bounded.

COROLLARY 3.3. Almost all T in A^ F has a flipped periodic point.

Proof. Here we consider only irrational A. In this case, if A has a finite expansion
it means that T has a flipped periodic point. Otherwise by Lemma 3.2 for a fixed
sequence mk at each stage at least a fixed positive fraction of A in i£Am An_, defines
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interval exchanges in A*F with flipped periodic points. Therefore almost all T in
A£F has a flipped periodic point. •

We call A^>F the complementary of A^,F in Aa>F, that is, the set of all T(o.FA) in
ACT>F such that the sequence p(Am(k)) goes to +00. In [11]. Kerckhoff proves that
for standard interval exchanges, the equivalent set A^1 is a vanishing set, recall that
in this case since there is no flip we omit F. He obtains from this result an alternative
proof of the unique ergodicity property of almost all interval exchanges in ACT. Here
we follow [11] to obtain a proof for the following lemma.

LEMMA 3.4. A" F is a vanishing set, that is, v(A^F) = 0.

The proof of Lemma 3.4 follows from the next three propositions (see Propositions
1.3, 1.4 and 1.5 in [11]). Their proofs will be omitted since they are similar to those
given in [11].

PROPOSITION 3.5. Let T( C T F A ) have an infinite expansion Ak = Ak{\). Then at any
stage kf, where Ako>0, the probability of a column increasing in norm by a factor of
K before being added to another column is less than n2/(K - 1 ) .

It is clear that as far as the norm of the columns is concerned, we can say that
at each stage Ak+l has been obtained from Ak having a column being added to
another one. By the definition of p(Ak), it increases, only if the norm of a certain
column of the matrices Ak increases more than the norm of another one. It remains
to prove that it is zero the probability that, throughout the process, a subset of
columns, other than the entire set, will be added amongst themselves over and over
without being added to outside columns. The next result proves that in certain set
up this cannot happen.

PROPOSITION 3.6. Let T be in ACTF. Assume that there exist positive integers k and
m such that at the fcth and the (k + m)th stages the induced interval exchanges, namely
Tk and Tk+m, have the same permutation and the same flip set. Then between these
two stages each column has been added to any other one.

This is a balancing condition, roughly speaking it implies that p is bounded
between those extreme stages.

Let A be a positive nxn matrix, we say that the columns vx, • • •, vk of A are
C- distributed, if

max — < C ,
isysk Cj

where C, is the norm of the column u,. The next proposition assures that for almost
all r(o.FA) in Ao-p, either A has a finite expansion, or infinitely often all columns of
Am(X), are C-distributed for a fixed C.

PROPOSITION 3.7. Let T(tr FA) be in A,,.F and Am be the mth matrix in the expansion
of A. Assume that the collection vt,..., vk of columns of Am is C-distributed. Then
with a positive probability, either one of the DJS will be added to a column outside the
collection before the maximum of the normal of the DJS increases by a factor K, or the
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expansion of A. is finite. Moreover this probability is independent ofAm depending only
on C and K.

Therefore the set of T in ACT F such that the columns of the matrix expansions
never become C-distributed is a vanishing set. The set where they become C-
distributed finitely many times is the countable union of vanishing sets, hence it is
also a vanishing set.

Theorem 1 follows directly from Corollary 3.3 together with Lemma 3.4.

4. On the number of flipped periodic orbits
Let a in S'n and F in &„ be fixed. We take T in ACT F which has a flipped periodic
orbit. Let 7", , . . . , Tk,... be the induced interval exchanges defined by T. Therefore
at a certain stage of the inducing process, namely the fcth, Tk exchanges n open
intervals / , , . . . , / „ , flips /„ and TkIn intersects /„. Moreover for the permutation 77
defined by Tk, -q(n) = n — 1. This implies that Tk has a flipped fixed point and for
the permutation T defined by Tk+l, r(n) = n, so we can regard Tk+J as an exchange
of the « - 1 first intervals. Although, as it stands in (5) 91 cannot be applied to Tk+U

since T is reducible. Since an exchange of two intervals with one flipped is always
periodic, that is, it has two flipped periodic orbits, by induction on the number n
of exchanged intervals, we conclude that an exchange in ACTF has at most n flipped
periodic orbits.

LEMMA 4.1. The set of interval exchanges in A^F which have n flipped periodic orbits,
has positive measure. Moreover, for any O s i < n the set of all interval exchanges in
Aa-p which have more than i flipped periodic orbits is open.

Proof. The property is open because a flipped periodic orbit is stable.
Let T be in ACT>p and assume that T has a flipped periodic orbit. As it was

mentioned above at the (k + l)st stage, we can define Tk+i as an exchange of n - 1
intervals. If Tk+l has flips, the set of interval exchanges in A,,F which have two
distinct flipped periodic orbits has positive measure.

Let A in An and a in An_, be the lengths of the intervals exchanged, respectively,
by Tk and Tk+l. The map

A€A n -»a€A n _ !

is just a projection, that is, a = (A! , . . . , An_,). Therefore its image is a full measure
set in An_i and Theorem 1 can be applied to it.

Using that any exchange of two intervals with one flipped has two distinct flipped
periodic orbits, by induction on n the claim of the lemma follows. So we only have
to prove that there exist such exchanges Tk+l with flips.

First we consider a case where there is only one flipped periodic orbit. Let T in
Sj,and G = {T" 1 ( / I ) , n}. Let A in An be such that Ao.-'(n)<An. Therefore r '=T( T i G - A )

has only one flipped periodic orbit, defined by the point xo = \\\~^(\^-'{n) + \n).
The first return map induced on the interval (0, |A|-An) by 7" exchanges n-\
intervals and preserves orientation. This would not be the case if G had another
element.
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Now we assume that G contains a- 1(n) and n. Let A in /?" be such that
^-'(n)+i + • ' " + An < Ao-^n). Therefore the first return map U induced on the interval
(0, A,H l-Ao-̂ n)) by T(T,a,\) has a flipped fixed point. Moreover U flips the last
maximal interval

and UI = I. U restricted to the interval (0, |A| — Atr-'(n)) is an exchange of n - 1
intervals with flips.

It follows that for any G containing>~'(n) and n the set of T in A T G which has
two distinct flipped periodic orbits has positive measure. Therefore this is true for
any G which contains n.

Let T be in A<,F and assume that T has a flipped periodic orbit. Therefore at a
certain stage, say the kth, Tk has a flip set which contains n. Let Ak be the matrix
associated with T at this stage. According to what we have proved above, there
exists a nonvanishing subset of %AkAn_, such that if A is in there, 7"((,FA) has two
flipped periodic orbits.

This proves Lemma 4.1. •

5. Billiards with flips
Motivated by interval exchanges with flips, we can define billiards with flips in
polygons. In a polygon P, we fix the set of the so-called flip sides. When the billiard
ball reaches a point in one of the flip sides, it leaves from the symmetric point of
this side with respect to its middle point with the reflected angle. When the ball hits
any other side of P, it behaves as a standard billiard ball.

Let us consider a billiard in a convex polygon P such that the flip sides of P are
chosen in such manner that the perpendicular to each flip side at its middle point
splits P into two symmetrical parts. It is interesting to note that in this case all well
defined trajectories of a billiard ball in P are periodic. This is the case for the
billiard in a rectangle with only one flip side (see figure 1).

initial
point

initial
direction

0

flip
side

<

FIGURE 1

^-^— "^

0
tt ^^^^

rectangle's
reflected copy

A billiard with flips in a rational polygon may induce on a given side an interval
exchange with flips. If this is the case and we make a small perturbation in the
initial angle of the trajectory, we still get a trajectory which induces an interval
exchange with flips. So this is an open property.
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