A LOGAL ERGODIC THEOREM ON L_{p}

J. R. BAXTER AND R. V. CHACON

1. Introduction. Two general types of pointwise ergodic theorems have been studied: those as t approaches infinity, and those as t approaches zero. This paper deals with the latter case, which is referred to as the local case.

Let (X, \mathscr{F}, μ) be a complete, σ-finite measure space. Let $\left\{T_{t}\right\}$ be a strongly continuous one-parameter semi-group of contractions on $\mathscr{L}_{1}(X, \mathscr{F}, \mu)$, defined for $t \geqq 0$. For T_{t} positive, it was shown independently in [2] and [5] that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t} \int_{0}^{t} T_{s} f(x) d s=f(x) \tag{1.1}
\end{equation*}
$$

almost everywhere on X, for any $f \in \mathscr{L}_{1}$. The same result was obtained in [1], with the continuity assumption weakened to having it hold for $t>0$.

It was also shown in [5] that (1.1) holds without the positivity assumption on T_{t}, provided that T_{t} is a contraction of \mathscr{L}_{∞}. In [3] the \mathscr{L}_{∞} restriction is removed, so that (1.1) actually holds for any continuous one-parameter semigroup of contractions on \mathscr{L}_{1}.

If we let $\left\{T_{t}\right\}$ be a strongly continuous semi-group of contractions of $L_{p}(X, \mathscr{F}, \mu)$, for a fixed $p, 1 \leqq p<+\infty$, and defined for $t \geqq 0$, then the limit (1.1) still holds for $f \in L_{p}$, provided that the semi-group is positive. This was shown in [4], where $\left\{T_{t}\right\}$ is not required to be a contraction, but merely a bounded operator. The question is raised in [4] of whether (1.1) remains true in the non-positive case. In this paper we prove:

Theorem 1. The limit (1.1) holds for $f \in L_{p}$ if $\left\{T_{t}\right\}$ is a strongly continuous semi-group of contractions of $L_{p}(X, \mathscr{F}, \mu)$, for a fixed $p, 1 \leqq p<+\infty$, and defined for $t \geqq 0$, provided that $\left\{T_{t}\right\}$ is also simultaneously a semi-group of contractions of $L_{\infty}(X, \mathscr{F}, \mu)$.

We also obtain a more general result:
Theorem 2. Let $\left\{T_{t}\right\}, t \geqq 0$ be a strongly continuous one-parameter semigroup of contractions on $\mathscr{L}_{p}(X, \mathscr{F}, \mu), 1 \leqq p<\infty$. Let there exist a measurable function h on $[0, \infty) \times X$ such that
(i) $h>0$ everywhere, and
(ii) $f \in \mathscr{L}_{p},|f(x)| \leqq h(t, x)$ for almost all $x \in X$ implies $\left|T_{s} f(x)\right| \leqq h(t+s, x)$ for almost all $x \in X$, for any $t, s \geqq 0$. Then (1.1) holds for all fin \mathscr{L}_{p}.

Theorem 2 yields Theorem 1 when $h \equiv 1$. More generally Theorem 2 gives convergence if $\left\|T_{t}\right\|_{\infty} \leqq e^{\alpha t}$.

In section 2 below, we prove a maximal lemma. Theorem 1 is proved in section 3, and Theorem 2 is obtained from Theorem 1 in section 4.
2. A maximal lemma. The main result of this section is Lemma 2. The following preliminary lemma is useful.

Lemma 1. Let T be a linear operator on a vector space V. Let $f, h_{k}, g_{k}, k=0,1$, \ldots, n, and $d_{k}, k=1, \ldots, n$, be elements of V such that:

$$
\begin{align*}
& f=h_{0}+g_{0} \tag{2.1}\\
& T g_{k}=g_{k+1}+d_{k+1}, h_{k+1}=h_{k}+d_{k+1}, k=0,1, \ldots, n-1 . \tag{2.2}
\end{align*}
$$

Then

$$
\begin{equation*}
f+T f+\ldots+T^{n} f=h_{n}+T h_{n-1}+\ldots+T^{n} h_{0}+g_{0}+\ldots+g_{n} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{n} f=T^{n} h_{0}+d_{n}+T d_{n-1}+\ldots+T^{n-1} d_{1}+g_{n} \tag{2.4}
\end{equation*}
$$

The proof of Lemma 1 is immediate by induction.
We now define a truncation operation for complex numbers.
Definition 1. For any complex numbers a and b and any $\gamma>0$ such that $|a| \leqq \gamma$, define

$$
\begin{equation*}
C_{\gamma}(a, b)=a+\lambda(b-a), \quad \text { where } 0 \leqq \lambda \leqq 1 \tag{2.5}
\end{equation*}
$$

and λ is the largest number between 0 and 1 such that $|a+\lambda(b-a)| \leqq \gamma$.
It is a straightforward matter to verify that for fixed γ, C_{γ} is a continuous function of the two variables a and b.

Lemma 2. Let (X, \mathscr{F}, μ) be a measure space. Let T be a linear contraction on $\mathscr{L}_{p}=\mathscr{L}_{p}(X, \mathscr{F}, \mu)$, such that
(2.6) $\quad\|T f\|_{\infty} \leqq\|f\|_{\infty}$ for each $f \in \mathscr{L}_{p} \cap \mathscr{L}_{\infty}$.

Let f be in \mathscr{L}_{p}, H a set of positive, finite measure, and let $\beta>0$ a number such that $\beta \geqq|f|$ on H. Let R be a measurable function on $H,|R| \geqq 3 \beta$ on H, and let N be a positive integer such that for each $x \in H$ there exists an integer $j, 0 \leqq j \leqq$ N, such that

$$
\begin{equation*}
R(x)=\frac{1}{j+1} \sum_{i=0}^{j} T^{i} f(x) \tag{2.7}
\end{equation*}
$$

Then there exist functions d_{1}, \ldots, d_{N}, g on X such that:

$$
\begin{equation*}
d_{k}=0 \text { on } X-H \text { and }\left|d_{1}+\ldots+d_{k}\right| \leqq 2 \beta \tag{2.8}
\end{equation*}
$$

on $H, k=1, \ldots, N$;

$$
\begin{align*}
& \|g\|_{p} \leqq\left\|f-C_{\beta}(0, f)\right\|_{p} \tag{2.9}\\
& T^{N} f=T^{N} C_{\beta}(0, f)+d_{N}+T d_{N-1}+\ldots+T^{N-1} d_{1}+g, \\
& C_{\beta}(f, R)=f+d_{1}+\ldots+d_{N} \text { on } H .
\end{align*}
$$

Proof. Let $h_{0}=C_{\beta}(0, f)$ and let $g_{0}=f-h_{0}$. Having defined h_{i} and g_{i} for $i=0,1, \ldots, k$, and having defined d_{i} for $i=1, \ldots, k, 0 \leqq k \leqq N-1$, let a function U_{k+1} be defined as follows:
(2.12) $U_{k+1}(x)=$ the projection as a two-dimensional vector of $T g_{k}(x)$ along $C_{\beta}(f, R)(x)-h_{k}(x)$ if $x \in H$ and $\operatorname{Tg}_{k}(x) \cdot\left[C_{\beta}(f, R)(x)-h_{k}(x)\right]>0$ (Here ". " denotes scalar product.); in all other cases let $U_{k+1}=0$.
Let
(2.13) $h_{k+1}=C_{\beta}\left(h_{k}, h_{k}+U_{k+1}\right)$.
(By an obvious induction we have $\left|h_{k}\right| \leqq \beta$ on X.) Let

$$
\begin{align*}
d_{k+1} & =h_{k+1}-h_{k} \tag{2.14}\\
g_{k+1} & =T g_{k}-d_{k+1}
\end{align*}
$$

This process defines $g_{0}, \ldots, g_{N}, h_{0}, \ldots, h_{N}$, and d_{1}, \ldots, d_{N}. Let $g=g_{N}$. From (2.13),

$$
\begin{equation*}
d_{k+1}(x)=\lambda_{k+1}(x) U_{k+1}(x), \quad \text { where } 0 \leqq \lambda_{k+1}(x) \leqq 1 \tag{2.16}
\end{equation*}
$$

Since $U_{k+1}(x)$ is either 0 or a projection of $\operatorname{Tg}_{k}(x)$ we see by (2.15) that

$$
\begin{equation*}
\left|g_{k+1}(x)\right| \leqq\left|\operatorname{Tg}_{k}(x)\right| . \tag{2.17}
\end{equation*}
$$

Hence

(2.18) $\left\|g_{k+1}\right\|_{p} \leqq\left\|g_{k}\right\|_{p}$,
and (2.9) follows.
By (2.12) and (2.16) we have $d_{k}=0$ on $X-H$. By (2.14), $d_{1}+\ldots+d_{k}=$ $h_{k}-h_{0}$, so by (2.13) we see that (2.8) holds.

Equation (2.10) is merely a rewritten version of (2.3). Thus only (2.11) remains to be proved. We can rewrite (2.11) as
(2.19) $\quad C_{\beta}(f, R)=h_{N}$ on H.

Suppose for some point $x \in H$ and some $k \leqq N-1$ that $h_{k}(x)=C_{\beta}(f, R)(x)$. It follows at once from (2.12) and (2.13) that $h_{k+1}(x)=C_{\beta}(f, R)(x)$ also. Thus, if at some point $x \in H$ we have $C_{\beta}(f, R)(x) \neq h_{N}(x)$, we also have (2.20) $\quad C_{\beta}(f, R)(x) \neq h_{k}(x) \quad k=0,1, \ldots, N$.

Again, suppose for some point $x \in H$ and some $k \leqq N-1$ that $d_{k+1}(x) \neq$ $U_{k+1}(x)$. Then clearly $h_{k+1}(x) \neq h_{k}(x)+U_{k+1}(x)$. That is, $C_{\beta}\left(h_{k}(x), h_{k}(x)+\right.$ $\left.U_{k+1}(x)\right) \neq h_{k}(x)+U_{k+1}(x)$, so that $\left|h_{k}(x)+U_{k+1}(x)\right|>\beta$. Also, since
$U_{k+1}(x) \neq 0$, we must have $h_{k}(x) \neq C_{\beta}(f, R)(x)$, by (2.12). $U_{k+1}(x)$ has the same direction as $C_{\beta}(f, R)(x)-h_{k}(x)$, by (2.12). Thus $C_{\beta}(f, R)(x)$ is a point on the line joining $h_{k}(x)$ and $h_{k}(x)+U_{k+1}(x)$. We have $\left|h_{k}(x)\right| \leqq \beta, h_{k}(x) \neq$ $C_{\beta}(f, R)(x),\left|C_{\beta}(f, R)\right|=\beta$, and $\left|h_{k}(x)+U_{k+1}(x)\right|>\beta$. From these facts it follows by definition that $C_{\beta}\left(h_{k}(x), h_{k}(x)+U_{k+1}(x)\right)=C_{\beta}(f, R)(x)$. Thus we have shown that if for some $x \in H$ and some $k \leqq N-1$ we have $d_{k+1}(x) \neq$ $U_{k+1}(x)$, then
(2.21) $\quad h_{k+1}(x)=C_{\beta}(f, R)(x)$.

Now let $x \in H$ be a point for which $C_{\beta}(f, R)(x) \neq h_{N}(x)$. We will obtain a contradiction. Using (2.20) and (2.21) we see that
(2.22) $d_{k+1}(x)=U_{k+1}(x)$ for $k=0,1, \ldots, N-1$.

Hence, by (2.12),

$$
\begin{equation*}
g_{k+1}(x) \cdot\left[C_{\beta}(f, R)(x)-h_{k}(x)\right] \leqq 0, \quad k=0,1, \ldots, N-1 \tag{2.23}
\end{equation*}
$$

By induction, it is easy to show that $C_{\beta}(f, R)(x)-h_{k}(x)$ is a positive multiple of $R(x)-f(x), k=0,1, \ldots, N$.

Thus

$$
\begin{equation*}
g_{k+1}(x) \cdot[R(x)-f(x)] \leqq 0, k=0, \ldots, N-1 \tag{2.24}
\end{equation*}
$$

Since $g_{0}(x)=0$,
(2.25) $g_{k}(x) \cdot[R(x)-f(x)] \leqq 0, k=0, \ldots, N$.

Choose $j, 0 \leqq j \leqq N$, such that

$$
\begin{equation*}
(j+1) R(x)=\sum_{i=0}^{j} T^{i} f(x) \tag{2.26}
\end{equation*}
$$

By (2.4),

$$
\begin{align*}
(j+1) R(x)=h_{j}(x)+T h_{j-1}(x)+\ldots+T^{j} h_{0}(x)+g_{0}(x) & +\ldots \tag{2.27}\\
& +g_{j}(x)
\end{align*}
$$

By (2.25),

$$
\begin{align*}
&(j+1) R(x) \cdot[R(x)-f(x)] \leqq\left(h_{j}(x)+T h_{j-1}(x)+\ldots+\right. \tag{2.28}\\
&\left.T^{j} h_{0}(x)\right) \cdot {[R(x)-f(x)] }
\end{align*}
$$

Since $\left|T^{k} h_{j-k}(x)\right| \leqq \beta$ for each k, by (2.6), we have

$$
\begin{align*}
(j+1)\left(|R(x)|^{2}-\beta|R(x)|\right) \leqq(j+1) \beta[|R(x)|+\beta] & \leqq(j+1) \tag{2.29}\\
& \times \beta(4 / 3)|R(x)|
\end{align*}
$$

or
(2.30) $|R(x)| \leqq(7 / 3) \beta$,
a contradiction. This completes the proof of Lemma 2.
3. Proof of Theorem 1. We are given a complete, σ-finite measure space (X, \mathscr{F}, μ), and a set $\left\{T_{t}\right\}, t \geqq 0$, of bounded linear operators on $\mathscr{L}_{p}(1 \leqq p<$ $\infty)$ satisfying:

$$
\begin{align*}
& \text { (3.1) } T_{t+s}=T_{t} T_{s} \text { for all } t \geqq 0, s \geqq 0 \tag{3.1}\\
& \text { (3.2) } \quad T_{0}=I, \\
& \text { (3.3) } \\
& \left\|T_{t}\right\|_{p} \leqq 1, \text { for every } t \geqq 0 \\
& \text { (3.4) } \\
& \lim _{t \rightarrow s} T_{t} f=T_{s} f \text { for every } f \in \mathscr{L}_{p}, s \geqq 0 .
\end{align*}
$$

We also assume that

$$
\begin{equation*}
\left\|T_{t} f\right\|_{\infty} \leqq\|f\|_{\infty} \quad \text { for every } f \in \mathscr{L}_{p} \cap \mathscr{L}_{\infty}, t \geqq 0 \tag{3.5}
\end{equation*}
$$

We wish to prove that (1.1) holds for any $f \in \mathscr{L}_{p}$. Before proceeding, we establish some well-known facts about

$$
\int_{0}^{t} T_{s} f(x) d s
$$

Fix $a \geqq 0, f \in \mathscr{L}_{p}(X, \mathscr{F}, \mu)$. Define

$$
\begin{equation*}
g^{n}(t, x)=T_{k a / n} f(x) \quad \text { for } \quad k a / n \leqq t<(k+1) a / n \tag{3.6}
\end{equation*}
$$

$x \in X, k=0, \ldots, n-1$. Thus g^{n} is defined on $[0, a) \times X$. Since the map $t \rightarrow T_{t} f$ is a continuous map into $\mathscr{L}_{p}(d \mu)$, it is easy to see that there exists a function g on $[0, a) \times X$ such that

$$
\begin{equation*}
g^{n} \rightarrow g \text { in } \mathscr{L}_{p}(d t \times d \mu) \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

For a subsequence n_{j} we have $g^{n_{j}}(t, x) \rightarrow g(t, x)$ as $j \rightarrow \infty$, for almost every (t, x). Thus for almost every $t, g^{n_{i}}(t, x) \rightarrow g(t, x)$ as $j \rightarrow \infty$, for almost every x. However, considered as a function in $\mathscr{L}_{p}(d \mu)$, it is clear that $g^{n_{j}}(t, \cdot) \rightarrow T_{t} f$ in $\mathscr{L}_{p}(d \mu)$ as $j \rightarrow \infty$, for every t. Hence

$$
\begin{equation*}
g(t, x)=T_{t} f(x) \text { for almost every }(t, x) \tag{3.8}
\end{equation*}
$$

Thus g does not depend on our interval $[0, a)$, and we can define g on $[0, \infty)$ $\times X$.

Returning to a finite interval $[0, a)$, we can choose our subsequence n_{j} such that $g^{n_{i}}(t, x) \rightarrow g(t, x)$ as $j \rightarrow \infty$ for almost every (t, x), and such that $\sum_{j}\left\|g^{n_{j}}-g\right\|_{p}<\infty$. Let $r=|g|+\sum_{j}\left|g^{n_{j}}-g\right|$. Then $\|r\|_{p}<\infty$ and $|r| \geqq\left|g^{n_{j}}\right|$ for all j. For almost every $x, r(\cdot, x)$ will have finite $\mathscr{L}_{p}(d t)$-norm, and hence finite $\mathscr{L}_{1}(d t)$-norm. Also, for almost every $x, g^{n_{i}}(t, x) \rightarrow g(t, x)$ as $j \rightarrow \infty$ for almost every t. Hence, by Lebesgue's dominated convergence theorem,

$$
\begin{equation*}
\int_{0}^{a} g^{n_{j}}(t, x) d t \rightarrow \int_{0}^{a} g(t, x) d t \quad \text { as } j \rightarrow \infty \tag{3.9}
\end{equation*}
$$

for almost every x. But clearly
(3.10) $\int_{0}^{a} g^{n_{j}}(t, \cdot) d t \rightarrow \int_{0}^{a} T_{t} f d t \quad$ in $\mathscr{L}_{p}\left(d_{\mu}\right)$
as $j \rightarrow \infty$. Thus
(3.11) $\int_{0}^{a} g(t, x) d t=\int_{0}^{a} T_{t} f d t(x)$
for almost every x. We define
(3.12) $\int_{0}^{a} T_{t} f(x) d t=\int_{0}^{a} g(t, x) d t$,
for any $a \geqq 0$. The point of this definition is that the left hand integral is a continuous function of t, for almost every x.

For future use we note that the sequence n_{j} appearing in (3.9) can clearly be chosen to be divisible by any fixed integer, and the proof of (3.9) shows that for almost every x
(3.13) $\quad \int_{0}^{b} g^{n_{j}}(t, x) d t \rightarrow \int_{0}^{b} T_{t} f(x) d t$
for all $b \leqq a$.
Lemma 3. For any $f \in \mathscr{L}_{p}$,
(3.14) $\quad \lim \sup _{t \rightarrow 0}\left|\frac{1}{t} \int_{0}^{t} T_{s} f(x) d s\right| \leqq 5|f(x)|$
for almost every x.
Proof. Let E be a set of finite positive measure, and β a positive number such that
(3.15) $\quad \lim \sup _{t \rightarrow 0}\left|\frac{1}{t} \int_{0}^{t} T_{s} f(x) d s\right| \geqq 5 \beta \quad$ on E.

We must show that
(3.16) $|f(x)| \geqq \beta$ for almost all $x \in E$.

Clearly we may assume that
(3.17) $|f(x)| \leqq \beta$ for all x in E.

Define

$$
\begin{equation*}
S_{t}(x)=C_{5 s}\left(f(x), \frac{1}{t} \int_{0}^{t} T_{s} f(x) d s\right) \quad \text { for } x \in E \tag{3.18}
\end{equation*}
$$

By the continuity of $C_{5 \beta}$ we see that $S_{t}(x)$ is measurable on $[0, \infty) \times E$ and $S_{t}(x)$ is a continuous function of t for almost every $x \in E$.

It is easy to see that we can find a measurable function S defined on E, such that
(3.19) $\quad|S(x)|=5 \beta \quad$ for $x \in E$,
and such that for almost every $x \in E$ there exists a sequence $t_{j}, t_{j} \rightarrow 0$ as $j \rightarrow \infty$, with
(3.20) $S(x)=\lim _{j \rightarrow \infty} S_{t_{j}}(x)$.

Let $\epsilon>0$ be given. We will now introduce some notation to clarify the remainder of the proof. Let h stand for a function in \mathscr{L}_{p}, appearing in this proof. In general there will be many ways of choosing the function for which h stands. It may, for example, depend on the choice of ϵ, or on subsequent choices. Let us regard all choices made in the proof prior to the choosing of ϵ as fixed. Then if h_{1} and h_{2} stand for functions appearing in this proof, we will write
(3.21) $\quad h_{1} \equiv h_{2}$,
if there exists one function $\sigma(\epsilon)$ such that

$$
\begin{equation*}
\left\|h_{1}-h_{2}\right\|_{p} \leqq \sigma(\epsilon) \tag{3.22}
\end{equation*}
$$

for all possible choices of h_{1}, h_{2}, and ϵ, and
(3.23) $\quad \sigma(\epsilon) \rightarrow 0 \quad$ as $\epsilon \rightarrow 0$.

Let a positive integer l be chosen, with $l>1 / \epsilon$. Let a positive number δ be chosen, such that for every $t \leqq(l+1) \delta$ we have

$$
\begin{equation*}
\left\|\left(I-T_{t}\right) f\right\|_{p}<\epsilon, \quad\left\|\left(I-T_{t}\right) C_{\beta}(0, f)\right\|_{p}<\epsilon \tag{3.24}
\end{equation*}
$$

and $\left\|\left(I-T_{t}\right) h\right\|_{p}<\epsilon$, where $h(x)=C_{\beta}(f, S)(x)-f(x)$ for $x \in E, h(x)=0$ for $x \notin E$. We note that (3.24) can be rewritten as
(3.25) $\quad T_{t} f \equiv f, \quad T_{t} C_{\beta}(0, f) \equiv C_{\beta}(0, f), \quad T_{t} h \equiv h$, for $t \leqq(l+1) \delta$.

Since $S_{t}(x)$ is a continuous function of t for almost every $x \in E$, we can find a set $E_{1} \subseteq E$ with $\mu\left(E-E_{1}\right)<\epsilon$, and a positive integer n such that for any $x \in E_{1}$, an integer k exists, $1 \leqq k \leqq n$, with
(3.26) $\quad\left|S_{k \delta / n}(x)\right|>4 \beta$
and

$$
\begin{equation*}
\left|C_{\beta}(f(x), S(x))-C_{\beta}\left(f(x), S_{k \delta / n}(x)\right)\right|<\epsilon . \tag{3.27}
\end{equation*}
$$

By (3.18) we see that for each $x \in E_{1}$, an integer k exists, $1 \leqq k \leqq n$, with

$$
\begin{equation*}
\left|\frac{1}{(k \delta / n)} \int_{0}^{k / n \delta} T_{t} f(x) d t\right|>4 \beta \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|C_{\beta}(f(x), S(x))-C_{\beta}\left(f(x), \frac{1}{(k \delta / n)} \int_{0}^{k \delta / n} T_{t} f(x) d t\right)\right|<2 \epsilon \tag{3.29}
\end{equation*}
$$

By (3.13) we can choose a sequence $n_{j} \rightarrow \infty$ such that each n_{j} is a multiple of n, and such that for almost every $x \in E_{1}$

$$
\begin{equation*}
\int_{0}^{k \delta / n} g^{n_{j}}(t, x) d t \rightarrow \int_{0}^{k \delta / n} T_{t} f(x) d t \tag{3.30}
\end{equation*}
$$

for $k=1, \ldots, n$. Here $g^{n_{j}}(t, x)$ is defined to be $T_{i \delta / n_{j}}(x)$ for $i \delta / n_{j} \leqq t<$ $(i+1) \delta / n_{j}, i=0, \ldots, n_{j}-1$.

It follows that for some $n_{j}=N$ that there exists a set $H \subseteq E_{1}, \mu\left(E_{1}-H\right)<\epsilon$, such that for each $x \in H$ an integer k exists, $1 \leqq k \leqq n$, with

$$
\begin{equation*}
\left|\frac{1}{(k \delta / n)} \int_{0}^{k \delta / n} g^{N}(t, x) d t\right|>3 \beta \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|C_{\beta}(f(x), S(x))-C_{\beta}(f(x)), \frac{1}{(k \delta / n)} \int_{0}^{k \delta / n} g^{N}(t, x) d t\right|<3 \epsilon \tag{3.32}
\end{equation*}
$$

For each $x \in H$, let

$$
R(x)=\frac{1}{(k \delta / n)} \int_{0}^{k \delta / n} g^{N}(t, x) d t
$$

where k is chosen as in (3.31) and (3.32).
Let $T=T_{\delta / n}$. Since N is a multiple of n, it is easy to see that for each $x \in H$ there exists an integer $j, 0 \leqq j \leqq N$, with

$$
\begin{equation*}
R(x)=\frac{1}{j+1} \sum_{i=0}^{j} T^{i} f(x) \tag{3.33}
\end{equation*}
$$

We now apply Lemma 2 from section 2 to obtain functions d_{1}, \ldots, d_{N}, g on X such that (2.8)-(2.11) hold.

Define the operator W by
(3.34) $\quad W=\frac{1}{l N} \sum_{i=0}^{l N-1} T^{i}$,
l as defined just before (3.24). Using (2.8), it follows easily that

$$
\begin{equation*}
\left\|W\left(\sum_{i=1}^{N} T^{N-i} d_{i}-\sum_{i=1}^{N} d_{i}\right)\right\|_{p} \leqq \frac{2 \beta}{l} m(E)^{1 / p} \tag{3.35}
\end{equation*}
$$

Thus
(3.36) $\quad W \sum_{i=1}^{N} T^{N-i} d_{i} \equiv W \sum_{i=1}^{N} d_{i}$.

By (2.10)
(3.37) $W \sum_{i=1}^{N} d_{i}+W g=W\left(T^{N} f-T^{N} C_{\beta}(0, f)\right) \equiv f-C_{\beta}(0, f) \quad$ by (3.25).

By (2.11)

$$
\begin{equation*}
\sum_{i=1}^{N} d_{i}=h_{1} \tag{3.38}
\end{equation*}
$$

where $h_{1}(x)=C_{\beta}(f(x), R(x))-f(x)$ for $x \in H$ and $h_{1}(x)=0$ for $x \notin H$.
By (3.32), $h_{1} \equiv h$, where h is defined as in (3.25). Thus
(3.39) $\quad W \sum_{i=1}^{N} d_{i} \equiv W h \equiv h$.

From (3.37) and (3.39) we obtain
(3.40) $\quad W g \equiv f-C_{\beta}(0, f)-h$.

But $f-C_{\beta}(0, f)$ and h have disjoint supports by the definition of h, while $\|W g\|_{p} \leqq\left\|f-C_{\beta}(0, f)\right\|_{p}$ by (2.10). Since h does not depend on ϵ, we must have $\|h\|_{p}=0$. This proves (3.16) and completes the proof of Lemma 3.

Proof of Theorem 1. Let V be the collection of elements f in \mathscr{L}_{p} such that (1.1) holds. V is obviously a linear space. It follows easily from Lemma 3 that V is closed in the norm topology. For any $f \in \mathscr{L}_{p}$, we can find a sequence $t_{n} \rightarrow 0$ such that

$$
\frac{1}{t_{n}} \int_{0}^{t_{n}} T_{s} f(x) d s \in V
$$

for each n. (This is Lemma 1 in [4], a generalization of Lemma 2 in [2].) Hence V is dense in \mathscr{L}_{p}, and hence $V=\mathscr{L}_{p}$. This proves Theorem 1 .
4. Proof of Theorem 2. Let $Y=[0, \infty) \times X$. Let \mathscr{G} be the usual product σ-algebra, and let $d \nu=d t \times d \mu$. For any bounded operator T on $\mathscr{L}_{p}(X, \mathscr{F}, \mu)$, define \widetilde{T} on $\mathscr{L}_{p}(Y, \mathscr{G}, \nu)$ for any f in $\mathscr{L}_{p}(Y, \mathscr{G}, \nu)$ by

$$
\begin{equation*}
\widetilde{T} f(t, x)=T f_{t}(x) \tag{4.1}
\end{equation*}
$$

where $f_{t}(x)$ is the function on X defined by $f_{t}(x)=f(t, x)$. This defines $\widetilde{T} f(t, x)$ for almost every (t, x). It is a straightforward matter to show that $\widetilde{T} f \in \mathscr{L}_{p}(Y, \mathscr{G}, \nu)$, and that $\|\widetilde{T}\|_{p} \leqq\|T\|_{p}$. Given a strongly continuous oneparameter semi-group $\left\{T_{t}\right\}$ (i.e., $\left\{T_{t}\right\}$ satisfying (3.1)-(3.4)) it is easy to see that $\left\{\widetilde{T}_{t}\right\}$ is also a strongly continuous one-parameter semi-group of contractions on $\mathscr{L}_{p}(Y, \mathscr{G}, \nu)$.

Define the shift operator A_{t} for f in $\mathscr{L}_{p}(Y, \mathscr{G}, \nu)$ by

$$
\begin{align*}
& A_{t} f(s, x)=f(s-t, x) \text { for } s \geqq t, \\
& A_{t} f(s, x)=0 \text { for } s<t . \tag{4.2}
\end{align*}
$$

$\left\{A_{t}\right\}$ is clearly a strongly continuous one-parameter semi-group. Clearly $A_{t} \widetilde{T}_{s}=\widetilde{T}_{s} A_{t}$ for all t, s.

Now let h be a measurable function on Y satisfying (i) and (ii) of Theorem 2.
Define the operator U_{i} on $\mathscr{L}_{p}\left(Y, \mathscr{G}, h^{\nu} d \nu\right)$ as follows:

$$
\begin{equation*}
U_{t} g=(1 / h) A_{t} \widetilde{T}_{t} h g \quad \text { for any } g \in \mathscr{L}_{p}\left(Y, \mathscr{G}, h^{p} d \nu\right) \tag{4.3}
\end{equation*}
$$

It is easy to verify that $\left\{U_{t}\right\}$ is a semi-group, since A_{t} and \widetilde{T}_{t} commute. Let θ be the map from $\mathscr{L}_{p}(Y, \mathscr{G}, \nu)$ onto $\mathscr{L}_{p}\left(Y, \mathscr{G}, h^{p} d \nu\right)$ defined by $\theta f=f / h$. Since θ is an isometry, and $U_{t}=\theta A_{t} \widetilde{T}_{t} \theta^{-1}$, it follows that $\left\{U_{t}\right\}$ is a strongly continuous one-parameter semi-group of contractions on $\mathscr{L}_{p}\left(Y, \mathscr{G}, h^{p} d \nu\right)$.

Finally we see that because of condition (ii) of Theorem 2 we have

$$
\begin{equation*}
\left\|U_{t} g\right\|_{\infty} \leqq\|g\|_{\infty} \text { for each } g \text { in } \mathscr{L}_{p}\left(Y, \mathscr{G}, h^{p} d \nu\right) \cap \mathscr{L}_{\infty}\left(Y, \mathscr{G}, h^{p} d \nu\right) \tag{4.4}
\end{equation*}
$$

By Theorem 1, we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha} \int_{0}^{\alpha} U_{s} g(t, x) d s=g(t, x) \tag{4.5}
\end{equation*}
$$

for almost all (t, x) in Y.
Fix f in $\mathscr{L}_{p}(X, \mathscr{F}, \mu)$. Define g in $\mathscr{L}_{p}\left(Y, \mathscr{G}, h^{p} d \nu\right)$ by the equation

$$
\begin{equation*}
g(t, x)=\frac{1}{h(t, x)} f(x), \quad 0 \leqq t<b \tag{4.6}
\end{equation*}
$$

$g(t, x)=0, t \geqq b$, for some $b>0$.
Then for a fixed $(t, x), 0 \leqq t<b$, and any $s \leqq t$, we have

$$
\begin{align*}
U_{s} g(t, x) & =\frac{1}{h(t, x)} A_{s} \widetilde{T}_{s} h g(t, x) \\
& =\frac{1}{h(t, x)} \widetilde{T}_{s} h g(t-s, x) \tag{4.7}\\
& =\frac{T_{s} f(x)}{h(t, x)} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\int_{0}^{\alpha} U_{s} g(t, x) d s=\frac{1}{h(t, x)} \int_{0}^{\alpha} T_{s} f(x) d s \quad \text { for } 0 \leqq t<b, \alpha \leqq t \tag{4.8}
\end{equation*}
$$

For almost every x, (4.5) holds for almost every t. For such an x and such a $t, 0<t<b$, we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{1}{h(t, x)} \frac{1}{\alpha} \int_{0}^{\alpha} T_{s} f(x) d s=g(t, x)=\frac{f(x)}{h(t, x)} \tag{4.9}
\end{equation*}
$$

This is (1.1), so Theorem 2 is proved.

References

1. M. Akcoglu and R. Chacon, A local ratio theorem, Can. J. Math. 22 (1970), 545-552.
2. U. Krengel, A local ergodic theorem, Invent. Math. 6 (1969), 329-333.
3. Y. Kubokawa, Ergodic theorems for contraction semi-group (to appear).
4. - A local ergodic theorem for semi-group on \mathscr{L}_{p} (to appear).
5. D. Ornstein, The sum of the iterates of a positive operator, Advances in Probability and Related Topics (Edited by P. Ney) 2 (1970), 87-115.

University of British Columbia, Vancouver, British Columbia

