A LOCAL ERGODIC THEOREM ON L_p

J. R. BAXTER AND R. V. CHACON

1. Introduction. Two general types of pointwise ergodic theorems have been studied: those as t approaches infinity, and those as t approaches zero. This paper deals with the latter case, which is referred to as the local case.

Let (X, \mathcal{F}, μ) be a complete, σ -finite measure space. Let $\{T_i\}$ be a strongly continuous one-parameter semi-group of contractions on $\mathcal{L}_1(X, \mathcal{F}, \mu)$, defined for $t \geq 0$. For T_i positive, it was shown independently in [2] and [5] that

(1.1)
$$\lim_{t\to 0} \frac{1}{t} \int_0^t T_s f(x) ds = f(x)$$

almost everywhere on X, for any $f \in \mathcal{L}_1$. The same result was obtained in [1], with the continuity assumption weakened to having it hold for t > 0.

It was also shown in [5] that (1.1) holds without the positivity assumption on T_i , provided that T_i is a contraction of \mathscr{L}_{∞} . In [3] the \mathscr{L}_{∞} restriction is removed, so that (1.1) actually holds for any continuous one-parameter semigroup of contractions on \mathscr{L}_1 .

If we let $\{T_t\}$ be a strongly continuous semi-group of contractions of $L_p(X, \mathscr{F}, \mu)$, for a fixed $p, 1 \leq p < +\infty$, and defined for $t \geq 0$, then the limit (1.1) still holds for $f \in L_p$, provided that the semi-group is positive. This was shown in [4], where $\{T_t\}$ is not required to be a contraction, but merely a bounded operator. The question is raised in [4] of whether (1.1) remains true in the non-positive case. In this paper we prove:

THEOREM 1. The limit (1.1) holds for $f \in L_p$ if $\{T_i\}$ is a strongly continuous semi-group of contractions of $L_p(X, \mathscr{F}, \mu)$, for a fixed $p, 1 \leq p < +\infty$, and defined for $t \geq 0$, provided that $\{T_i\}$ is also simultaneously a semi-group of contractions of $L_{\infty}(X, \mathscr{F}, \mu)$.

We also obtain a more general result:

THEOREM 2. Let $\{T_i\}, t \ge 0$ be a strongly continuous one-parameter semigroup of contractions on $\mathscr{L}_p(X, \mathscr{F}, \mu), 1 \le p < \infty$. Let there exist a measurable function h on $[0, \infty) \times X$ such that

(i) h > 0 everywhere, and

(ii) $f \in \mathcal{L}_p, |f(x)| \leq h(t,x)$ for almost all $x \in X$ implies $|T_sf(x)| \leq h(t+s,x)$ for almost all $x \in X$, for any $t, s \geq 0$. Then (1.1) holds for all f in \mathcal{L}_p .

Received April 6, 1973.

1206

Theorem 2 yields Theorem 1 when $h \equiv 1$. More generally Theorem 2 gives convergence if $||T_i||_{\infty} \leq e^{\alpha t}$.

In section 2 below, we prove a maximal lemma. Theorem 1 is proved in section 3, and Theorem 2 is obtained from Theorem 1 in section 4.

2. A maximal lemma. The main result of this section is Lemma 2. The following preliminary lemma is useful.

LEMMA 1. Let T be a linear operator on a vector space V. Let $f, h_k, g_k, k = 0, 1, \dots, n$, and $d_k, k = 1, \dots, n$, be elements of V such that:

 $(2.1) \quad f = h_0 + g_0,$

 $(2.2) Tg_k = g_{k+1} + d_{k+1}, h_{k+1} = h_k + d_{k+1}, k = 0, 1, \dots, n-1.$

Then

$$(2.3) \quad f + Tf + \ldots + T^n f = h_n + Th_{n-1} + \ldots + T^n h_0 + g_0 + \ldots + g_n,$$

and

$$(2.4) T^n f = T^n h_0 + d_n + T d_{n-1} + \ldots + T^{n-1} d_1 + g_n.$$

The proof of Lemma 1 is immediate by induction.

We now define a truncation operation for complex numbers.

Definition 1. For any complex numbers a and b and any $\gamma > 0$ such that $|a| \leq \gamma$, define

(2.5) $C_{\gamma}(a, b) = a + \lambda(b - a), \text{ where } 0 \leq \lambda \leq 1$

and λ is the largest number between 0 and 1 such that $|a + \lambda(b - a)| \leq \gamma$.

It is a straightforward matter to verify that for fixed γ , C_{γ} is a continuous function of the two variables *a* and *b*.

LEMMA 2. Let (X, \mathcal{F}, μ) be a measure space. Let T be a linear contraction on $\mathscr{L}_p = \mathscr{L}_p(X, \mathcal{F}, \mu)$, such that

$$(2.6) ||Tf||_{\infty} \leq ||f||_{\infty} for each f \in \mathscr{L}_{p} \cap \mathscr{L}_{\infty}.$$

Let f be in \mathscr{L}_p , H a set of positive, finite measure, and let $\beta > 0$ a number such that $\beta \ge |f|$ on H. Let R be a measurable function on H, $|R| \ge 3\beta$ on H, and let N be a positive integer such that for each $x \in H$ there exists an integer j, $0 \le j \le N$, such that

(2.7)
$$R(x) = \frac{1}{j+1} \sum_{i=0}^{j} T^{i} f(x).$$

Then there exist functions d_1, \ldots, d_N , g on X such that:

(2.8)
$$d_k = 0 \text{ on } X - H \text{ and } |d_1 + \ldots + d_k| \leq 2\beta$$

on H, k = 1, ..., N;

(2.9) $||g||_p \leq ||f - C_{\beta}(0, f)||_p$,

(2.10) $T^{N}f = T^{N}C_{\beta}(0,f) + d_{N} + Td_{N-1} + \ldots + T^{N-1}d_{1} + g,$

(2.11) $C_{\beta}(f, R) = f + d_1 + \ldots + d_N \text{ on } H.$

Proof. Let $h_0 = C_{\beta}(0, f)$ and let $g_0 = f - h_0$. Having defined h_i and g_i for $i = 0, 1, \ldots, k$, and having defined d_i for $i = 1, \ldots, k, 0 \leq k \leq N - 1$, let a function U_{k+1} be defined as follows:

(2.12) $U_{k+1}(x) =$ the projection as a two-dimensional vector of $Tg_k(x)$ along $C_{\beta}(f, R)(x) - h_k(x)$ if $x \in H$ and $Tg_k(x) \cdot [C_{\beta}(f, R)(x) - h_k(x)] > 0$ (Here " · " denotes scalar product.); in all other cases let $U_{k+1} = 0$.

Let

$$(2.13) \quad h_{k+1} = C_{\beta}(h_k, h_k + U_{k+1}).$$

(By an obvious induction we have $|h_k| \leq \beta$ on X.) Let

$$(2.14) \quad d_{k+1} = h_{k+1} - h_k,$$

 $(2.15) \quad g_{k+1} = Tg_k - d_{k+1}.$

This process defines $g_0, \ldots, g_N, h_0, \ldots, h_N$, and d_1, \ldots, d_N . Let $g = g_N$. From (2.13),

(2.16) $d_{k+1}(x) = \lambda_{k+1}(x) \ U_{k+1}(x)$, where $0 \le \lambda_{k+1}(x) \le 1$.

Since $U_{k+1}(x)$ is either 0 or a projection of $Tg_k(x)$ we see by (2.15) that

 $(2.17) |g_{k+1}(x)| \leq |Tg_k(x)|.$

Hence

$$(2.18) ||g_{k+1}||_p \leq ||g_k||_p,$$

and (2.9) follows.

By (2.12) and (2.16) we have $d_k = 0$ on X - H. By (2.14), $d_1 + \ldots + d_k = h_k - h_0$, so by (2.13) we see that (2.8) holds.

Equation (2.10) is merely a rewritten version of (2.3). Thus only (2.11) remains to be proved. We can rewrite (2.11) as

(2.19)
$$C_{\beta}(f, R) = h_N \text{ on } H.$$

Suppose for some point $x \in H$ and some $k \leq N - 1$ that $h_k(x) = C_\beta(f,R)(x)$. It follows at once from (2.12) and (2.13) that $h_{k+1}(x) = C_\beta(f,R)(x)$ also. Thus, if at some point $x \in H$ we have $C_\beta(f,R)(x) \neq h_N(x)$, we also have (2.20) $C_\beta(f,R)(x) \neq h_k(x)$ k = 0, 1, ..., N.

Again, suppose for some point $x \in H$ and some $k \leq N-1$ that $d_{k+1}(x) \neq U_{k+1}(x)$. Then clearly $h_{k+1}(x) \neq h_k(x) + U_{k+1}(x)$. That is, $C_\beta(h_k(x), h_k(x) + U_{k+1}(x)) \neq h_k(x) + U_{k+1}(x)$, so that $|h_k(x) + U_{k+1}(x)| > \beta$. Also, since

1208

 $U_{k+1}(x) \neq 0$, we must have $h_k(x) \neq C_{\beta}(f, R)(x)$, by (2.12). $U_{k+1}(x)$ has the same direction as $C_{\beta}(f, R)(x) - h_k(x)$, by (2.12). Thus $C_{\beta}(f, R)(x)$ is a point on the line joining $h_k(x)$ and $h_k(x) + U_{k+1}(x)$. We have $|h_k(x)| \leq \beta$, $h_k(x) \neq C_{\beta}(f, R)(x)$, $|C_{\beta}(f, R)| = \beta$, and $|h_k(x) + U_{k+1}(x)| > \beta$. From these facts it follows by definition that $C_{\beta}(h_k(x), h_k(x) + U_{k+1}(x)) = C_{\beta}(f, R)(x)$. Thus we have shown that if for some $x \in H$ and some $k \leq N - 1$ we have $d_{k+1}(x) \neq U_{k+1}(x)$, then

(2.21) $h_{k+1}(x) = C_{\beta}(f, R)(x).$

Now let $x \in H$ be a point for which $C_{\beta}(f, R)(x) \neq h_N(x)$. We will obtain a contradiction. Using (2.20) and (2.21) we see that

$$(2.22) \quad d_{k+1}(x) = U_{k+1}(x) \quad \text{for } k = 0, 1, \dots, N-1.$$

Hence, by (2.12),

$$(2.23) \quad g_{k+1}(x) \cdot [C_{\beta}(f,R)(x) - h_k(x)] \leq 0, \qquad k = 0, 1, \dots, N-1.$$

By induction, it is easy to show that $C_{\beta}(f, R)(x) - h_k(x)$ is a positive multiple of R(x) - f(x), k = 0, 1, ..., N.

Thus

$$(2.24) \quad g_{k+1}(x) \cdot [R(x) - f(x)] \leq 0, \, k = 0, \dots, N-1.$$

Since $g_0(x) = 0$,

$$(2.25) \quad g_k(x) \cdot [R(x) - f(x)] \leq 0, \, k = 0, \dots, N.$$

Choose $j, 0 \leq j \leq N$, such that

(2.26)
$$(j+1)R(x) = \sum_{i=0}^{j} T^{i}f(x).$$

By (2.4),

$$(2.27) \quad (j+1)R(x) = h_j(x) + Th_{j-1}(x) + \ldots + T^j h_0(x) + g_0(x) + \ldots + g_j(x).$$

By (2.25),

$$(2.28) \quad (j+1)R(x) \cdot [R(x) - f(x)] \leq (h_j(x) + Th_{j-1}(x) + \ldots + T^j h_0(x)) \cdot [R(x) - f(x)].$$

Since $|T^k h_{j-k}(x)| \leq \beta$ for each k, by (2.6), we have

$$(2.29) \quad (j+1)(|R(x)|^2 - \beta |R(x)|) \leq (j+1)\beta[|R(x)| + \beta] \leq (j+1) \\ \times \beta(4/3)|R(x)|,$$

or

(2.30)
$$|R(x)| \leq (7/3)\beta$$
,

a contradiction. This completes the proof of Lemma 2.

3. Proof of Theorem 1. We are given a complete, σ -finite measure space (X, \mathscr{F}, μ) , and a set $\{T_t\}, t \geq 0$, of bounded linear operators on \mathscr{L}_p $(1 \leq p < \infty)$ satisfying:

 $(3.1) T_{t+s} = T_t T_s ext{ for all } t \ge 0, s \ge 0,$

- (3.2) $T_0 = I$,
- (3.3) $||T_t||_p \leq 1$, for every $t \geq 0$,
- (3.4) $\lim_{t \to s} T_t f = T_s f \text{ for every } f \in \mathscr{L}_p, s \ge 0.$

We also assume that

$$(3.5) ||T_t f||_{\infty} \leq ||f||_{\infty} ext{ for every } f \in \mathscr{L}_p \cap \mathscr{L}_{\infty}, t \geq 0.$$

We wish to prove that (1.1) holds for any $f \in \mathscr{L}_p$. Before proceeding, we establish some well-known facts about

$$\int_0^t T_s f(x) ds$$

Fix $a \geq 0, f \in \mathscr{L}_{p}(X, \mathscr{F}, \mu)$. Define

(3.6) $g^n(t, x) = T_{ka/n} f(x)$ for $ka/n \leq t < (k+1)a/n$,

 $x \in X, k = 0, ..., n - 1$. Thus g^n is defined on $[0, a) \times X$. Since the map $t \to T_t f$ is a continuous map into $\mathscr{L}_p(d\mu)$, it is easy to see that there exists a function g on $[0, a) \times X$ such that

(3.7)
$$g^n \to g \text{ in } \mathscr{L}_p(dt \times d\mu) \text{ as } n \to \infty$$

For a subsequence n_j we have $g^{n_j}(t, x) \to g(t, x)$ as $j \to \infty$, for almost every (t, x). Thus for almost every $t, g^{n_j}(t, x) \to g(t, x)$ as $j \to \infty$, for almost every x. However, considered as a function in $\mathcal{L}_p(d\mu)$, it is clear that $g^{n_j}(t, \cdot) \to T_t f$ in $\mathcal{L}_p(d\mu)$ as $j \to \infty$, for every t. Hence

(3.8) $g(t, x) = T_t f(x)$ for almost every (t, x).

Thus g does not depend on our interval [0, a), and we can define g on $[0, \infty) \times X$.

Returning to a finite interval [0, a), we can choose our subsequence n_j such that $g^{n_i}(t, x) \to g(t, x)$ as $j \to \infty$ for almost every (t, x), and such that $\sum_j ||g^{n_i} - g||_p < \infty$. Let $r = |g| + \sum_j |g^{n_j} - g|$. Then $||r||_p < \infty$ and $|r| \ge |g^{n_j}|$ for all j. For almost every x, $r(\cdot, x)$ will have finite $\mathcal{L}_p(dt)$ -norm, and hence finite $\mathcal{L}_1(dt)$ -norm. Also, for almost every x, $g^{n_i}(t, x) \to g(t, x)$ as $j \to \infty$ for almost every t. Hence, by Lebesgue's dominated convergence theorem,

(3.9)
$$\int_0^a g^{nj}(t,x)dt \to \int_0^a g(t,x)dt \quad \text{as } j \to \infty,$$

for almost every x. But clearly

(3.10)
$$\int_0^a g^{n_j}(t,\cdot) dt \to \int_0^a T_{\iota} f dt \quad \text{in } \mathscr{L}_p(d_\mu)$$

as $j \to \infty$. Thus

(3.11)
$$\int_{0}^{a} g(t, x) dt = \int_{0}^{a} T_{t} f dt(x)$$

for almost every x. We define

(3.12)
$$\int_{0}^{a} T_{i}f(x)dt = \int_{0}^{a} g(t, x)dt$$

for any $a \ge 0$. The point of this definition is that the left hand integral is a continuous function of t, for almost every x.

For future use we note that the sequence n_j appearing in (3.9) can clearly be chosen to be divisible by any fixed integer, and the proof of (3.9) shows that for almost every x

(3.13)
$$\int_0^b g^{nj}(t,x)dt \to \int_0^b T_t f(x)dt$$

for all $b \leq a$.

LEMMA 3. For any $f \in \mathcal{L}_p$,

(3.14)
$$\limsup_{t \to 0} \left| \frac{1}{t} \int_0^t T_s f(x) ds \right| \leq 5 |f(x)|$$

for almost every x.

Proof. Let E be a set of finite positive measure, and β a positive number such that

(3.15)
$$\lim_{t\to 0} \sup_{t\to 0} \left| \frac{1}{t} \int_0^t T_{s} f(x) ds \right| \ge 5\beta \quad \text{on } E.$$

We must show that

(3.16) $|f(x)| \ge \beta$ for almost all $x \in E$.

Clearly we may assume that

(3.17) $|f(x)| \leq \beta$ for all x in E.

Define

(3.18)
$$S_t(x) = C_{5\beta}\left(f(x), \frac{1}{t}\int_0^t T_{\delta}f(x)ds\right)$$
 for $x \in E$.

By the continuity of $C_{5\beta}$ we see that $S_t(x)$ is measurable on $[0, \infty) \times E$ and $S_t(x)$ is a continuous function of t for almost every $x \in E$. It is easy to see that we can find a measurable function S defined on E, such that

(3.19)
$$|S(x)| = 5\beta$$
 for $x \in E$,

and such that for almost every $x \in E$ there exists a sequence $t_j, t_j \rightarrow 0$ as $j \rightarrow \infty$, with

(3.20) $S(x) = \lim_{j \to \infty} S_{ij}(x).$

Let $\epsilon > 0$ be given. We will now introduce some notation to clarify the remainder of the proof. Let h stand for a function in \mathcal{L}_p , appearing in this proof. In general there will be many ways of choosing the function for which h stands. It may, for example, depend on the choice of ϵ , or on subsequent choices. Let us regard all choices made in the proof *prior* to the choosing of ϵ as fixed. Then if h_1 and h_2 stand for functions appearing in this proof, we will write

$$(3.21)$$
 $h_1 \equiv h_2,$

if there exists one function $\sigma(\epsilon)$ such that

$$(3.22) \quad ||h_1 - h_2||_p \leq \sigma(\epsilon)$$

for all possible choices of h_1 , h_2 , and ϵ , and

(3.23)
$$\sigma(\epsilon) \to 0$$
 as $\epsilon \to 0$.

Let a positive integer l be chosen, with $l > 1/\epsilon$. Let a positive number δ be chosen, such that for every $t \leq (l+1)\delta$ we have

$$(3.24) \quad ||(I - T_{i})f||_{p} < \epsilon, \qquad ||(I - T_{i})C_{\beta}(0, f)||_{p} < \epsilon,$$

and $||(I - T_i)h||_p < \epsilon$, where $h(x) = C_\beta(f, S)(x) - f(x)$ for $x \in E$, h(x) = 0 for $x \notin E$. We note that (3.24) can be rewritten as

$$(3.25) \quad T_{t}f \equiv f, \qquad T_{t}C_{\beta}(0,f) \equiv C_{\beta}(0,f), \qquad T_{t}h \equiv h,$$

for $t \leq (l+1)\delta$.

Since $S_t(x)$ is a continuous function of t for almost every $x \in E$, we can find a set $E_1 \subseteq E$ with $\mu(E - E_1) < \epsilon$, and a positive integer n such that for any $x \in E_1$, an integer k exists, $1 \leq k \leq n$, with

$$(3.26) \quad |S_{k\delta/n}(x)| > 4\beta$$

and

$$(3.27) \quad |C_{\beta}(f(x), S(x)) - C_{\beta}(f(x), S_{k\delta/n}(x))| < \epsilon.$$

By (3.18) we see that for each $x \in E_1$, an integer k exists, $1 \leq k \leq n$, with

(3.28)
$$\left| \frac{1}{(k\delta/n)} \int_0^{k/n\delta} T_i f(x) dt \right| > 4\beta$$

1212

and

(3.29)
$$\left| C_{\beta}(f(x), S(x)) - C_{\beta}\left(f(x), \frac{1}{(k\delta/n)} \int_{0}^{k\delta/n} T_{i}f(x)dt\right) \right| < 2\epsilon.$$

By (3.13) we can choose a sequence $n_j \to \infty$ such that each n_j is a multiple of n, and such that for almost every $x \in E_1$

(3.30)
$$\int_0^{k\delta/n} g^{nj}(t,x)dt \to \int_0^{k\delta/n} T_t f(x)dt,$$

for k = 1, ..., n. Here $g^{n_j}(t, x)$ is defined to be $T_{i\delta/n_j}(x)$ for $i\delta/n_j \leq t < (i+1)\delta/n_j$, $i = 0, ..., n_j - 1$.

It follows that for some $n_j = N$ that there exists a set $H \subseteq E_1, \mu(E_1 - H) < \epsilon$, such that for each $x \in H$ an integer k exists, $1 \leq k \leq n$, with

(3.31)
$$\left| \frac{1}{(k\delta/n)} \int_0^{k\delta/n} g^N(t,x) dt \right| > 3\beta$$

and

(3.32)
$$\left| C_{\beta}(f(x), S(x)) - C_{\beta}(f(x)), \frac{1}{(k\delta/n)} \int_{0}^{k\delta/n} g^{N}(t, x) dt \right| < 3\epsilon.$$

For each $x \in H$, let

$$R(x) = \frac{1}{(k\delta/n)} \int_0^{k\delta/n} g^N(t, x) dt,$$

where k is chosen as in (3.31) and (3.32).

Let $T = T_{\delta/n}$. Since N is a multiple of n, it is easy to see that for each $x \in H$ there exists an integer $j, 0 \leq j \leq N$, with

(3.33)
$$R(x) = \frac{1}{j+1} \sum_{i=0}^{j} T^{i} f(x).$$

We now apply Lemma 2 from section 2 to obtain functions d_1, \ldots, d_N , g on X such that (2.8)-(2.11) hold.

Define the operator W by

(3.34)
$$W = \frac{1}{lN} \sum_{i=0}^{lN-1} T^{i},$$

l as defined just before (3.24). Using (2.8), it follows easily that

(3.35)
$$\left\| W \left(\sum_{i=1}^{N} T^{N-i} d_{i} - \sum_{i=1}^{N} d_{i} \right) \right\|_{p} \leq \frac{2\beta}{l} m(E)^{1/p}.$$

Thus

(3.36)
$$W \sum_{i=1}^{N} T^{N-i} d_i \equiv W \sum_{i=1}^{N} d_i.$$

By (2.10)

(3.37)
$$W \sum_{i=1}^{N} d_i + Wg = W(T^N f - T^N C_\beta(0, f)) \equiv f - C_\beta(0, f)$$
 by (3.25).
By (2.11)

$$(3.38) \quad \sum_{i=1}^{N} d_{i} = h_{1},$$

where $h_1(x) = C_{\beta}(f(x), R(x)) - f(x)$ for $x \in H$ and $h_1(x) = 0$ for $x \notin H$. By (3.32), $h_1 \equiv h$, where h is defined as in (3.25). Thus

(3.39)
$$W \sum_{i=1}^{N} d_{i} \equiv Wh \equiv h.$$

From (3.37) and (3.39) we obtain

(3.40)
$$Wg \equiv f - C_{\beta}(0, f) - h.$$

But $f - C_{\beta}(0, f)$ and h have disjoint supports by the definition of h, while $\|Wg\|_{p} \leq \|f - C_{\beta}(0, f)\|_{p}$ by (2.10). Since h does not depend on ϵ , we must have $\|h\|_{p} = 0$. This proves (3.16) and completes the proof of Lemma 3.

Proof of Theorem 1. Let V be the collection of elements f in \mathscr{L}_p such that (1.1) holds. V is obviously a linear space. It follows easily from Lemma 3 that V is closed in the norm topology. For any $f \in \mathscr{L}_p$, we can find a sequence $t_n \to 0$ such that

$$\frac{1}{t_n}\int_0^{t_n}T_sf(x)ds \in V$$

for each *n*. (This is Lemma 1 in [4], a generalization of Lemma 2 in [2].) Hence V is dense in \mathcal{L}_p , and hence $V = \mathcal{L}_p$. This proves Theorem 1.

4. Proof of Theorem 2. Let $Y = [0, \infty) \times X$. Let \mathscr{G} be the usual product σ -algebra, and let $d\nu = dt \times d\mu$. For any bounded operator T on $\mathscr{L}_p(X, \mathscr{F}, \mu)$, define \tilde{T} on $\mathscr{L}_p(Y, \mathscr{G}, \nu)$ for any f in $\mathscr{L}_p(Y, \mathscr{G}, \nu)$ by

(4.1)
$$\widetilde{T}f(t, x) = Tf_t(x),$$

where $f_t(x)$ is the function on X defined by $f_t(x) = f(t, x)$. This defines $\tilde{T}f(t, x)$ for almost every (t, x). It is a straightforward matter to show that $\tilde{T}f \in \mathcal{L}_p(Y, \mathcal{G}, \nu)$, and that $\|\tilde{T}\|_p \leq \|T\|_p$. Given a strongly continuous one-parameter semi-group $\{T_t\}$ (i.e., $\{T_t\}$ satisfying (3.1)-(3.4)) it is easy to see that $\{\tilde{T}_t\}$ is also a strongly continuous one-parameter semi-group of contractions on $\mathcal{L}_p(Y, \mathcal{G}, \nu)$.

Define the shift operator A_t for f in $\mathscr{L}_p(Y, \mathscr{G}, \nu)$ by

(4.2)
$$\begin{array}{l} A_{i}f(s,x) = f(s-t,x) \quad \text{for } s \geq t, \\ A_{i}f(s,x) = 0 \quad \text{for } s < t. \end{array}$$

 $\{A_i\}$ is clearly a strongly continuous one-parameter semi-group. Clearly $A_i \tilde{T}_s = \tilde{T}_s A_i$ for all t, s.

Now let *h* be a measurable function on *Y* satisfying (i) and (ii) of Theorem 2. Define the operator U_t on $\mathcal{L}_p(Y, \mathcal{G}, h^p d\nu)$ as follows:

(4.3)
$$U_{ig} = (1/h)A_{i}\widetilde{T}_{i}hg$$
 for any $g \in \mathscr{L}_{p}(Y, \mathscr{G}, h^{p}d\nu)$.

It is easy to verify that $\{U_t\}$ is a semi-group, since A_t and \tilde{T}_t commute. Let θ be the map from $\mathscr{L}_p(Y, \mathscr{G}, \nu)$ onto $\mathscr{L}_p(Y, \mathscr{G}, h^p d\nu)$ defined by $\theta f = f/h$. Since θ is an isometry, and $U_t = \theta A_t \tilde{T}_t \theta^{-1}$, it follows that $\{U_t\}$ is a strongly continuous one-parameter semi-group of contractions on $\mathscr{L}_p(Y, \mathscr{G}, h^p d\nu)$.

Finally we see that because of condition (ii) of Theorem 2 we have

(4.4)
$$||U_{lg}||_{\infty} \leq ||g||_{\infty}$$
 for each g in $\mathscr{L}_{p}(Y, \mathscr{G}, h^{p}d\nu) \cap \mathscr{L}_{\infty}(Y, \mathscr{G}, h^{p}d\nu)$.

By Theorem 1, we have

(4.5)
$$\lim_{\alpha \to 0} \frac{1}{\alpha} \int_0^\alpha U_s g(t, x) ds = g(t, x)$$

for almost all (t, x) in Y.

Fix f in $\mathscr{L}_p(X, \mathscr{F}, \mu)$. Define g in $\mathscr{L}_p(Y, \mathscr{G}, h^p d\nu)$ by the equation

(4.6)
$$g(t, x) = \frac{1}{h(t, x)} f(x), \quad 0 \le t < b,$$

 $g(t, x) = 0, t \ge b$, for some b > 0.

Then for a fixed (t, x), $0 \le t < b$, and any $s \le t$, we have

$$U_{s}g(t, x) = \frac{1}{h(t, x)} A_{s} \widetilde{T}_{s}hg(t, x)$$

$$(4.7) \qquad \qquad = \frac{1}{h(t, x)} \widetilde{T}_{s}hg(t - s, x)$$

$$= \frac{T_{s}f(x)}{h(t, x)}.$$

Hence

(4.8)
$$\int_0^\alpha U_s g(t,x) ds = \frac{1}{h(t,x)} \int_0^\alpha T_s f(x) ds \quad \text{for } 0 \le t < b, \alpha \le t.$$

For almost every x, (4.5) holds for almost every t. For such an x and such a t, 0 < t < b, we have

(4.9)
$$\lim_{\alpha \to 0} \frac{1}{h(t,x)} \frac{1}{\alpha} \int_0^\alpha T_s f(x) ds = g(t,x) = \frac{f(x)}{h(t,x)}.$$

This is (1.1), so Theorem 2 is proved.

J. R. BAXTER AND R. V. CHACON

References

- 1. M. Akcoglu and R. Chacon, A local ratio theorem, Can. J. Math. 22 (1970), 545-552.
- 2. U. Krengel, A local ergodic theorem, Invent. Math. 6 (1969), 329-333.
- 3. Y. Kubokawa, Ergodic theorems for contraction semi-group (to appear).
- 4. A local ergodic theorem for semi-group on \mathcal{L}_p (to appear).
- 5. D. Ornstein, The sum of the iterates of a positive operator, Advances in Probability and Related Topics (Edited by P. Ney) 2 (1970), 87-115.

University of British Columbia, Vancouver, British Columbia