Five-week dietary exposure to dry diets alters the faecal bacterial populations in the domestic cat (*Felis catus*)

Emma N. Bermingham¹*, Sandra Kittelmann², Gemma Henderson², Wayne Young¹, Nicole C. Roy¹,³ and David G. Thomas⁴

¹Food Nutrition Genomics Team, Food and Textiles Group, Agri-Food and Health Section, AgResearch Grasslands, Palmerston North 4442, New Zealand
²Rumen Nutrition and Microbiology, AgResearch Grasslands, Palmerston North 4442, New Zealand
³The Riddet Institute, Massey University, Palmerston North 4442, New Zealand
⁴Centre of Feline Nutrition, Massey University, Palmerston North 4442, New Zealand

(Received 20 October 2010 – Revised 10 November 2010 – Accepted 8 December 2010)

Abstract
The effects of wet (canned) or dry (kibbled) diets on faecal bacterial populations in the cat were investigated in eight domestic short-haired cats (four males and four females; averaging 6 years of age and 3·4 kg) in a nested design. The cats were fed *ad libitum* a commercially available wet diet (moisture 82·0 %, crude protein 51·7 %, fat 28·9 %, carbohydrate (CHO) 8·9 % and ash 10·6 % DM) for 5 weeks. On the fifth week, individual feed intakes and faecal outputs were determined. Fresh faecal samples were collected twice daily, mixed for homogeneity, subsampled and stored at 2±8°C until analysis. The cats were then switched to a commercially available dry diet (moisture 8·5 %, crude protein 33·0 %, fat 11·0 %, CHO 49·4 % and ash 6·6 % DM) for 5 weeks, and fresh faeces were sampled as described previously. Energy intake tended to be higher in cats fed dry diets (*P* < 0·10), but body weight was similar between the two feeding periods (*P* > 0·05). Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes amplified from DNA extracted from faeces was performed. The unweighted pair group method with arithmetic mean cluster analysis of bacterial community profiles using Pearson’s correlation revealed diet-specific clustering when the same cats were fed on either a dry or a wet diet (dissimilarity between the groups, 88·6 %; *P* < 0·001). Subsequent cloning and sequencing of five selected distinct DGGE bands indicated that members of the *Pelomonas* and *Fusobacteriaceae* were influenced by a short-term change in diet format. This suggests that 5-week dietary exposure is sufficient to alter gastrointestinal microflora.

Key words: Diet format: Domestic cats: Faecal bacterial communities

Reports have suggested that obesity levels in domestic cats are between 25 and 40 % (1) and are increasing (2). Despite being obligate carnivores, domestic cats are consuming highly palatable, carbohydrate (CHO)-rich diets (30–60 % on a DM basis) (3). Domestic cats fed *ad libitum* on high-CHO, dry diets gained 1·5–2·0 kg in 16 weeks (4). Dry diets have a low protein:CHO ratio, which has been linked to obesity in cats (5) and human subjects (6). While cats have a limited ability to digest dietary CHO, high dietary CHO levels, such as those found in dry diets, may result in a level of high-CHO load reaching the intestine. The impacts on this intestinal microbiota are unknown; however, changes in dietary protein and fibre alter the major species in the feline intestinal tract, including *Clostridium perfringens* (9), *Fusobacterium* (9–12), *Bifidobacterium* (9), *Escherichia coli* (10) and *Lactobacillus* populations (10). We hypothesise that the increase in CHO load associated with feeding of dry diets may alter the microbial populations within the digestive tract of the domestic cat. We investigate this hypothesis using faecal microbial populations as a representation of gastrointestinal microbiota. The aim of the present study was to investigate the effects of a 5-week dietary exposure to wet and dry diets on the faecal microbial population in domestic cats.
Materials and methods

Animals and diets

The protocol for the present study was approved by the Massey University Animal Ethics Committee (MUEAC no. 09/103). All cats were housed at the Centre for Feline Nutrition (Massey University, Palmerston North, New Zealand) according to the Animal Welfare (Companion Cats) Code of Welfare (2007). Before the study, all cats had complete blood counts, and thyroid assessment was carried out to ensure each cat was clinically and physiologically healthy.

The effects of wet (canned) or dry (kibbled) diets on the faecal bacterial communities of cats were investigated in eight domestic short-haired cats (four males and four females; averaging 6 years of age and 3·4 kg at the start of the study) using a nested design. The cats were housed in colony cages (1400 cm × 2400 cm × 4400 cm) and fed ad libitum a commercially available, Association of American Feed Control Officials (AAFCO, Atlanta, GA, USA) tested, wet diet (82·0 % moisture), which provided complete and balanced nutrition (crude protein 51·7 %, fat 28·9 %, CHO 8·9 % and ash 10·6 % DM) for the maintenance of adult cats, for 5 weeks. On the fifth week, the cats were placed in individual cages (80 cm × 80 cm × 110 cm) for 5 d to determine individual feed intakes and faecal outputs. Fresh faecal samples were collected twice daily, mixed for homogeneity, subsampled and stored at −85°C until analysis. The process was then repeated for a commercially available, AAFCO-tested, dry diet (8·5 % moisture), which also provided complete and balanced nutrition (crude protein 33·0 %, fat 11·0 %, CHO 49·4 % and ash 6·6 % DM) for the maintenance of adult cats.

Energy content of the diet was determined using the metabolisable energy protocol outlined by the AAFCO(13).

Microbial community analysis of cat faeces

Nucleic acids were extracted from 30 mg of faeces with a combined bead-beating and phenol–chloroform protocol(14). After bead beating with a FastPrep FP120 (Qiogene, Carlsbad, CA, USA), cells were chemically disrupted with phenol–chloroform–isoamyl alcohol (25:24:1) and chloroform–isoamyl alcohol (24:1). DNA was precipitated from the aqueous phase with polyethylene glycol (30 %). The DNA pellet was washed with 70 % ice-cold ethanol, dried and resuspended in 100 μl of molecular biology grade water. Extracted DNA was quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), quality checked on a 1 % agarose gel and the V2–V3 regions of bacterial 16S rRNA genes were amplified from each sample using primers heteroduplex diversity assay (HDA)1-GC and HDA-2(15). PCR products were quality checked on 2 % (w/v) agarose gels to confirm a single band of approximately 200 bp(16). Products were purified using a MinElute PCR purification kit (Qiagen, Valencia, CA, USA) followed by digestion with Mung Bean nuclease (Promega, Madison, WI, USA) to remove single-stranded DNA. Denaturing gradient gel electrophoresis (DGGE) was performed using the Temporal Temperature Gel Electrophoresis System (CBS Scientific Company, Inc., Del Mar, CA, USA). The 6 % polyacrylamide gel contained a denaturing gradient of 35–70% (100% denaturant was 7 M-urea and 40 % (v/v) formamide)(16). Electrophoresis was performed at constant voltage (65 V) and temperature (60°C) for 14 h. The gel was stained with SYBR Gold (Invitrogen, Carlsbad, CA, USA) and visualised by UV transillumination (Fig. 1(a)). We selected five distinct bands based on their presence or absence from each diet and excised from a representative sample of each treatment group (Fig. 1(b)) in order to phylo-

Fig. 1. (a) Dendrogram showing similarities of bacterial 16S rRNA gene community profiles obtained by denaturing gradient gel electrophoresis (DGGE) fingerprinting from the faeces of cats fed wet or dry diets. Samples denoted by an asterisk (*) were used for the excision of bands. (b) Exemplary DGGE profiles from cats fed wet or dry diets. Arrows indicate the positions, where bands were excised (based on their presence or absence from each diet), and DNA was recovered and sequenced. Numbers match the phylogeny assignments indicated in Table 1. A control marker (C) was applied as an external standard.
Dry diets alter faecal bacterial populations

1. Introduction

2. Materials and Methods

 a. DNA isolation
 b. Cloning and sequencing
 c. DGGE analysis

3. Results

 a. Energy intake
 b. Body weight

4. Discussion

 a. Bacterial communities
 b. Microbial adaptation

5. Table 1: List of clones that were obtained from excised DGGE bands along with their closest BLAST hits (excluding environmental clone sequences)

<table>
<thead>
<tr>
<th>Band</th>
<th>Clone</th>
<th>Diet</th>
<th>Accession no.</th>
<th>Species</th>
<th>Maximum identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Wet</td>
<td>GU797848</td>
<td>Fusobacterium sp. 3019/04</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Wet</td>
<td>EU728722</td>
<td>Fusobacteriaceae bacterium DJFB254</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Wet</td>
<td>AM989106</td>
<td>Pelomonas sp. AKB-2008-ET9</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Wet</td>
<td>AM989106</td>
<td>Pelomonas sp. AKB-2008-ET9</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Wet</td>
<td>EU728722</td>
<td>Fusobacteriaceae bacterium DJFB254</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Wet</td>
<td>EU728722</td>
<td>Fusobacteriaceae bacterium DJFB254</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Dry</td>
<td>GU797848</td>
<td>Fusobacterium sp. 3019/04</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Dry</td>
<td>GU797848</td>
<td>Fusobacterium sp. 3019/04</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Dry</td>
<td>AM989106</td>
<td>Pelomonas sp. AKB-2008-ET9</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Dry</td>
<td>AM989106</td>
<td>Pelomonas sp. AKB-2008-ET9</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Dry</td>
<td>AM989106</td>
<td>Pelomonas sp. AKB-2008-ET9</td>
<td>100</td>
</tr>
</tbody>
</table>

* Number of bands refer to Fig. 1.
Therefore, the development of obesity may be in part due to alterations in the microbial populations within the digestive tract of the domestic cat.

The present study shows that the changes that occurred in the faecal microbial population in domestic cats as a result of diet format were numerous but often subtle and therefore difficult to describe on a taxonomic level by means of DGGE alone. Alternative methods such as next-generation sequencing may provide a much more detailed insight into the effects of diet changes on the bacterial communities in domestic cats.

Acknowledgements
We acknowledge the assistance of Dr Shalome Basset (AgResearch), Ms Karin Weidgraaf and Margreet Hekman (Massey University) in the present study. The present study was funded by the Massey University Research Fund (09/0240). There are no conflicts of interest. E. N. B., N. C. R. and D. G. T. obtained funding, and designed and conducted the animal study. E. N. B., W. Y., S. K. and G. H. designed and conducted the laboratory component of the study. All authors contributed to the writing of the manuscript.

References