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Abstract

We introduce a new construction involving Rees matrix semigroups and max-plus algebras that is very
convenient for generating sets of centroids. We describe completely all optimal sets of centroids for all
Rees matrix semigroups without any restrictions on the sandwich matrices.
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1. Introduction

Rees matrix semigroups and max-plus algebras are well known and widely used;
see [1, 9]. We describe a new construction that combines Rees matrix semigroups and
max-plus algebras. This construction is very effective for generating sets of centroids,
which are used in data analysis for the design of centroid-based classifiers or clusterers,
as well as for the design of multiple classifiers and clusterers combining several
individual initial classifiers and clusterers. We describe all optimal sets of centroids of
arbitrary Rees matrix semigroups without any restrictions on the sandwich matrices.

The paper is organised as follows. We include the necessary background informa-
tion in Section 2. As motivation for our research, we give an overview of applications
of the Rees matrix constructions in classification and clustering for analysis of data in
Section 3. The main result of this paper is Theorem 4.1, which completely describes
all optimal sets of centroids. Proofs are given in Section 5.
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2. Preliminaries

We begin with brief preliminaries on Rees matrix semigroups required for our main
theorem. Rees matrix semigroups and the associated notions of completely 0-simple
semigroups and Rees quotients are well known in semigroup theory and play crucial
roles in describing the structure of semigroups and in proofs; see [9]. For examples of
recent results, we also refer to [4, 10–12].

Suppose that G is a group, I and Λ are nonempty sets, and e is the identity of G.
We write G0 for the set G ∪ {θ}, that is, the group G with zero θ adjoined. Let P
or [pλi] be a (Λ × I) matrix with entries pλi ∈G0, where λ ∈ Λ and i ∈ I. The Rees
matrix semigroup M0(G; I, Λ; P) over G with sandwich matrix P consists of all triples
(g; i, λ), where g ∈G0, i ∈ I, and λ ∈ Λ; all triples (θ; i, λ) are identified with θ, and
multiplication is defined by the rule

(g1; i1, λ1)(g2; i2, λ2) = (g1 pλ1i2 g2; i1, λ2). (2.1)

If G is a group, M = M0(G; I, Λ; P), and i ∈ I, λ ∈ Λ, then we use the following
standard notation:

G∗λ = {(g; i, λ) : g ∈G, i ∈ I},

Gi∗ = {(g; i, λ) : g ∈G, λ ∈ Λ},

Giλ = {(g; i, λ) : g ∈G}.

Further, let S be a subset of the Rees matrix semigroup M0(G; I, Λ; P). For i, λ ∈ I, set

S iλ = S ∩Giλ,

S ∗λ = S ∩G∗λ,

S i∗ = S ∩Gi∗.

For subsets X ⊆ I, Y ⊆ Λ, we put

S X∗ =
⋃
i∈X

S i∗,

S ∗Y =
⋃
λ∈Y

S ∗λ.

We assume that S ∅∗ = S ∗∅ = ∅. Note that θ never belongs to any of these sets. For a
subset X of T , we put X0 = X ∪ {θ}.

The max-plus algebra is the set R ∪ {−∞} with two binary operations, max and +.
It is important in the investigation of discrete event systems (see [1]). The max-plus
algebra is also sometimes called the schedule algebra (see [8]).

Our main results remain valid in the more general case of idempotent semifields,
and so we record them in this setting.

A semiring is a set F with two binary operations, addition + and multiplication ·,
such that the following conditions are satisfied.

(S1) (F, +) is a commutative semigroup with zero 0.
(S2) (F, ·) is a semigroup.
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(S3) Multiplication distributes over addition.
(S4) The zero annihilates F, that is, 0 · F = F · 0 = 0.

It is also often assumed that every semiring satisfies an additional property.

(S5) (F, ·) has an identity element 1.

In this paper, we consider more general semirings, which do not have to satisfy (S5),
since this adds the convenience of allowing us to consider more general subsets as
subsemirings. In analogy with the terminology in ring theory, we call a semiring
satisfying (S5) a semiring with identity element. The two terminologies are essentially
equivalent, since it is always easy to adjoin an identity element in a standard fashion to
every semiring that does not have one. Originally, our investigation of semirings was
motivated by the development of methods useful for duality theory; see [3, 6].

A semiring F is said to be idempotent if x + x = x for all x ∈ F. If the set of nonzero
elements of a semiring F forms a group with respect to multiplication, then F is called
a semifield.

Let F be a semiring and let S be a semigroup. The semigroup semiring is denoted
by F[S ] and is defined by

F[S ] =

{ n∑
i=1

fisi : fi ∈ F, si ∈ S , n ∈ N
}
,

where N = {1, 2, 3, . . .}, and addition and multiplication are defined by the associative
and distributive laws and the rules∑

s∈S

fss +
∑
s∈S

f ′s s =
∑
s∈S

( fs + f ′s )s,(∑
s∈S

rss
)(∑

t∈S

r′t t
)

=
∑
s,t∈S

(rsr
′
t )st.

(2.2)

If S has a zero θ, then the quotient semiring of F[S ] modulo the ideal Fθ is called
a contracted semigroup semiring and is denoted by F0[S ]. If S has no zero, then
S 0 stands for the semigroup S ∪ {θ} with zero θ adjoined, and F[S ] is isomorphic to
F0[S 0]. If S is a semigroup without zero, then we also let F0[S ] = F0[S 0] � F[S ].
The use of contracted semigroup semirings enables us to formulate main results more
concisely. We refer to [7, 13–19] for examples of results using these constructions and
other areas where they are used.

3. Motivation

The design of efficient classifiers and clusterers is very important in data mining;
see [20]. Rees matrix semigroups can be used to generate convenient sets of centroids
for centroid-based clusterers and to design combined multiple clusterers capable of
correcting the errors of individual initial clusterers.

The clustering process begins with feature extraction and representation of data in
a standard vector space Fn, where n ∈ N and F may be regarded as a semifield. Every
centroid-based clusterer selects special elements c1, . . . , ck in Fn, called centroids
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(see, for example, [2]). When i = 1, . . . , k, each centroid ci defines its cluster N(ci),
which consists of all vectors v such that ci is the nearest centroid of v. Every vector is
assigned to the cluster of its nearest centroid.

Multiple classifiers and clusterers are often used in analysis of data to combine
individual initial classifiers or clusterers (see, for example, [5, 21]). A well-known
method for the design of multiple clusterers consists in designing several simpler initial
or individual clusterers and then combining them into one multiple clustering scheme
with several clusters. This method is very effective and is recommended for various
applications (see [20, Section 7.5]). The main advantage of using combined multiple
clusterers is in their ability to correct the errors of individual clusterers.

Denote the number of initial clusterers being combined by n. The output of each
clusterer is a symbol that indicates the cluster of the current instance. Without loss
of generality, we may assume that all these outputs belong to the same semifield F,
because it is possible to extend the semifield when necessary. If o1, . . . , on are the
outputs of the initial clusterers, then the sequence (o1, . . . , on) is called a vector of
outputs of the initial clusterers. In order to define the multiple clusterers and enable
correction of errors of the initial clusterers, a set of centroids c1, . . . , ck is again
selected in Fn. When i = 1, . . . , k, the cluster N(ci) of the centroid ci is again defined
as the set of all observations with the vector outputs of the initial clusterers having ci

as its nearest centroid.
The design of multiple clusterers by combining individual binary clusterers is quite

common in the literature. We refer to [16, 20] for a list of properties required of
the sets of centroids. In particular, it is essential to find sets of centroids with large
weights and small numbers of generators. The weight wt(v) of v in Fn is the number
of nonzero components v. The weight of a subset C of Fn is the minimum weight
of a nonzero element in C. For additional references and discussion of experimental
research related to these properties, we refer to [16], which treats constructions with
certain restrictions on the sandwich matrices.

Suppose that S is a finite semigroup with n nonzero elements. Then the additive
semigroup of F0[S ] is isomorphic to Fn, and we can introduce multiplication in Fn

by identifying it with F0[S ]. Accordingly, we further consider sets of centroids as
subsets generated in F0[S ]. Every set of elements g1, . . . , gk ∈ F0[S ] generates the set
C(g1, . . . , gk) of all sums of multiples of these elements:{ m1∑

j=1

`1, jg1r1, j + · · · +

mk∑
j=1

`k, jgkrk, j : `i, j, ri, j ∈ F0[S ] ∪ {1}
}
. (3.1)

The set C(g1, . . . , gk) is also often called the ideal generated by g1, . . . , gk.

4. Main results

Let S be a subsemigroup of a Rees matrix semigroup M0(G; I, Λ; P) over a group G
with sandwich matrix P. Consider the sets L(S ) and R(S ), which may be abbreviated
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to L and R:
L(S ) =

{
λ ∈ Λ : S ∗λ = ∅ or

⋃
i∈I

pλiS i∗ ⊆ {θ}
}
,

R(S ) =

{
i ∈ I : S i∗ = ∅ or

⋃
λ∈Λ

S ∗λpλi ⊆ {θ}
}
.

(4.1)

Here pλiS i∗ = {(pλig; i, µ) : (g; i, µ) ∈ S i∗}, and so pλiS i∗ ⊆ {θ} means that pλi = θ or
S i∗ = ∅. Likewise, S ∗λpλi = {(gpλi; i, µ) : (g; i, µ) ∈ S i∗}, and so S ∗λpλi ⊆ {θ}means that
pλi = θ or S ∗λ = ∅.

We define the following numbers:

MZ = |S R∗ ∩ S ∗L|,

ML = max{|S i∗ ∩ S ∗L| : i < L},

MR = max{|S ∗λ ∩ S R∗| : λ < R},

MG = max{|S iλ| : i < L, λ < R}.

Denote by GZ the set of all elements
∑

s∈S R∗∩S ∗L rss such that rs ∈ F \ {0} for all
s ∈ S R∗ ∩ S ∗L. It is easily seen that, if |MZ | ≥ 1, then the set GZ is nonempty and
contains only nonzero elements.

Denote by GL the set of all elements
∑

s∈S i∗∩S ∗L rss such that rs ∈ F \ {0} for all
s ∈ S i∗ ∩ S ∗L, where i runs over all elements of I \ L such that |S i∗ ∩ S ∗L| = ML. If
|ML| ≥ 1, then the set GL is nonempty and contains only nonzero elements.

Denote by GR the set of all elements
∑

s∈S ∗λ∩S R∗
rss such that rs ∈ F \ {0} for all

s ∈ S ∗λ ∩ S R∗, where λ runs over all elements of Λ \ R such that |S ∗λ ∩ S R∗| = MR. If
|MR| ≥ 1, then the set GR is nonempty and contains only nonzero elements.

Denote by GG the set of all elements
∑

s∈S iλ
rss such that rs ∈ F \ {0} for all s ∈ S iλ,

where i runs over all elements of I \ L and λ runs over all elements of Λ \ R such that
|S iλ| = MG. If |MG | ≥ 1, then GG is nonempty and contains only nonzero elements.

Our main theorem completely describes all sets C(g1, . . . , gk) in F0[S ] with largest
weight. Note that the results of [16] did not use max-plus algebras and involved a
restriction on the sandwich matrix of the underlying Rees matrix semigroup; examples
show that is impossible to drop this restriction. Our new construction involving max-
plus algebras is so convenient that the main theorem of this paper completely describes
all optimal sets of centroids in the general case of arbitrary Rees matrix semigroups
without any restrictions on the sandwich matrices.

T 4.1. Let C be a centroid set C(g1, . . . , gk) in F0[S ] with largest weight,
where F is an idempotent semifield, let T be a Rees matrix semigroup M0(G; I, Λ; P)
over a group G with sandwich matrix P, and let S be a finite subsemigroup of T . Then
the following conditions are satisfied.

(i) wt(C) = max{MZ , ML, MR, MG}.
(ii) C contains an element of weight wt(C) belonging to GZ ∪ GL ∪ GR ∪ GG.
(iii) wt(C(r)) = wt(r) = MZ for all r ∈ GZ .
(iv) wt(C(r)) = wt(r) = ML for all r ∈ GL.
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(v) wt(C(r)) = wt(r) = MR for all r ∈ GR.
(vi) wt(C(r)) = wt(r) = MG for all r ∈ GG.

5. Proofs

For completeness and the reader’s convenience, we begin with a few easy and useful
lemmas.

L 5.1. Let F be an idempotent semiring and x1, . . . , xn ∈ F. Then

x1 + · · · + xn = 0 ⇐⇒ x1 = · · · = xn = 0. (5.1)

P. Suppose that x1 + · · · + xn = 0. Then the laws of addition and multiplication in
the definition of an idempotent semiring imply that

xi = xi + 0 = xi + (x1 + · · · + xn) = x1 + · · · + xn = 0

when i = 1, . . . , n. The opposite implication is clear. �

Every semiring satisfying (5.1) is said to be zero sum free. Thus, Lemma 5.1 tells
us that idempotent semirings are zero sum free.

L 5.2. Let x1, . . . , xn ∈ F and s1, . . . , sn ∈ S , where F is an idempotent semiring
and S is a semigroup with zero θ. Then

0 =

n∑
i=1

xisi ∈ F0[S ] ⇐⇒ (si , θ =⇒ xi = 0).

P. We assume that 0 =
∑n

i=1 xisi ∈ F0[S ]. Combining like terms, we deduce
that

∑n
i=1 xisi =

∑
s∈S (

∑
si=s xi)s. Hence, fixing any s ∈ S \ {θ}, we get

∑
si=s xi = 0.

Lemma 5.1 shows that xi = 0 when si = s. It follows that xi = 0 for all si ∈ S \ {θ},
as required. The opposite implication is clear. �

When x =
∑

s∈S rss ∈ F0[S ], we write supp(x) for the set {s ∈ S : rs , 0}, which is
called the support of x. Evidently, wt(x) = |supp(x)|.

L 5.3. Let x, y ∈ F0[S ], where F is an idempotent semiring and S is a semigroup.
Then supp(x + y) = supp(x) ∪ supp(y).

P. This follows from (2.2) and Lemma 5.1. �

Let S be a semigroup with zero θ. The left and right annihilators of S are the sets
Ann`(S ) and Annr(S ) given by

Ann`(S ) = {x ∈ S : xS = θ},

Annr(S ) = {x ∈ S : S x = θ}.

L 5.4. Let T = M0(G; I, Λ; P) be a Rees matrix semigroup over a group G with
sandwich matrix P and let S be a subsemigroup of T . Then

Annr(S ) = S R∗ ∪ {θ}, (5.2)

Ann`(S ) = S ∗L ∪ {θ}. (5.3)
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P. We prove only the first equality, since the proof of the other is dual. Clearly, θ
belongs to both sides of (5.2). Besides, (2.1) and (4.1) imply that Annr(S ) ⊇ S R∗. To
prove the opposite inclusion and complete the proof, we argue by contradiction.

If Annr(S ) * S R∗, then we can choose i ∈ I \ R and x = (g; i, µ) ∈ Annr(S ), where
g ∈G and µ ∈ Λ. Since x ∈ S , we get S i∗ * θ. Therefore, (4.1) shows that S ∗λpλi * θ for
some λ ∈ Λ. Hence, there exist h ∈G and j ∈ I such that (h; j, λ)x = (hpλig; j, µ) , θ.
This contradicts the choice of x in Annr(S ). �

For any semiring F, the left and right annihilators of F are the sets Ann`(F) and
Annr(F) given by

Ann`(F) = {x ∈ F : xF = 0},

Annr(F) = {x ∈ F : Fx = 0}.

L 5.5. Let F be an idempotent semifield and S be a semigroup with zero θ. Then

Annr(F0[S ]) = F0[Annr(S )], (5.4)

Ann`(F0[S ]) = F0[Ann`(S )]. (5.5)

P. Suppose that x =
∑n

i=1 xisi and y =
∑m

j=1 y jt j in F0[S ], where xi ∈ F \ {0} when
i = 1, . . . , n and y j ∈ F \ {0} when j = 1, . . . , m. The product xiy j is nonzero for all i
and j, because F is a semifield. Therefore, Lemma 5.2 shows that

xy = 0 ⇐⇒ sit j = 0 for all i, j.

Equalities (5.4) and (5.5) follow. �

Let S be a subsemigroup of a Rees matrix semigroup M0(G; I, Λ; P); by definition,
S 0

R∗ = S R∗ ∪ {θ} and S 0
∗L = S ∗L ∪ {θ}. Clearly, S 0

R∗ and S 0
∗L are subsemigroups of S .

L 5.6. Let F be an idempotent semiring and let S be a subsemigroup of a Rees
matrix semigroup M0(G; I, Λ; P) over a group G with sandwich matrix P. Then

Annr(F0[S ]) = F0[S 0
R∗], (5.6)

Ann`(F0[S ]) = F0[S 0
∗L]. (5.7)

P. These follow from Lemmas 5.4 and 5.5. �

P  T 4.1 If S does not contain θ, then we may replace S with S ∪ {θ} in
the statement of the theorem. This does not change the sets L and R, nor the numbers
MZ , ML, MR, and MG. Therefore, we also assume that S contains θ.

First, we prove condition (iii). Take any element r ∈ GZ . By definition, we may
write r as

∑
s∈S R∗∩S ∗L rss, where rs ∈ F \ {0} for all s ∈ S R∗ ∩ S ∗L. Hence, wt(r) = MZ .

It follows from the equality (5.6) of Lemma 5.6 that r ∈ Annr(F0[S ]). Equality (5.7)
demonstrates that r ∈ Ann`(F0[S ]). Since F is a semifield, it follows that C(r)
coincides with the subsemiring {cr : c ∈ N} generated by r in F0[S ]. All elements of
this set have the same weight, equal to the weight of r. Hence, wt(C(r)) = wt(r), and
condition (iii) holds.
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Next, we prove condition (iv). Choose an arbitrary element r ∈ GL. Then there
exists i ∈ I \ L such that r =

∑
s∈S i∗∩S ∗L rss, where rs ∈ F \ {0} for all s ∈ S i∗ ∩ S ∗L and

|S i∗ ∩ S ∗L| = ML. Therefore, wt(r) = ML.
To prove that wt(C(r)) = wt(r), we pick any element x in C(r), and claim that

wt(x) ≥ wt(r).
By (3.1), x =

∑k
j=1 a jrb j for some a j, b j ∈ F0[S ]1 ∪ {1}. Since every nonzero

element of F0[S ] is the sum of some elements from the set FS , equal to

{ f s : f ∈ F \ {0}, s ∈ S \ {θ}},

the distributive law allows us to assume that a j, b j ∈ FS ∪ {1}. We may assume that
all summands a jrb j are nonzero.

Suppose that b j , 1 for some j. Since supp(r) ⊆ S ∗L, the equality (5.3) in
Lemma 5.4 shows that rb j = 0 and so a jrb j = 0. Therefore, we may also assume that
b j = 1 when j = 1, . . . , k.

In view of Lemma 5.3, it remains to verify that wt(a jr) ≥ wt(r) when j = 1, . . . , k.
Consider a product a jr, where a j ∈ FS , that is, a j = f s, where f ∈ F and s ∈ S .

Since F is a semifield, wt( f sr) = wt(sr). We can write s as (g; j′, µ) for some
j′ ∈ I and µ ∈ Λ. Since sr , 0, it follows that pµi , θ. Hence, it follows from (2.1)
that supp(sr) = S j′∗ ∩ S ∗L. Therefore, |supp(sr)| = |S j′∗ ∩ S ∗L| = |S i∗ ∩ S ∗L| = supp(r).
Thus, wt(a jr) ≥ wt(r), and so wt(x) ≥ wt(r) by Lemma 5.3. It follows immediately that
wt(C(r)) = wt(r), which means that condition (iv) holds.

The proof of condition (v) is dual to that of condition (iv) and we omit it.
We now prove condition (vi). Take any element r ∈ GG. There exist i ∈ I \ L

and λ ∈ Λ \ R such that r =
∑

s∈S iλ
rss and |S iλ| = MG. Therefore, supp(r) = |MG |. It

remains to prove that wt(C(r)) = wt(r). To this end, we pick any element x in C(r).
By (3.1), we may write x as

∑k
j=1 a jrb j for some a j, b j ∈ F0[S ] ∪ {1}; the distributive

law allows us to assume that a j, b j ∈ FS ∪ {1}, and we may assume that all summands
a jrb j are nonzero.

We claim that wt(x) ≥ wt(r). Keeping in mind Lemma 5.3, it suffices to verify that
wt(a jrb j) ≥ wt(r) when j = 1, . . . , k. Write a j = fa(ga; ia, λa) and b j = fb(gb; ib, λb)
for some ga, gb ∈G, ia, ib ∈ I, λa, λb ∈ Λ, and fa, fb ∈ F. Since supp(r) ⊆ S iλ and
a jrb j , 0, it follows from (2.1) that pλai, pλib , θ. Now |supp(a jrb j)| = |supp(r)|, again
by (2.1), because

supp(a jrb j) = (ga; ia, λa) supp(r)(gb; ib, λb).

Thus, wt(a jrb j) = wt(r) in this case.
The cases where a j = 1 or b j = 1 are similar and even simpler. In these cases too,

wt(a jrb j) = wt(r). Thus, Lemma 5.3 shows that wt(C(r)) = wt(r), as required. This
means that condition (vi) holds.

Now we prove condition (ii). Choose a nonzero element r of minimal weight in C
and consider several possible cases.

Case 1: r ∈ Ann`(F0[S ]) ∩ Annr(F0[S ]). By Lemma 5.6, r ∈ F0[(S R∗ ∩ S ∗L)0] and so
supp(r) ⊆ S R∗ ∩ S ∗L. It follows from the maximality of wt(C) and condition (iii),

https://doi.org/10.1017/S1446788711001510 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001510


[9] Optimal Rees matrix constructions 365

which we have already proved, that |supp(r)| = MZ . Therefore, supp(r) = S R∗ ∩ S ∗L,
whence r ∈ GZ . Since wt(r) = wt(C), condition (ii) holds in this case.

Case 2: r ∈ Ann`(F0[S ]) \ Annr(F0[S ]). Equality (5.4) of Lemma 5.5 shows that
supp(r) * Annr(S ). Hence, there exists b ∈ S such that b supp(r) , θ. We can write
b as (gb; ib, λb) for some gb ∈G, ib ∈ I, and λb ∈ Λ. Here ib < R, because of the
equality (5.2) of Lemma 5.4. It follows from (2.1) that supp(br) ⊆ S ib∗. Since
r ∈ Ann`(F0[S ]) = S ∗L, we deduce that supp(br) ⊆ S ib∗ ∩ S ∗L.

Condition (iv) (proved above) shows that F0[S ] contains a set C(g1, . . . , gn) of
weight ML. Since ML ≥ |S ib∗ ∩ S ∗L|, the maximality of the weight of C ensures that
the weight of every nonzero element in C is at least ML. From this, it follows that
wt(br) = ML = |S ib∗ ∩ S ∗L| and supp(br) = S ib∗ ∩ S ∗L. This means that br ∈ GL.

Now wt(br) = wt(r) = wt(C), since br ∈C \ {0} and r has minimal weight in C.
Thus, condition (ii) holds in this case, too.

Case 3: r ∈ Annr(F0[S ]) \ Ann`(F0[S ]). This case is dual to Case 2 and we omit the
proof.

Case 4: r < Annr(F0[S ]) ∪ Ann`(F0[S ]). First, r < F0[Annr(S )] ∪ F0[Ann`(S )], by
Lemma 5.5. Hence, there exist a, b ∈ S such that a supp(r), supp(r)b , θ. Then (2.1)
shows that a supp(r)b , θ. Since r has minimum weight in C and arb ∈C \ {0},
we deduce that wt(arb) = wt(r) = wt(C). Consider the representations a = (ga; ia, λa)
and b = (gb; ib, λb), where ga, gb ∈G, ia, ib ∈ I, and λa, λb ∈ Λ. By (2.1), it follows
readily that supp(arb) ⊆ S iaλb ; in view of the maximality of MG, we conclude that
supp(arb) ≤ MG. Condition (vi) (proved above) tells us that F0[S ] contains a set of
the form C(g1, . . . , gn) with weight MG. By the maximality of wt(C), we deduce that
wt(arb) ≥ MG and hence wt(arb) = MG. Therefore, arb ∈ GG, and condition (ii) holds
in this case, too.

Finally, we prove condition (i). Clearly, condition (ii) implies that

wt(C) ≤max{MZ , ML, MR, MG}.

On the other hand, the maximality of wt(C) and conditions (iii) to (vi) show that
wt(C) ≥max{MZ , ML, MR, MG}. Therefore, condition (i) is satisfied. �
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