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Abstract

Measles resurged in Vietnam between 2018 and 2020, especially in the Southern region. The
proportion of children with measles infection showed quite some variation at the provincial
level. We applied a spatio-temporal endemic–epidemic modelling framework for age-stratified
infectious disease counts using measles surveillance data collected in Southern Vietnam
between 1 January 2018 and 30 June 2020. We found that disease transmission within age
groups was greatest in young children aged 0–4 years whereas a relatively high between-
group transmission was observed in older age groups (5–14 years, 15–24 years and 25+
years groups). At the provincial level, spatial transmission followed an age-dependent distance
decay with measles spread mainly depending on local and neighbouring transmission. Our
study helped to clarify the measles transmission dynamics in a more detailed fashion with
respect to age strata, time and space. Findings from this study may help determine proper
strategies in measles outbreak control including promotion of age-targeted intervention pro-
grammes in specific areas.

Introduction

Measles is one of the most contagious viral diseases. The global reduction of measles incidence
during 2000–2016 is a victory of intensive public health efforts, especially in surveillance and
measles immunisation activities. There are no animal reservoirs and infections do not result in
persistent shedding of the pathogen. Thus, measles transmission can only be sustained and
outbreaks can only occur when the susceptible population has attained sufficient size [1].
Between 2016 and 2019, the world experienced a resurgence of measles, with an increase of
556% in the reported incidence observed globally, challenging the feasibility of the disease
elimination goal [2]. This is largely due to the replenishment of individuals who are not
immunised over successive birth cohorts [3]. In other words, failure in maintaining high levels
of measles immunity via vaccination eventually results in an accumulation of susceptibility in
the population and an introduction of the virus could facilitate widespread transmission.
Although effective vaccination programmes would reduce the supply of susceptible individuals
into the population, spatial heterogeneity of the vaccination coverage has been associated with
the occurrence of local outbreaks [4, 5]. The circulation of measles virus is also correlated with
other stochastic local determinants such as population density, inter-regional human move-
ment [6, 7] and mixing behaviour [8–10]. For example, short-term migration of susceptible
populations (e.g. rural-to-urban) may increase the input of susceptibilities in metropolitan
areas, and thus exacerbate the risk of outbreaks in these localities [6, 7]. Furthermore, as con-
tact patterns of age-assortative mixing are usually observed [11, 12], the risk of measles infec-
tion is greater when individuals in under-immunised communities preferentially cluster in
their age class [13, 14].

In Vietnam, the vaccine schedule is a two-dose schedule that the first and second doses of
measles containing vaccine (MCV1 and MCV2) are given at 9 and 18 months old, respectively.
Despite the high coverage over the last decade (>95% for MCV1 and >80% for MCV2 [15]),
sustained epidemics of measles occurred during 2018–2020. The Southern region, which con-
sists of 20 provincial units (the province of Lam Dong, five provinces and a city in the
South East region, 12 provinces and a city in the Mekong River Delta region), was heavily
affected with more than 26 000 cases reported in total. Heterogeneous distribution of measles
incidence in different age groups in relation to space and time was observed in the reported
case data. This raised the interest to investigate the spreading patterns of measles in
Southern Vietnam and the degree to which these transmission patterns are influenced by
age and geographical areas. We fitted an age-structured spatio-temporal statistical model for
infectious disease counts [16, 17] in which the number of infections is additively decomposed
into an endemic and epidemic component. While the latter component describes the
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occasional outbreaks that are linked to previous cases within- or
between-geographical units, the endemic part captures exogenous
factors that explain incidence not directly linked to past counts.
To simultaneously investigate the transmission across age groups,
we accounted for the age-structured mixing pattern, which was
adapted from a social contact study in Vietnam in 2007 [11].
We used routine surveillance data for daily reported counts of
measles collected between 1 January 2018 and 30 June 2020 strati-
fied by age group and by provincial unit in the South of Vietnam.
Results from this study can provide more insights into the measles
outbreak dynamics and more effectively inform age-targeted con-
tainment measures in the country (e.g. age-targeted vaccination
campaigns, health communications).

Method

Measles surveillance data

In Vietnam, measles is one of the 20 infectious diseases that are
required to be notified online to the Electronic Communicable
Disease Surveillance System (ECDS) within 24 h post clinical
diagnosis. In the case report form, several fields including demo-
graphic characteristics, date of illness onset, date of hospitalisation
or medical examination of in- and out-patients are obligated to be
reported. More information about the disease surveillance and
reporting system in Vietnam can be found in [18, 19]. In this
study, we analysed measles cases reported between 1 January
2018 and 30 June 2020 in the Southern region. On 11 October
2020, 26 047 individual cases were extracted from the ECDS,
accessed by the Pasteur Institute in Ho Chi Minh City, the public
health institute that manages the disease surveillance system in
the South. For the age-structured spatio-temporal analysis of
the outbreak, we categorised individuals into four age groups:
0–4 (children), 5–14 (school children), 15–24 (adolescent and
young adults) and 25+ (adults) years of age. Overall, the median
age at disease onset was 3 years, ranging from <1 year to 84 years.
The most affected age group was 0–4 years, which accounted for
61.4% of measles cases while the 5–14 years, 15–24 years and 25+
years groups represented 22.0%, 4.5% and 12.1% of the total cases,
respectively. Based on the date of onset, we aggregated the daily
number of cases by age group in each province in which the
cases resided. Figure 1 depicts the evolution of daily counts of
measles infections and monthly incidence per 100 000 population
by age group and Figure 2 presents maps of the age-specific
cumulative incidence per 100 000 individuals across all provinces.

Population data

Age- and province-specific population data were obtained from
the census data in 2019 [20]. The Southern population was
approximately 36 million in 2019, and in each age group, the
population fraction was 6.7% for 0–4 years, 14.9% for 5–14
years, 14.3% for 15–24 years and 64.2% for 25+ years. We
assumed that the total population was constant over the period
2018–2020.

Social contact data

To reflect the amount of mixing between age groups, we used
social contact data, adapted from an empirical contact matrix in
a survey in the Red River Delta region of Northern Vietnam in
2007 [11]. The matrix was transformed because of the difference

in demographic structures between Northern and Southern
Vietnam and hence, directly using the original contact matrix
would not be valid in our study. First, we extracted the social con-
tact patterns aggregated to the age groups of interest from the
Social Contact Rates (SOCRATES) Data Tool (http://www.social-
contactdata.org/socrates/) [21]. This age-structured contact
matrix C = (cg ′g) provided the average non-negative number of
contacts of a person in age group g

′
(rows) with a contact in

age group g (columns) in 1 day (Fig. 3a) aggregated over weekdays
or weekends, contact duration, physical or non-physical contacts
and gender. Next, we projected the social contact matrix for
Southern Vietnam C(P) = (c(P)g ′g) using the density correction
method proposed by Arregui et al. [22]. The projected contact
matrix is a product of an intrinsic connectivity matrix C(N/Ng)
and the fraction of individuals in the age group of the contact
N ′
g/N

′, where Ng and N ′
g are the demographic structures in

2009 (Red River Delta region) and 2019 (Southern region),
respectively. Note that because the age-structured population
numbers of Red River Delta region are not available for 2007,
we used population of Red River Delta region from the 2009 cen-
sus [20]. The obtained contact matrix is shown in Figure 3b.

Age-structured spatio-temporal analysis

In general, we leveraged an endemic–epidemic modelling frame-
work for multivariate infectious disease counts first introduced by
Held et al. [16] and extended in a series of publications [5, 17, 23–
26, 38, 39]. The framework subsequently incorporated the
age-structured contact matrix (possibly adjusted) to better under-
stand disease spread in the scenario of heterogeneous mixing [17].

Formally, let Ygrt denote the number of cases in age group g =
1,…, G in province r = 1,…, R at time t = 1,…, T. Conditional on
the number of cases at the previous time point t− 1, the counts
are assumed to follow a negative binomial distribution with con-
ditional mean μgrt:

mgrt = egrngrt + fgrt

∑

g ′ ,r′
⌊c(P)g ′gWr′r ⌋Yg ′ ,r′ ,t−1 (1)

and a variance μgrt(1 + μgrtψg) with a group-specific overdisper-
sion parameter ψg > 0 [17, 26]. Note that if ψg = 0, the distribution
simplifies to the Poisson distribution. The mean μgrt is decom-
posed into endemic and epidemic components. The former com-
ponent exhibits baseline patterns. The latter component involves
an autoregressive effect that links cases at time point t in unit r
with observations at the previous time point t− 1 and in units
r
′
= 1, …, R. Specifically, the non-negative parameters νgrt and

ϕgrt are modelled as log-linear predictors:

log (ngrt) = a(n)
g + a(n)

mekong + b(n)
lunarxt + b(n)

trendt

+ bsin sin (vt)+ bcoscos(vt) (2)

log (fgrt) = a(f)
g + a(f)

r + b(f)
lunarxt + t log (egr). (3)

The above two equations contain age-specific fixed effects (a(n)
g ,

a(f)
g ). Because we deemed that fewer cases were reported during

the Lunar New Year, we included an indicator for the holiday
in 2019 and 2020 with coefficient βlunar (xt = 1 for dates from 2
to 10 February 2019 and from 23 to 29 January 2020, otherwise
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Fig. 1. Evolution of age-specific measles cases by date of symptom onset (left axes) and incidence per 100 000 population by month (blue lines, right axes) in
Southern Vietnam, 1 January 2018 to 30 June 2020. Lunar New Year in 2019 and 2020 are highlighted in red.

Fig. 2. Maps of age-specific cumulative incidence per 100 000 population in Southern Vietnam, 1 January 2018 to 30 June 2020.
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Fig. 3. (a) Original age-structured contact matrix C estimated in Northern Vietnam anno 2007 aggregated to the age groups of interest and (b) the age-structured
contact matrix projected for Southern Vietnam C(P) based on (a). The entries contain the mean number of contacts made by one participant per day. (c), (d), (e) and
(f) refer to the power transformation of row-normalised contact matrix C(P) for different values of κ.
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xt = 0). In the endemic component, to adjust for the possibly dif-
ferent number of individuals at risk in each province and age
group, we included the population size egr as an offset [25]. To
allow for the differences amongst the two main administrative
regions, a(n)

mekong is included to resemble the effect of the
Mekong River Delta region. We also assumed that the disease
incidence varies with a linear time effect (βtrend) and an overall
seasonal sine–cosine term where the sinusoidal wave of frequency
ω identified as 2π/365 for daily continuous measurement [24]. In
the epidemic component, we allowed for province-specific effects
a(f)
r and accounted for population size egr to quantify how ‘attrac-

tion’ to a province r scales with population size in group g, in
which the strength of population scaling factor τ is to be estimated
[25, 27].

To determine transmission weights from age stratum g
′
to age

stratum g (i.e. c(P)g ′g), and from area r
′
to r (i.e. Wr′r), the product

c(P)g ′gWr′r , which is row-normalised, i.e.
∑

g,r ⌊c(P)g ′gWr′r⌋ = 1
was introduced in the epidemic component. In ideal circum-
stances, to best reflect the transmission between strata, the matri-
ces of contact and mobility should be displayed by age and
province. Nevertheless, such data sources are not easily available
as collecting contact and movement patterns is cumbersome. In
our study, we took the overall estimate of contact data for
age-group weights and used the power law approximation for
the spatial weights. First, the age-group weights c(P)g ′g are row-
normalised and then raise it to the power κ≥ 0, i.e. Ck

(P) [17].
In an easy interpretation, the limit κ = 0 corresponds to no mixing
between different age groups, i.e. the diagonal contact matrix C(P)
= I (Fig. 3c). When κ = 1, the contact matrix represents the given
projected contact matrix (Fig. 3d). As κ→∞, the transmission
from an infected person to any individual of any age group has
the same distribution with other groups regardless of the group
they are in [17]. We also consider homogenous mixing scenario
in the epidemic component. Second, the non-negative weight
Wr′r in the epidemic component describes the strength of trans-
mission between geographical units. In the absence of mobility
data, it can be estimated using a power law formulation in
terms of adjacency order or′r , which is a discrete distance measure
of neighbourhood order between unit r

′
and r [25]. The power

law weights Wr′r = (or′r + 1)−d , where d > 0 is the decay param-
eter to be estimated, thus give unit weight to local transmission
when r

′
= r and then decay to promote the spatial transmission

from unit r
′
to unit r. The power law weights can be age-

dependent (replacing d by dg ′ ) [17]. In this study, or′r ranges
from 0 to 7.

All procedures were performed using R software version 4.0.5,
packages surveillance version 1.19.1 [28] and hhh4contacts ver-
sion 0.13.1 [17]. In each model, maximum likelihood estimates
of parameters and 95% confidence intervals (95% CIs) were
obtained numerically. Model selection is performed according
to the smallest Akaike information criterion (AIC) value.

Sensitivity analysis

We performed a sensitivity analysis using weekly aggregation of
the surveillance data. We also ran another sensitivity analysis to
assess the impact of different forms of contact matrix on our
results, including the original contact matrix, and the per capita
contact rates (i.e. dividing the mean number of contacts per day
per participant in group g

′
to the Vietnamese population size in

2009 and in 2019 [20] in contact group g).

Ethical consideration

As part of public health surveillance system in Vietnam, case-
based data of measles were routinely collected for disease control
purposes. Anonymised data, i.e. without identification of patient
information, were provided for use in this study. Therefore, this
study did not require ethical approval.

Results

Table 1 summarises the age-stratified spatio-temporal models
with respect to different assumptions of age-structured contact
matrix and spatial transmission weights. Because the AIC values
of two models with age-dependent power law (two last rows)
are not largely different given the large sample size, we select
the simplest model that incorporates the projected matrix C(P)
(the second-to-last row) for further exploration. Coefficient esti-
mates of the selected model are presented in Table 2. Overall,
the disease transmission was dominated by transmission within
age groups, which contributed to 59.9% of measles cases while
the contribution of transmission between age groups was 35.5%
of cases. The endemic component added the remaining 4.6% of

Table 1. Summary of age-stratified spatio-temporal models for surveillance data of measles in Southern Vietnam

Model with assumption of

Spatial structure Contact matrix
Number of
parameters Log-likelihood AIC

The power adjustment κ of the C(P)
(95% CI)

Purely endemic model 13 −39 986 79 999 –

Power law (all age
groups)

No mixing (C(P) = I) 39 −30 430 60 939 –

Homogeneous mixing (C(P) = 1) 39 −29 867 59 813 –

Projected contact matrix C(P) 39 −29 805 59 689 –

Adjusted contact matrix Ck
(P) 40 −29 794 59 668 1.37 (1.22–1.53)

Group-specific power
law

Projected contact matrix C(P) 42 −29 748 59 580 –

Adjusted contact matrix Ck
(P) 43 −29 743 59 573 1.17 (1.06–1.30)

The first two columns list the fitted models corresponding to different assumptions on spatial transmission weights and the projected age-structured contact matrix C(P). The endemic-only
model in the first row contains the endemic component only.
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total cases (Supplementary Fig. S1). The transmission within and
between age strata are described in Table 3 and visualised in
Figure 4. In the youngest age group, 74.9% of the disease cases
were predominantly affected by within-age-group transmission
whereas only 19.1% of the cases were explained by transmission
from other age groups. In those aged 5–14 years, the contribution
of within- and between-age-group transmission seemed balanced
with 49.1% and 49.2% of disease incidence, respectively.
Interestingly, as opposed to the spreading pattern of measles in
the 0–4 years group, we found a large number of cases in the
15–24 years and 25+ years groups attributable to transmission
from other age groups. Specifically, an estimated 48.1% of cases
aged 15–24 years and 57.6% of cases aged 25+ years were infected
by age group 0–4 years, respectively, whereas transmission within
age groups contributed to 13.1% of cases aged 15–24 years and
19.2% of cases aged 25+ years.

When scaling the epidemic component with the population
size, we found that the attraction to province r scaled slower
than proportional with population size of age group g. The corre-
sponding power of the population scaling factor was estimated at
τ = 0.49 (95% CI 0.28–0.69). Moreover, the spatial diffusion of the
disease across provinces followed the age-dependent power laws
(Fig. 5). The group-specific decay parameter dg ′ increases from
1.83 (95% CI 1.73–1.94) in the youngest to 3.30 (95% CI 2.87–
3.78) in the oldest age groups, meaning that a stronger decay of
transmission was observed for more distant provinces in older
age groups. In other words, the spatial interaction of nearby pro-
vinces is more important to capture the dynamics of measles
spread across age strata.

Table 2. Estimated parameters, their 95% CIs and standard errors in the
selected model (model with age-specific power law and projected contact
matrix)

Estimate
Standard
error CI 2.5%

CI
97.5%

Endemic component

Intercept −16.653 0.186 −17.018 −16.287

Group 5–14 −3.135 0.272 −3.668 −2.601

Group 15–24 −3.587 0.257 −4.091 −3.082

Group 25+ −4.696 0.244 −5.174 −4.218

Mekong group 0.463 0.137 0.196 0.731

Trend t 0.003 2.2 × 10−4 0.003 0.003

Lunar New Year −0.181 0.595 −1.348 0.985

Sin term −0.684 0.086 −0.853 −0.516

Cos term 0.641 0.089 0.467 0.815

Epidemic component

Intercept −6.276 1.217 −8.661 −3.892

Group 5–14 −2.224 0.086 −2.393 −2.055

Group 15–24 −3.105 0.094 −3.289 −2.921

Group 25+ −4.404 0.237 −4.869 −3.940

Ho Chi
Minh City

2.448 0.221 2.016 2.881

Binh Phuoc 2.425 0.137 2.156 2.694

Tay Ninh 1.536 0.142 1.257 1.815

Binh Duong 2.425 0.141 2.148 2.701

Dong Nai 2.363 0.156 2.057 2.669

Ba Ria
Vung Tau

1.154 0.149 0.863 1.445

Long An 1.744 0.137 1.476 2.013

Dong Thap 2.195 0.136 1.928 2.462

An Giang 1.497 0.145 1.213 1.782

Tien Giang 0.946 0.146 0.661 1.231

Vinh Long 1.446 0.155 1.142 1.750

Ben Tre 1.063 0.159 0.751 1.375

Kien Giang 2.635 0.135 2.369 2.900

Can Tho City 2.263 0.142 1.985 2.540

Hau Giang 2.049 0.163 1.731 2.368

Tra Vinh 1.348 0.162 1.031 1.665

Soc Trang 1.524 0.151 1.228 1.820

Bac Lieu 2.353 0.152 2.055 2.652

Ca Mau 2.772 0.138 2.502 3.042

The power of
the population
scaling factor

0.486 0.105 0.281 0.691

Lunar New Year −0.064 0.051 −0.163 0.036

Decay d00−04 1.829 0.055 1.725 1.941

Decay d05−14 2.769 0.114 2.555 3.000

(Continued )

Table 2. (Continued.)

Estimate
Standard
error CI 2.5%

CI
97.5%

Decay d15−24 2.991 0.325 2.418 3.700

Decay d25+ 3.295 0.231 2.872 3.781

Overdispersion

ψ00−04 0.171 0.012 0.147 0.195

ψ05−14 0.306 0.029 0.249 0.364

ψ15−24 0.227 0.073 0.083 0.370

ψ25+ 0.153 0.033 0.088 0.218

Table 3. Proportion (%) of cumulative measles cases estimated from the
selected model that are attributable to endemic, within age group and from
other age group transmission

Infectee age
group

Endemic
component

Epidemic component in infector
age group

0–4 5–14 15–24 25+

0–4 6.0 74.9 10.4 2.0 6.7

5–14 1.7 39.1 49.1 3.3 6.8

15–24 4.8 48.1 20.8 13.1 13.2

25+ 2.7 57.6 15.8 4.7 19.2

6 Thi Huyen Trang Nguyen et al.

https://doi.org/10.1017/S0950268822001431 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268822001431


The overdispersion parameters corresponding to the counts in
age groups 0–4 years, 5–14 years, 15–24 years and 25+ years
groups in the selected model were estimated at 0.17 (95% CI
0.15–0.20), 0.31 (95% CI 0.25–0.36), 0.23 (95% CI 0.08–0.37)
and 0.15 (95% CI 0.09–0.22), respectively. This implies that
the assumption of Ygrt following the negative binomial distribu-
tion is more suitable in the model than the Poisson distribution
(ψg = 0).

Results of the sensitivity analyses are presented in
Supplementary Table S1. We found that the results are robust
when applying to different contact matrices (the original and con-
tact rate matrices) in the model. When we changed the resolution
of data into weekly intervals (but keeping the projected contact
matrix), the lowest AIC value was observed in the model with
power-adjusted projected contact matrix and age-specific power
law. The estimated power adjustment κ of this model was low
(0.16; 95% CI 0.11–0.22), meaning that the transmission within
age group in the epidemic component summarises more informa-
tion than suggested in the projected contact matrix
(Supplementary Figs S3B and S4). Nevertheless, without power
adjustment of the (projected) contact matrix, the weekly

aggregation resulted in a contribution of transmission of within
and between age groups, similar to that of the main findings
(Supplementary Fig. S5).

Discussion

Using a regression-oriented, endemic–epidemic time series
model, we performed a detailed analysis of the transmission
dynamics of measles outbreak with respect to age strata, time
and space in Southern Vietnam during 2018–2020. Overall, the
transmission of measles in the outbreak was built by the intricate
reciprocity between different age strata across geographical
regions.

It is apparent that measles is a childhood disease. Sixty-one per
cent of the infections in the 0–4 years group indicated immunity
gaps among these cohorts. This could be because they were not
fully covered by two doses of MCV, which are currently adminis-
tered at 9 and 18 months of age in Vietnam. Studies on the most
recent outbreak in Vietnam (i.e. the 2013–2014 outbreak) indi-
cated a high proportion of young children not accomplished
two doses of MCV [29] or had an insufficient level of protection

Fig. 4. Fitted components of the selected model (i.e. model using the projected contact matrix C(P) and assumption of age-specific power law), aggregated by age
group over all provinces. The dots indicate the observed number of daily infections.
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against measles infection [30]. Moreover, measles antibody levels
in children vaccinated the first single dose, especially those
received at 9–11 months, demonstrated a failure to induce an
adequate effective immune response [31]. This highlights the
importance of compliance of two vaccine doses in age-eligible
children to prevent them contracting measles. In addition, we
must not overlook a substantial proportion of cases in older chil-
dren, adolescents and adults. Although a stabilisation of the sero-
prevalence level until 10 years of age and a fluctuating
seroprevalence level in people aged 10–20 years were observed,
there were large discrepancies in seroprevalence level at the spatial
scale, for example in Ho Chi Minh City a particularly low sero-
prevalence level in 16–17 years old was observed [30]. Studies
in China confirmed a significant decrease of seropositivity over
time after vaccination in those aged from 6 to 14 years [32] and

a lower sero-protection level in the 15–19 compared to 5–9
years groups [33]. However, older children and adolescents in
our study could be unvaccinated in the national supplementary
immunisation campaigns implemented in Vietnam in 2014–
2015 although these activities targeted those aged 1–14 years
(cohorts 2000–2013). Likewise, we suspected that adult cases,
especially those aged 25–35 (accounted for 9.4% of total cases,
data not shown) likely remained vulnerable because of missed
vaccination during the introduction of measles immunisation
programme (1983–1989) [34] rather than the result of waning
immunity. Further evaluation on the age-specific immunity pro-
file for measles is necessary. The need for supplementary immun-
isation strategies targeted in adolescents and young adults should
be also considered to reduce the residual susceptibility in these
populations.

Fig. 5. Estimated spatial transmission weights between provinces by age group.
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Our study once again confirmed that a model incorporating
social contact data has projected the infectious disease dynamics
better than those with assumption of random mixing [10, 12, 13].
From the model fitted, we were able to quantify the amount of
within-group transmission and effectively capture ‘who acquired
infection from whom’. This model helped to explain the measles
transmission mechanism across age groups. Because of the
age-assortative pattern of contact rates [11], an infected individual
is more likely to transmit the disease to a susceptible person in
their same age group. The increased within-group interaction
amongst children aged 0–4 years increases the risk of infection
in this group and thus may act as a driving factor of the outbreak.
In addition, the role of school-aged children in facilitating disease
spread, particularly in school settings, is important because of the
high number of contacts within this subpopulation. Measles
transmission in the school environment has been confirmed in
a number of studies [35, 36]. When looking at the between-age
group transmission, we observed that a substantial number of
measles cases in older age strata, especially in the adult group
(57.6%), was sourced from the 0–4 years group. The projected
contact matrix implies that mixing rates are high between this
age group and the age group of their parents and that it is likely
that these parents have been exposed to measles and acquire
infection from their children. Clustering of disease susceptibility
within households can boost the likelihood and the persistence
of disease outbreaks [9, 37]. Therefore, we recommend more
in-depth analyses on measles transmission in high-contact set-
tings (e.g. households and schools) in future work.

Our study provided insights into the spatial interaction
between different geographical units in disease transmission.
We found an agglomeration effect that measles incidence in the
epidemic component scaled (slower) with the population size of
the ‘importing’ age stratum g in province r. Since long-distance
human movement has an important role in disease diffusion,
applying the age-dependent power law formulation was appropri-
ate in shaping the spatial interaction across age strata in relation
to different neighbourhood orders [25, 38]. We observed that in
the 0–4 years group, the power law puts more weights on local
and first-order neighbour transmissions than in other age groups,
which experienced the faster distance decay of transmission from
the nearest neighbour. This implied that infections in older age
groups were more likely to happen within their (provincial)
home residence whereas cases in young children possibly
depended on past cases from the same or neighbouring provinces.
Although power law approximation is helpful to investigate dis-
ease spread [38], network data (e.g. local road, air data) could
be conceivably taken into account as they could be a good
proxy for the stochastic human transportation. Unfortunately,
we did not have such data available for our study. We suggest
that future research addresses this gap to yield further under-
standing in the spatial disease spreading.

The high number of infected persons among young children
suggests that continuation of the routine two-dose vaccination
programme for this group is critical. Furthermore, catch-up cam-
paigns at the local rather than national level should be considered,
and the focus should be on older age groups. This serves not only
to improve local vaccination coverage across a broader age spec-
trum but also to reduce the risk that susceptible individuals,
who may group together in schools and households, for example,
may become infected through transmission from other age
groups. We also suggest that health communication should
receive more attention in future control measures, such as caution

for school children and parents for better prevention of measles
transmission in those environments.

We recorded several limitations in our study. First, our model
was restricted with an autoregression on cases at previous time t
− 1 but neglected cases at larger lags, which may improve the
model fit [39]. However, our sensitivity analysis using weekly
counts, which may better reflect the serial interval of measles,
resulted in similar conclusions. Second, we relied on the number
of contacts between strata calculated from a survey in Northern
Vietnam anno 2007; this may not reflect the ‘true’ contact pat-
terns in the Southern region. When more social contact data
become available, we could also take into account the characteris-
tics of contact networks in space (e.g. location of contact) and
time (e.g. duration of contacts) as they may provide more infor-
mation in the spatial disease spread [40]. Besides, higher reporting
rates in children may explain the prevailing number of infections
in younger age groups. Our model may, thus, underestimate the
incidence in younger children and overestimate the incidence in
older groups. The impact of such underreporting on the
endemic–epidemic model is an important topic of future research.
Finally, we did not consider local vaccination coverage and how
immunity levels vary, for example because of previous outbreaks,
as model inputs to infer the level of susceptibility. This is certainly
a topic of interest when sufficient data are available.

In summary, we used an age-structured endemic–epidemic
model of infectious disease counts to have insights into the trans-
mission dynamics of measles in Southern Vietnam, based on
measles surveillance data. In young children, within-age-group
transmission was dominant whereas between-age-group transmis-
sion had stronger effects among older age groups. Furthermore,
local and first-order neighbour transmission played a critical
role in the diffusion of the disease despite age groups. Our
study findings could be useful for age-targeted measles control
in future as it gives insights into high-risk subgroups and key fac-
tors that are critical to the transmission dynamics (e.g. contacts
between age groups, spatial interaction).
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