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Abstract
The asymptotic law for the expected nodal volume of random non-Gaussian monochromatic band-limited functions
is determined in vast generality. Our methods combine microlocal analytic techniques and modern probability theory.
A particularly challenging obstacle that we need to overcome is the possible concentration of nodal volume on a
small portion of the manifold, requiring solutions in both disciplines and, in particular, the study of the distribution
of the doubling index of random band-limited functions. As for the fine aspects of the distribution of the nodal
volume, such as its variance, it is expected that the non-Gaussian monochromatic functions behave qualitatively
differently compared to their Gaussian counterpart. Some conjectures pertaining to these are put forward within
this manuscript.

1. Introduction

1.1. Band-limited functions

In recent years a lot of effort has been put into understanding the geometry of Laplace eigenfunctions on
smooth manifolds. Let (𝑀, 𝑔) be a smooth compact Riemannian manifold of dimension n, and Δ = Δ𝑔

the Laplace-Beltrami operator on M. Denote {𝜆𝑖}𝑖≥1 to be the (purely discrete) spectrum of Δ , with the
corresponding orthonormal system of Laplace eigenfunctions 𝜙𝑖 satisfying

Δ𝜙𝑖 + 𝜆2
𝑖 𝜙𝑖 = 0.

An important qualitative descriptor of the geometry of 𝜙𝑖 is its nodal set 𝜙−1
𝑖 (0) and, in particular, the

nodal volume V (𝜙𝑖) = H𝑛−1(𝜙−1
𝑖 (0)) – that is, the (𝑛 − 1)-dimensional Hausdorff measure of 𝜙−1

𝑖 (0).
The highly influential Yau’s conjecture [57] asserts that the nodal volume of 𝜙𝑖 is commensurable

with 𝜆𝑖: there exist constants 𝐶𝑀 > 𝑐𝑀 > 0 so that

𝑐𝑀 · 𝜆𝑖 ≤ V (𝜙𝑖) ≤ 𝐶𝑀 · 𝜆𝑖 .

Yau’s conjecture was established for the real analytic manifolds [13, 14, 21], whereas, more recently,
the optimal lower bound and polynomial upper bound were proved [36, 37, 38] in the smooth case.

In his seminal work [9], Berry proposed to compare the (deterministic) Laplace eigenfunctions on
manifolds, whose geodesic flow is ergodic, to the random monochromatic isotropic waves – that is, a
Gaussian stationary isotropic random field 𝐹𝜇 : R𝑛 → R, whose spectral measure 𝜇 is the hypersurface
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measure on the sphere S𝑛−1 ⊆ R𝑛, normalized by unit total volume. Equivalently, 𝐹𝜇 (·) is uniquely
defined via its covariance function

𝐾∞(𝑥, 𝑦) := E[𝐹𝜇 (𝑥) · 𝐹𝜇 (𝑦)] =
∫
S𝑛−1

𝑒𝑖 〈𝑥−𝑦, 𝜉 〉𝑑𝜇(𝜉). (1.1)

For example, in 2𝑑, the covariance function of 𝐹𝜇 : R2 → R is given by

E[𝐹𝜇 (𝑥) · 𝐹𝜇 (𝑦)] = 𝐽0 (|𝑥 − 𝑦 |),

where 𝐽0 is the Bessel J function of order 0. Berry’s conjecture should be understood in some random
sense (e.g., when averaged over the energy level). Alternatively, one can consider some random ensemble
of eigenfunctions or their random linear combination (Gaussian or non-Gaussian).

A concrete ensemble of the said type is that of band-limited functions [53]

𝑓𝑇 (𝑥) = 𝑓 (𝑥) = 𝑣(𝑇)−1/2
∑

𝜆𝑖 ∈[𝑇 −𝜌(𝑇 ) ,𝑇 ]
𝑎𝑖𝜙𝑖 (𝑥), (1.2)

where 𝑎𝑖 are centred unit variance i.i.d. random variables (Gaussian or non-Gaussian), 𝑇 → ∞ is the
spectral parameter, and the summation is over the energy window [𝑇 − 𝜌(𝑇), 𝑇] of width 𝜌 = 𝜌(𝑇) ≥ 1.
Observe that, because the set of the energies is discrete, in reality, the spectral parameter T is also
discrete. The convenience pre-factor

𝑣(𝑇) :=
(2𝜋)𝑛

𝜔(𝑛) · Vol(𝑀) 𝜌(𝑇)𝑇𝑛−1 = 𝑐𝑀 𝜌(𝑇)𝑇𝑛−1, (1.3)

with 𝜔𝑛 = 𝜋𝑛/2

Γ(𝑛/2+1) being the volume of the unit ball in R𝑛, is introduced to ensure that 𝑓𝑇 (𝑥) is
of asymptotic unit variance as 𝑇 → ∞ at each 𝑥 ∈ 𝑀 and has no impact on the nodal structure of
𝑓𝑇 (·). Regardless of whether or not 𝑓𝑇 (·) in (1.2) is Gaussian, its covariance kernel is the function
𝐾𝑇 : 𝑀 × 𝑀 → R given by

𝐾𝑇 (𝑥, 𝑦) := E[ 𝑓𝑇 (𝑥) · 𝑓𝑇 (𝑦)] = 1
𝑣(𝑇)

∑
𝜆𝑖 ∈[𝑇 −𝜌(𝑇 ) ,𝑇 ]

𝜙𝑖 (𝑥) · 𝜙𝑖 (𝑦), (1.4)

coinciding with the spectral projector in 𝐿2 (𝑀) onto the subspace spanned by the eigenfunctions
{𝜙𝑖}𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ] (recall that 𝑎𝑖 are unit variance).

In what follows, we will focus on the most interesting – and, in some aspects, most difficult –
monochromatic regime 1 ≤ 𝜌(𝑇) = 𝑜𝑇→∞(𝑇). In this case, it is well-known that, under suitable
assumptions on M and on 𝜌 (explicated below), the covariance (1.4), after scaling the variables by T, is
asymptotic to (1.1), around (almost) every reference point x, in the following sense. Let exp𝑥 : 𝑇𝑥 𝑀 → 𝑀
be the exponential map – that is, a bijection between a ball 𝐵(𝑟) ⊆ R𝑛 centred at 0 ∈ R𝑛 and some
neighborhood in M of x, with 𝑟 > 0 depending only on M, independent of 𝑥 ∈ 𝑀 . Then we have

𝐾𝑇
(
exp𝑥 (𝑦/𝑇), exp𝑥 (𝑦′/𝑇)

)
−→

𝑇→∞
𝐾∞(𝑦, 𝑦′) (1.5)

uniformly for ‖𝑦′‖, ‖𝑦‖ ≤ 1, with 𝐾∞(·, ·) as in (1.1), with the convergence (1.5) holding together with
an arbitrary number of derivatives [16, 17, 51]. The convergence (1.5) hints that one would expect, in the
high energy limit, the nodal volume distribution of 𝑓𝑇 in (1.2) to exhibit some aspects of universality.

For the linear combinations (1.2) of Laplace eigenfunctions on real analytic M, the deterministic
upper bound analogue

V ( 𝑓𝑇 ) ≤ 𝐶𝑀 · 𝑇 (1.6)
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of Yau’s conjecture remains valid, thanks to the work of Jerison-Lebeau [41, Section 14] (see also the
work of Lin [35]). The principal results of this manuscript determine the precise asymptotic growth, in
the high energy limit, in the monochromatic regime, of the expected nodal volume of monochromatic
random band-limited functions on generic real analytic manifolds with no boundary, under the mere
assumption that the 𝑎𝑖 have a finite third moment.

1.2. Statement of a principal result

Let the dimensional constant

𝑐𝑛 :=
(

1
𝜋𝑛

)1/2 Γ
(

𝑛+1
2

)
Γ
(
𝑛
2
) , (1.7)

where 𝑛 ≥ 2, and the exponent

𝜗𝑛 :=

{
−𝑛2+4𝑛+1

2(𝑛+1) 2 ≤ 𝑛 ≤ 4
0 𝑛 ≥ 5

(1.8)

(i.e., 𝜗2 = 5
6 , 𝜗3 = 1

2 , 𝜗4 = 1
10 and 𝜗𝑛 = 0 for 𝑛 ≥ 5).

Theorem 1.1. Let 𝑛 ≥ 2 and (𝑀, 𝑔) be a real analytic compact n-manifold with empty boundary.
Suppose that 𝑎𝑖 are i.i.d. random variables so that

E
[
|𝑎𝑖 |3

]
< +∞,

and let 𝑓𝑇 (·) be the band-limited functions (1.2) with

𝜌(𝑇) = 𝜌𝑛 (𝑇) = 𝑇 𝜗𝑛 (log𝑇)2. (1.9)

Then one has

E[V ( 𝑓𝑇 )] = 𝑐𝑛 Vol(𝑀) · 𝑇 + 𝑜𝑇→∞(𝑇),

with 𝑐𝑛 given by (1.7).
Although Theorem 1.1 gives some explicit power saving on the monochromatic bound 𝜌(𝑇) = 𝑜(𝑇),

one wishes to take 𝜌 as small as possible in order to resemble a single eigenfunction to the highest
extent. We are able to address this question in dimension 𝑛 ≥ 5 under some (likely redundant) geometric
assumption on M, as we will describe in the next section.

1.3. Constant energy windows in high dimensions

The following definition is useful, as we will need to further restrict the class of manifolds to allow to
decrease the energy window to constant width.
Definition 1.2. Let (𝑀, 𝑔) be a smooth compact manifold with empty boundary, 𝑆∗𝑀 the cotangent
sphere bundle on M, and 𝐺𝑡 : 𝑆∗𝑀 → 𝑆∗𝑀 the geodesic flow on M.
(1) The set of loop directions based at x is

L𝑥 = {𝜉 ∈ 𝑆∗
𝑥 𝑀 : ∃𝑡 > 0. exp𝑥 (𝑡𝜉) = 𝑥}.

(2) The set of closed geodesics based at x is

CL𝑥 = {𝜉 ∈ 𝑆∗
𝑥 𝑀 : ∃𝑡 > 0. 𝐺𝑡 (𝑥, 𝜉) = (𝑥, 𝜉)}.
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(3) A point 𝑥 ∈ 𝑀 is self-focal, if |L𝑥 | > 0, where | · | is the natural measure on 𝑆∗
𝑥 induced by the

metric 𝑔𝑥 (·, ·).
(4) The geodesic flow on M is periodic if the set of its closed geodesics is of full Liouville measure in

𝑆∗𝑀 . The geodesic flow on M is aperiodic if the set of its periodic closed geodesics is of Liouville
measure 0.

We observe that for M real analytic, the set of its periodic geodesics is of either full or 0 Liouville
measure in 𝑆∗𝑀 (see either [51, Lemma 1.3.8] or Lemma 8.3 below). Hence, in the real analytic case,
the geodesic flow on M is either periodic or aperiodic. The following principal result prescribes the
precise asymptotic law, as 𝑇 → ∞, of the expected nodal volume for random band-limited functions
with energy window of constant width for ‘generic’ manifolds of dimension 𝑛 ≥ 5.

Theorem 1.3. Let 𝑛 ≥ 5 and (𝑀, 𝑔) be a real analytic compact n-manifold with empty boundary, so
that either the geodesic flow on M is periodic or the geodesic flow on M is aperiodic and the set of
self-focal points of M is of measure 0. There exists a sufficiently large constant 𝜌0 = 𝜌0 (𝑀, 𝑔) ≥ 1 such
that the following holds. Suppose that 𝑎𝑖 are i.i.d. random variables so that

E
[
|𝑎𝑖 |3

]
< +∞,

and let 𝑓𝑇 (·) be the band-limited functions (1.2) with 𝜌(𝑇) ≡ 𝜌0. Then one has

E[V ( 𝑓𝑇 )] = 𝑐𝑛 Vol(𝑀) · 𝑇 + 𝑜𝑇→∞(𝑇),

with 𝑐𝑛 given by (1.7).

As we were circulating this manuscript, we were informed by S. Zelditch that, as part of a work in
progress, he proved that the set of self-focal points of every real analytic manifold with empty boundary,
whose geodesic flow is aperiodic, is of measure 0. That means that the assumptions of Theorem 1.1
imply the assumptions of Theorem 1.3. Hence, for 𝑛 ≥ 5, the energy window in (1.9) could be made of
constant width 𝜌 ≡ 𝜌0.

The principal results of this manuscript, Theorem 1.1 and Theorem 1.3, stated for a particular
𝜌 = 𝜌(𝑇), remain valid, along with all our arguments, when 𝜌 grows faster (but not slower) than as
explicitly stated, so long as it obeys the monochromatic condition 𝜌(𝑇) = 𝑜(𝑇). For example, under
the scenario of Theorem 1.3, 𝜌 is allowed to grow arbitrarily slowly, as long as 𝜌(𝑇) = 𝑜(𝑇). For the
non-monochromatic regime

𝜌 ∼
𝑇→∞

𝛼 · 𝑇,

with some 𝛼 ∈ (0, 1], not pursued within this manuscript, our proofs show that the statement of
Theorem 1.1 holds except that the limit random field is different, resulting in a different, but explicit,
constant depending on 𝛼.

It is plausible that the 3rd moment assumption E
[
|𝑎𝑖 |3

]
< +∞ in Theorem 1.1 and Theorem 1.3

could be weakened, possibly to E
[
|𝑎𝑖 |2+𝜀

]
< +∞ or even to E

[
|𝑎𝑖 |2

]
< +∞. Indeed, the finiteness of the

third moment of the 𝑎𝑖 is used exclusively for applying the Berry-Esseen theorem on 𝑓𝑇 in Lemma 6.5.
It is conceivable that the assumptions of Lemma 6.5 could be weakened by a more careful study of
the characteristic function of 𝑓𝑇 , leading to the said refinement. However, it was decided to keep the
statements of the principal results in their present form for the sake of brevity of the arguments and
better readability of the manuscript.

1.4. Doubling index

We wish to spend a couple of paragraphs on the doubling index, a novel aspect of the proofs of the main
results. The local universality suggested by the convergence of the covariance function in (1.5) does not
give sufficient local information on the distribution of the nodal volume of the band-limited functions.
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This is due to the (possible) concentration of nodal volume: small probability events contributing
positively to the expectation of the nodal volume. To control such events, the (local) nodal volume can
be further analysed by studying the doubling index, a local measure of the growth of eigenfunctions [21,
35, 36, 37]:

N 𝑓𝑇 (𝑥) := log
sup𝐵𝑔 (𝑥,2/𝑇 ) | 𝑓𝑇 |
sup𝐵𝑔 (𝑥,1/𝑇 ) | 𝑓𝑇 | ,

where 𝐵𝑔 (𝑥, 𝑟) is the geodesic ball centred at 𝑥 ∈ 𝑀 of radius 𝑟 > 0.
The study of the distribution of the doubling index as a function of 𝑥 ∈ 𝑀 is a key tool in understanding

the zero set of Laplace eigenfunctions. In particular, Donnelly and Fefferman demonstrated that N (·)
is bounded for ‘most’ 𝑥 ∈ 𝑀 [21] and used this result to deduce a lower bound in Yau’s conjecture.
Upper bounds on large values of N (·) have also been used to derive a lower bound in the smooth case
by Logunov [37]. In this paper, we focus on the distribution of the doubling index for random band-
limited functions. One important result, which is instrumental for the rest of the paper, is proving that,
for random functions, with high probability, large values of the doubling index are very rare, beyond the
deterministic results of Donnelly and Fefferman. See Section 6 for more details.

Some conventions

We write 𝐴 � 𝐵 to designate the existence of some constant 𝐶 > 0 such that 𝐴 ≤ 𝐶𝐵; if C depends on
some auxiliary parameter 𝛽, then in this case we write 𝐴 �𝛽 𝐵. If 𝐴 � 𝐵 and 𝐵 � 𝐴, then we write
𝐴 � 𝐵. We also write 𝐶, 𝑐 > 0 for constants whose value may change from line to line. Further, for two
functions 𝐴, 𝐵 : R→ R, we will use the asymptotic notation 𝐴 = 𝑜(𝐵) if 𝐴(𝑡)/𝐵(𝑡) → 0 as 𝑡 → ∞; in
particular, 𝑜(1) denotes a function tending to zero. Every constant implied in the notation may depend
on (𝑀, 𝑔), which will be suppressed.

The notation 𝐵(𝑥, 𝑟) and 𝐵𝑔 (·) will stand for the (Euclidean) ball centred at x of radius 𝑟 > 0 and
the geodesic ball on M, respectively, and the shorthand 𝐵0 = 𝐵(0, 1) ⊆ R𝑛 will be employed. Given a
ball B – Euclidean or geodesic – and some number 𝑟 > 0, its closure is 𝐵, whereas 𝑟𝐵 will stand for the
concentric ball of r-times the radius.

We use the multi-index notation 𝐷𝛼 = 𝜕𝛼1
𝑥1 ...𝜕𝛼2

𝑥2 , where 𝛼 = (𝛼1, ..., 𝛼𝑛) and |𝛼 | = 𝛼1 + ... + 𝛼𝑛.
Furthermore, given a (𝐶3) function 𝑔 : 𝐵(𝑥, 𝑟) → R and some 𝑟 > 0, we let

V (𝑔, 𝐵(𝑥, 𝑟)) = H𝑛−1{𝑥 ∈ 𝐵(𝑥, 𝑟) : 𝑔(𝑥) = 0}

be the nodal volume of g in 𝐵(𝑥, 𝑟). Finally, we denote by (Ω, P) the abstract probability space where
every random object is defined, by E[·] the expectation with respect to 𝑑P, and by

𝑑𝜎 :=
𝑑 Vol

Vol(𝑀) ⊗ 𝑑P

the (normalized) probability measure on the space 𝑀 ×Ω.

2. Outline of the proofs of the main results

2.1. Reconstructing the total nodal length from local patches

The starting point of the proofs is the following observation: because the nodal volume is a local
quantity (i.e., it is additive w.r.t. (disjoint) subsets of M), one may asymptotically reconstruct it based
on averaging the local nodal volume of 𝑓𝑇 restricted to small balls w.r.t. their centres. That is,

V ( 𝑓𝑇 ) = 𝑇 (1 + 𝑜(1))
∫

𝑀
V (𝐹𝑥)𝑑 Vol𝑔 (𝑥), (2.1)
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where 𝐹𝑥 is a scaled local version

𝐹𝑥,𝑇 (𝑦) = 𝐹𝑥 (𝑦) = 𝑓𝑇 (exp𝑥 (𝑦/𝑇))

of 𝑓𝑇 in the vicinity of 𝑥 ∈ 𝑀 , defined on the unit Euclidean ball 𝑦 ∈ 𝐵0(1). Thus, to evaluate V ( 𝑓 ), it
is sufficient to understand the nodal volume V (𝐹𝑥) on average w.r.t. 𝑥 ∈ 𝑀 .

With this notion in mind, rather than working with 𝑓𝑇 as a random field defined on a probability
space Ω (where the random variables 𝑎𝑖 are defined), we may think of 𝐹𝑥 (·) as a random field indexed
by 𝐵0(1), defined on the probability space 𝑀 ×Ω. Thus, the local nodal volume V (𝐹𝑥) is, in this sense,
a random variable on the product space 𝑀 × Ω w.r.t. the normalized probability measure 𝑑 Vol𝑔

Vol(𝑀 ) ⊗ 𝑑P.
In light of the above, to use the observation (2.1), the proofs of Theorem 1.1 and Theorem 1.3 will borrow
from two important preliminary steps: local asymptotic Gaussianity of 𝑓𝑇 in Proposition 4.1 (regarding
the growing energy windows case) and Proposition 9.1 (regarding the constant energy windows case)
and an anti-concentration estimate for V (𝐹𝑥) in Proposition 6.1. We now explicate the meaning of these
preliminary steps and give a sketch of their proofs.

2.2. Asymptotic Gaussianity

Because, under the assumptions on 𝜌 of either Theorem 1.1 or Theorem 1.3, the number of the summands
within (1.2) is growing and the 𝑎𝑖 are i.i.d., the scaled version 𝐹𝑥,𝑇 of 𝑓𝑇 should asymptotically behave
like a Gaussian random field with correlations given by (1.1). It will be rigorously proved for either the
growing window regime as in Theorem 1.1 or the constant width regime 𝜌 ≡ 𝜌0, though for the former
case, our arguments are significantly simplified.

Let us first explain the proof under the assumptions of Theorem 1.1. In this case, the asymptotic
behavior of the correlation function of 𝐹𝑥,𝑇 , postulated in (1.5), is given by the local Weyl’s law of
Hörmander; see Section 4.2 below. It also follows that all the summands in (1.2) have size 𝑜(𝑣(𝑇)).
Therefore, an application of Linderberg’s Central Limit theorem, together with the Continuous Mapping
Theorem, implies

V (𝐹𝑥)
𝑑−→ V (𝐹𝜇) 𝑇 → ∞,

where the convergence is in distribution uniformly w.r.t. 𝑥 ∈ 𝑀 (that is, for all continuous and bounded
functions ℎ : R → R, E[ℎ(V (𝐹𝑥))] → E[ℎ(V (𝐹𝜇))] uniformly for all 𝑥 ∈ 𝑀). This is the content
of Proposition 4.1 below. Thus, in this case, for the asymptotic Gaussianity, there is no need to make
use of the extra averaging with respect to 𝑥 ∈ 𝑀 (but this will be required for the rest of the proof).
Due to such a simplification, we will present the proof of Proposition 4.1 first in Section 4 so that the
probabilistic arguments are easier to describe and can be separated from the more precise microlocal
analysis techniques required in the constant energy window case, which we are going to discuss next.

In the case of constant energy windows 𝜌 ≡ 𝜌0, there are at least two obstacles to the described
approach:
(i) Around some ‘bad’ points 𝑥 ∈ 𝑀 , the asymptotic behavior of the covariance kernel of 𝐹𝑥 may not

coincide with (1.1).
(ii) Around some other ‘bad’ points, some of the summands in (1.2) could be as large, by order of

magnitude, as 𝑣(𝑇)1/2, occurring in reality, for example, on the sphere. Around these points the
Central Limit Theorem is not applicable.

To overcome obstacle (i), the spectral projector operator

𝐿2 (𝑀) → Sp{𝜙𝑖}𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

is carefully studied in Section 8. We show that, under the assumptions of Theorem 1.3 on the self-
focal points of M, the asymptotics (1.5) hold outside1 a set of points 𝑥 ∈ 𝑀 of small measure. Sogge’s

1As a by-product of our analysis, it will follow that around every ‘good’ point in the complement of the ‘bad’, there is a
1/𝑇 -neighbourhood, where (1.5) is satisfied with no quantitative error term; see Proposition 8.2.
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bound [54] is used to prove that all the summands in (1.2) are of size 𝑜(𝑣(𝑇)1/2) for x outside of another
set of small measure, though crucially depending on T. Since, other than the vanishing measure of the
bad sets, no other useful property of the family of bad sets is established (it would be useful if, for
example, this family would be monotone decreasing with T growing), the Central Limit Theorem is not
applicable with any fixed 𝑥 ∈ 𝑀 .

Instead, a ‘triangular’ version of the Central Limit Theorem, allowing for the random variables to
depend on a parameter, is applied with x varying with T; as it was explained above, the elegant way to
express the outcome of its application as a single consolidated result is by thinking of x random uniform
on the good set and, a forteriori, using the asymptotic vanishing of the excised set for x random uniform
on M. Hence, the convergence of 𝐹𝑥 (·) to the limit monochromatic random field is as a random field
w.r.t. the probability measure 𝑑 Vol𝑔

Vol(𝑀 ) ⊗ 𝑑P on 𝑀 × Ω (and the convergence of 𝐹𝑥 (·) w.r.t. 𝑑P on Ω is
not asserted for any given 𝑥 ∈ 𝑀).

To the best of our knowledge, this aspect of our proofs, inspired by the de-randomization techniques
[12, 15], is novel in the context of the study of the geometry of random fields, and different from the
rest of the literature on the subject, where the Central Limit Theorem is normally applied for every
𝑥 ∈ 𝑀 fixed. The convergence, in distribution, of the random variables V (𝐹𝑥), also w.r.t. the probability
measure 𝑑 Vol𝑔

Vol(𝑀 ) ⊗ 𝑑P on 𝑀×Ω, to V (𝐹𝜇), follows directly from the convergence of the random fields 𝐹𝑥

to the limit random field 𝐹𝜇, via the Continuous Mapping Theorem. This is the content of Proposition
9.1.

2.3. Anti-concentration

Since the outcome of Proposition 4.1 and Proposition 9.1 are valid outside a set of small probability
(and outside a set of 𝑥 ∈ 𝑀 of small volume), it is essential to demonstrate that the contribution of the
exceptional set to (2.1) is negligible. In other words, we need to show that it is unlikely that a large
proportion of the nodal set concentrates in a small portion of space, hence the term ‘anti-concentration’.
This is precisely the purpose of the anti-concentration Proposition 6.1, whose proofs will be now
discussed.

The required anti-concentration result is the existence of some function ℎ : R>0 → R>0, so that

ℎ(𝑡)
𝑡

→ ∞,

and that satisfies the estimate ∫
𝑀
E[ℎ(V (𝐹𝑥))]𝑑 Vol𝑔 (𝑥) < 𝐶 (2.2)

for some constant 𝐶 = 𝐶 (𝑀, 𝑔) > 1, independent of T.
In Proposition 6.1, we will show that (2.2) holds true with ℎ(𝑡) = 𝑡 · log 𝑡 provided that the energy

window satisfies

𝜌 = 𝜌(𝑇) ≥
{
𝑇 𝜗𝑛 (log 𝑇)2 2 ≤ 𝑛 ≤ 4
𝜌0 𝑛 ≥ 5

,

with 𝜗𝑛 given by (1.8).
Following the approach of Donnelly-Fefferman [21], Lin [35] and Jerison-Lebeau [41, Section 14],

the nodal volume of 𝑓 (·) = 𝑓𝑇 (·) can be controlled via the doubling index (of the ‘harmonic lift’ of f ).
The doubling index is defined for any function

ℎ : 3𝐵 = 𝐵(𝑥, 3𝑟) ⊆ 𝑀 → R
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as

Nℎ (𝑥, 𝑟) = Nℎ (𝐵) = log
sup2𝐵 |ℎ|
sup𝐵 |ℎ| .

In Section 5, we will show, appealing to the analyticity of M, that the nodal volume of f in a ball of
radius 𝑟 > 0 can be bounded as

V ( 𝑓 , 𝐵𝑟 ) � 𝑟𝑛−1N 𝑓 𝐻 (𝐵8𝑟 ) = 𝑟𝑛−1N (𝐵8𝑟 ),

where 𝑓 𝐻 is the harmonic lift of f to the manifold 𝑀 ×R (at this stage it is instructive, although slightly
imprecise, to think of the harmonic lift as 𝑓 𝐻 (𝑥, 𝑡) = 𝑓 (𝑥) · exp(𝑇 · 𝑡)), and 𝐵8𝑟 is the ‘ball’

𝐵8𝑟 = 𝐵8𝑟 × [−8𝑟, 8𝑟] .

The well-known bounds on the growth rate of eigenfunctions, as in [21], give

N 𝑓 𝐻 ((𝑥, 0), 𝑐) =: N (𝑥, 𝑐) � 𝑇

for some constant 𝑐 = 𝑐(𝑀, 𝑔) > 0. The monotonicity of the doubling index (w.r.t. the radius 𝑟 > 0) for
harmonic function [35] implies

N (𝑥, 8/𝑇) � N (𝑥, 𝑐) � 𝑇.

Thus, the statement (2.2) of Proposition 6.1 is equivalent, in essence, to an estimate of the type

(Vol ⊗P) ({(𝑥, 𝜔) : V (𝐹𝑥) > 𝐻}) ≤ 1
𝐻 (log 𝐻)2+𝜀

, (2.3)

for all 1 < 𝐻 � 𝑇 . The asymptotic estimate (2.1), together with the global bound V ( 𝑓𝑇 ) � 𝑇 , give

Vol(𝑥 ∈ 𝑀 : V (𝐹𝑥) > 𝐻) � 𝐻−1.

Therefore, the aspired bound (2.3), holding with high probability w.r.t. the product space, is a logarithmic
gain only over a bound holding deterministically for every band-limited function. This is the most delicate
and, to our best knowledge, novel aspect of the proof of Proposition 6.1, described immediately below.

As discussed above, a large value of V (𝐹𝑥) also implies a large value of the doubling index on
�̃� = 𝐵(𝑥, 8/𝑇) × [−8/𝑇, 8/𝑇], which, in turn, may only happen if either the function has a large value on
2�̃� or has a small value on �̃�, roughly speaking. The former case can be dealt with via the second moment
method. However, controlling the small values of f (or rather, of 𝑓 𝐻 ) is more delicate. Quantifying the
Gaussian convergence obtained in Section 4, it is possible to control the probability of 𝑓 (𝑥) being of
‘small’ depending on the 𝐿3-norm (cubed) of the eigenfunctions. After some computations, this leads
to the bound

sup
𝑥∈𝑀
P(N (𝑥, 8/𝑇) > 𝐻) � exp(−𝐻) + sup

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
| |𝜙𝑖 | |3𝐿3 𝑣(𝑇)−1/2. (2.4)

Therefore, in order to obtain (2.3), it would be sufficient to control the second term on the r.h.s. of (2.4).
Unfortunately, appealing to Sogge’s bound [54] turns out to be not quite sufficient to yield Proposition
6.1. Thus, we will use one last ‘trick’, and by using the Gaussian convergence at various scales and the
monotonicity of the doubling index, we will show that

P(sup
𝑥

N (𝑥, 3/𝑇) ≤ 𝑇1−𝑐) ≥ 1 + 𝑂 ((log𝑇)−1)
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for some constant 𝑐 = 𝑐(𝑛) > 0. This will reduce the range of H in (2.3), and thus the bound (2.4) will
suffice to prove Propostion 6.1 in the appropriate range of 𝜌 specified above. This concludes the sketch
of the proofs.

3. Discussion

3.1. Survey of non-Gaussian literature

To our best knowledge, the results presented within this manuscript are the first universality results
applicable in the asserted vastly general scenario in terms of both the underlying manifold M and the
random coefficients {𝑎𝑖}. Our approach is based on a blend of microlocal analytic techniques, missing
from the existing non-Gaussian literature, and purely probabilistic methods. The closest analogue to
Theorem 1.1 (and Theorem 1.3) we are aware of in the existing literature is [2], dealing with 2d
random non-Gaussian trigonometric polynomials. These are related to the random band-limited Laplace
eigenfunctions on the standard 2d torus corresponding to the long energy window 𝜌(𝑇) = 𝑇 (here,
the energies ordering is somewhat different to allow for separation of variables). The asymptotics for
the expected nodal length was asserted for centred unit variance random variables in perfect harmony
to Theorem 1.1 (though with a different leading constant, a by-product of a non-monochromatic scaling
limit).

Even though we did not meticulously validate all the details, we believe that their arguments translate
verbatim for the ‘pure’ 2d toral Laplace eigenfunctions

𝑔𝑚 (𝑥) =
∑
𝜇∈Z2

‖𝜇‖2=𝑚

𝑎𝜇 · 𝑒(〈𝜇, 𝑥〉), (3.1)

where the 𝑎𝜇 are i.i.d., save for the relation 𝑎−𝜇 = 𝑎𝜇 making 𝑔𝑚 real-valued, and the summation
on the r.h.s. of (3.1) is w.r.t. to all standard lattice points lying on the radius-

√
𝑚 centred circle. In

the Gaussian context, the 𝑔𝑚 are usually referred to as ‘arithmetic random waves’ (ARW), see, for
example, [31, 46, 50]; they are the band-limited functions for the standard flat torus corresponding to
the ‘very short energy window’ 𝜌(𝑇) ≡ 1 (in fact, in this case, the energy window width could be
made infinitesimal). Other than the result for 2d random trigonometric polynomials, all the literature
concerning real zeros of non-Gaussian ensembles is 1-dimensional in essence: real zeros of random
algebraic polynomials or Taylor series (see, for example, [29, 30, 45] and the references therein),
random trigonometric polynomials on the circle [4], and the restrictions of 2d random toral Laplace
eigenfunctions (3.1) to a smooth curve [19].

3.2. Gaussian vs. non-Gaussian monochromatic functions: cases of study

Unlike the non-Gaussian state of art concerning the zeros of the band-limited functions, the Gaussian
literature is vast and rapidly expanding thanks to the powerful Kac-Rice method tailored to this case
at times combined with the Wiener chaos expansion. Here the literature varies from the very precise
and detailed results concerning the zero volume distribution (its expectation, variance and limit law)
restricted to some particularly important ensembles, such as random spherical harmonics [40, 56] or
the arithmetic random waves [31, 39], to somewhat less detailed results, but of far more general nature
[18, 59], to almost sure asymptotic result [26] w.r.t. a randomly independently drawn sequence of
functions { 𝑓𝑇 }𝑇 .

It is plausible, if not likely, that under a slightly more restrictive assumptions on the random variables,
our techniques yield a power saving upper bound for the nodal length variance of the type

Var
(

𝑓𝑇
𝑇

)
= 𝑂

(
𝑇−𝛿

)
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for some 𝛿 > 0, but certainly not a precise asymptotic law for the variance, even for the particular cases
of non-Gaussian random spherical harmonics or the non-Gaussian Arithmetic Random Waves. In the
Gaussian case, even some important non-local properties of the nodal set were addressed: the expected
number of nodal components [42, 43], their fluctuations [5, 44], their fine topology and geometry, and
their relative position [6, 53].

The aforementioned random ensemble of Gaussian spherical harmonics is the sequence of functions
𝑓ℓ : S2 → R, ℓ ≥ 1, where

𝑓ℓ (𝑥) =
1

√
2ℓ + 1

ℓ∑
𝑚=−ℓ

𝑎ℓ,𝑚𝑌ℓ,𝑚 (𝑥),

with {𝑌ℓ,𝑚}−ℓ≤𝑚≤ℓ the standard basis of degree-ℓ spherical harmonics and 𝑎ℓ,𝑚 i.i.d. standard Gaussian
random variables. An application of the Kac-Rice formula yields [7] the expected nodal length of 𝑓ℓ (·)
to be given precisely by

E[V ( 𝑓ℓ )] =
√

2𝜋 ·
√

ℓ(ℓ + 1) ∼
√

2𝜋ℓ,

whereas a significantly heavier machinery, also appealing to the Kac-Rice method, yields [56] a precise
asymptotic law

Var(V ( 𝑓ℓ)) ∼
ℓ→∞

1
32

log ℓ,

smaller than what would have been thought the natural scaling ≈ 𝑐 · ℓ would be (‘Berry’s cancellation
phenomenon’).

In light of the nonuniversality result of [4], it is not unlikely that in the non-Gaussian case (i.e., the
𝑎ℓ,𝑚 are centred unit variance i.i.d. random variable), the variance satisfies the 2-term asymptotics

Var(V ( 𝑓ℓ )) = 𝑐1 · ℓ + 𝑐2 · log ℓ + 𝑂 (1),

with 𝑐1, 𝑐2 depending on the law of 𝑎ℓ,𝑚 and 𝑐1 vanishing for a peculiar family of distributions, including
the Gaussian one. It seems less likely, though conceivable, that 𝑐1 ≡ 0.

For the 2d Gaussian arithmetic random waves (3.1), it was found that the expected nodal length is
given precisely by E[V (𝑔𝑚)] = 𝜋√

2
·
√

𝑚, whereas the variance is asymptotic to

Var(V (𝑔𝑚)) ∼ 4𝜋2𝑏𝑚 · 𝑚

𝑟2 (𝑚)2 ,

where 𝑟2(𝑚) is the number of summands in (3.1). Here the numbers 𝑏𝑚 are genuinely fluctuating in
[1/512, 1/256], depending on the angular distribution of the lattice points in the summation on the r.h.s.
of (3.1) and the leading term corresponding to 𝑚

𝑟2 (𝑚) ‘miraculously’ cancelling out precisely (‘arithmetic
Berry’s cancellation’).

Using the same reasoning as for the spherical harmonics, for the non-Gaussian case (i.e., 𝑎𝜇 are
centred unit variance i.i.d. random variables), it is expected that the 2-term asymptotics

Var(V (𝑔𝑚)) ∼ 𝑐1
𝑚

𝑟2(𝑚) + 𝑐2
𝑚

𝑟2(𝑚)2

hold with 𝑐1, 𝑐2 possibly depending on both the law of 𝑎𝜇 and the angular distribution of the lattice
points {𝜇} in (3.1), with 𝑐1 vanishing for 𝑎𝜇 a peculiar class of distribution laws, including the Gaussian
(whence 𝑐1 vanishes independent of the angular distribution of the lattice points {𝜇}). The dependence
of 𝑐1 and 𝑐2 on both the distribution law of 𝑎𝜇 and the angular distribution of {𝜇} is of interest – in
particular, whether the vanishing of 𝑐1 depends on the angular distribution of {𝜇} at all (which is not
the case if 𝑎𝜇 is Gaussian). Again, it is conceivable that 𝑐1 ≡ 0. We leave all of the above questions to
be addressed elsewhere.
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4. Asymptotics Gaussianity

The aim of this section is to show that nodal length of 𝑓𝑇 , as in (1.2), has a universal limit law in balls
of radius � 𝑇−1. In order to state this result precisely, we need to introduce some notation that will be
used throughout the rest of the article.

4.1. Notation and goal of Section 4

First, we will define the rescaled version of 𝑓𝑇 , as in (1.2), in geodesic balls of radius 𝑇−1. Let 𝑥 ∈ 𝑀
and let 𝐹𝑥 be 𝑓𝑇 rescaled to the ball 𝐵𝑔 (𝑥, 1/𝑇) in normal coordinates. More precisely, we define:

𝐹𝑇 ,𝑥 (𝑦) = 𝐹𝑥 (𝑦) = 𝑓 (exp𝑥 (𝑦/𝑇)) (4.1)

for 𝑦 ∈ 𝐵(0, 1) =: 𝐵0 ⊆ R𝑛, where exp𝑥 : R𝑛 � 𝑇𝑥 𝑀 → 𝑀 is the exponential map. Notice that, in the
definition of the exponential map, we have tacitly identified R𝑛 with 𝑇𝑥 𝑀 via an Euclidean isometry.
Moreover, we observe that since (𝑀, 𝑔) is analytic, the injectivity radius of M is uniformly bounded
from below [20]; thus, from now on, we assume that 1/𝑇 is smaller than the injectivity radius so that
the exponential map is a diffeomorphism. Furthermore, thanks to [43, Section 8.1.2] due to Nazarov
and Sodin (see also [49, Section 2]), the map

(𝑥, 𝜔) ∈ 𝑀 ×Ω → 𝐹𝑥 (𝜔, ·) ∈ 𝐶∞(𝐵0)

is measurable.
We now define the universal scaling limit for the nodal length of 𝐹𝑥 . We denote 𝐹𝜇 to be the

monochromatic isotropic Gaussian field on 𝐵0 ⊆ R𝑛 with spectral measure 𝜇, the (normalised) Lebesgue
measure on the 𝑛 − 1 dimensional sphere S𝑛−1. Equivalently, 𝐹𝜇 has the covariance function

E[𝐹𝜇 (𝑦) · 𝐹𝜇 (𝑦′)] =
∫
|𝜉 |=1

exp(𝑖〈𝑦 − 𝑦′, 𝜉〉)𝑑𝜇(𝜉) = (2𝜋)Λ 𝐽Λ (|𝑦 − 𝑦′ |)
|𝑦 − 𝑦′ |Λ

, (4.2)

with Λ = (𝑛 − 2)/2 and where 𝐽Λ (·) is the usual Bessel J function of order Λ. In what follows we will
use the shorthands

V (𝐹𝑥) := V
(
𝐹𝑥 ,

1
2

𝐵0

)
and V (𝐹𝜇) := V

(
𝐹𝜇,

1
2

𝐵0

)
.

The aim of this section is to prove the following proposition:
Proposition 4.1. Let 𝐹𝑥 be as in (4.1), 𝐹𝜇 be as above. Then, under the assumptions of Theorem 1.1 on
the energy window width 𝜌 = 𝜌(𝑇), uniformly for all 𝑥 ∈ 𝑀 , we have

V (𝐹𝑥)
𝑑−→ V (𝐹𝜇) 𝑇 → ∞

convergence in distribution.
Observe that in Proposition 4.1, the convergence to the Gaussian random field is claimed for fixed

𝑥 ∈ 𝑀 , stronger than the average statement w.r.t. 𝑥 ∈ 𝑀 , required for the proof of Theorem 1.1
(cf. Proposition 9.1 that is used for the proof of Theorem 1.3). This is where the growing energy window
assumption of Theorem 1.1 is also used. In particular, Proposition 4.1 implies that

V (𝐹𝑥)
𝑑−→ V (𝐹𝜇) 𝑇 → ∞ (4.3)

converges in distribution as a random variable on (𝑀 ×Ω, 𝑑𝜎), where

𝑑𝜎 = (Vol𝑔 (𝑀))−1𝑑 Vol𝑔 ⊗𝑑P

(cf. Proposition 9.1).
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Remark 4.2. The proof of Proposition 4.1 holds verbatim under the much weaker assumption that the
energy window 𝜌(𝑇) → ∞ as 𝑇 → ∞. The full strength of the assumptions of Theorem 1.1 will be
needed only in Section 6 below. Nevertheless, we prefer to state the assumptions of Proposition 4.1 in
the precise form it will be used.

4.2. Hörmander’s local Weyl’s law

In order to study 𝐹𝑥 as in (4.1), we will need the well-known local Weyl’s law of Hörmander [28,
Theorem 4.4], which we do not present in its full generality but in a form convenient for our purposes.
In particular, there are no restrictions on the width of the spectral windows 𝜌 in the following result (for
𝜌 too small, the error term dominates):

Proposition 4.3. Let (𝑀, 𝑔) be a compact, real analytic manifold with empty boundary. Let 𝑥 ∈ 𝑀 and
consider a (sufficiently small) coordinate patch Ω𝑥 around x in normal coordinates. Then

sup
𝑦,𝑦′ ∈Ω𝑥

������ ∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

𝜙𝑖 (𝑦)𝜙𝑖 (𝑦′) − 𝑐𝑀𝑇𝑛JΥ(𝑇 ) (𝑇𝑑𝑔 (𝑦, 𝑦′))

������ = 𝑂𝑀,𝑔 (𝑇𝑛−1),

where 𝑑𝑔 (𝑦, 𝑦′) is the geodesic distance between 𝑦, 𝑦′, 𝑐𝑀 > 0 is given in (1.3), Υ(𝑇) = 1 − 𝜌
𝑇 and

JΥ(𝑇 ) (𝑤) =
∫
Υ(𝑇 ) ≤ |𝜉 | ≤1

exp(𝑖〈𝑤, 𝜉〉)𝑑𝜉. (4.4)

Moreover, we can also differentiate both sides of (8.1) an arbitrary finite number of times; that is,

sup
𝑦,𝑦′ ∈Ω𝑥

����∑𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ] 𝐷𝛼
𝑦 𝜙𝑖 (𝑦)𝐷𝛼′

𝑦′ 𝜙𝑖 (𝑦′) −
𝑐𝑀𝑇 𝑛𝐷𝛼

𝑦 𝐷𝛼′
𝑦′ JΥ(𝑇 ) (𝑇 𝑑𝑔 (𝑦,𝑦′))
(2𝜋)𝑛

����
𝑇 |𝛼 |+ |𝛼′ | = 𝑂𝑀,𝑔,𝛼 (𝑇𝑛−1),

where 𝛼, 𝛼′ are multi-indices and 𝜉 𝛼 = (𝜉 𝛼1
1 , ..., 𝜉 𝛼𝑛

𝑛 ) and the derivatives are understood after taking
normal coordinates around the point x.

The following corollary will be quite useful later:

Corollary 4.4. Let (𝑀, 𝑔) be a compact, real analytic manifold with empty boundary. There exists some
𝜌0 = 𝜌0 (𝑀, 𝑔) such that for all 𝜌 ≥ 𝜌0, the following holds. Let 𝑣(𝑇) be as in (1.3). Then∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜙𝑖 (𝑥) |2 � 𝑣(𝑇),

where 𝐴 � 𝐵 means that there exist two constant 0 < 𝑐 < 𝐶, depending only on (𝑀, 𝑔), such that
𝑐𝐴 ≤ 𝐵 ≤ 𝐶𝐴.

Although 𝜌0 does not appear in the proof of Proposition 4.1 (and Theorem 1.1), the value of 𝜌0
is fixed from now until the end of the article, for the results building up to Theorem 1.3. As a direct
consequence of Proposition 4.3 and a straightforward calculation, we also have the following result:

Lemma 4.5. Let (𝑀, 𝑔) be a real analytic compact manifold with empty boundary of dimension n, let
𝑓𝑇 (·) be as in (1.2), let 𝜌(𝑇) be the width of the energy window and let 𝑐𝑀 and 𝑣(𝑇) be as in (1.3).
Then, under the assumption of Theorem 1.1 on the width of the spectral window 𝜌(𝑇), we have

E
[
| 𝑓𝑇 (𝑥) |2

]
=

1
𝑣(𝑇)

∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

|𝜙𝑖 (𝑥) |2 = (1 + 𝑜(1)),
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where the error term is uniform for all 𝑥 ∈ 𝑀 . Moreover, for 𝐹𝑥 as in (4.1), we have

sup
𝑥∈𝑀

𝑦,𝑦′ ∈𝐵0

����E[𝐹𝑥 (𝑦) · 𝐹𝑥 (𝑦′)] − (2𝜋)Λ 𝐽Λ (|𝑦 − 𝑦′ |)
|𝑦 − 𝑦′ |Λ

���� → 0𝑇 → ∞,

with Λ = (𝑛 − 2)/2 and 𝐽Λ (·) the Λ-th Bessel function. Further, one can differentiate both sides an
arbitrary finite number of times; that is,

E[𝐷𝛼𝐹𝑥 (𝑦) · 𝐷𝛼′
𝐹𝑥 (𝑦′)] = (−1) |𝛼′ |𝑖 |𝛼 |+ |𝛼′ |

∫
|𝜉 |=1

𝜉 𝛼+𝛼′
exp(𝑖〈𝑦 − 𝑦′, 𝜉〉)𝑑𝜇(𝜉) + 𝑜𝑇→∞(1),

valid uniformly for all 𝑥 ∈ 𝑀, 𝑦, 𝑦′ ∈ 𝐵0, where 𝛼, 𝛼′ are fixed multi-indices and 𝜉 𝛼 = (𝜉 𝛼1
1 , ..., 𝜉 𝛼𝑛

𝑛 ).

Proof. By the first claim in Proposition 4.3 and the compactness of M, we have∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

|𝜙𝑖 (𝑥) |2 = 𝑐𝑀 𝜌(𝑇)𝑇𝑛−1 + 𝑂 (𝑇𝑛−1),

where the error term is uniform for all 𝑥 ∈ 𝑀 . Thus, the first claim in Lemma 4.5 follows by dividing
both sides by 𝑣(𝑇). In order to see the second claim in Lemma 4.5, let us take 𝑦, 𝑦′ ∈ 𝐵0 with 𝑦 ≠ 𝑦′

and let us rewrite the integral in (4.4) in the spherical coordinates and use the identity∫
𝑆𝑛−1

exp(𝑖〈𝑢, 𝜉〉)𝑑𝜇(𝜉) = (2𝜋)Λ 𝐽Λ(|𝑢 |)
|𝑢 |Λ

,

to obtain ∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

𝜙𝑖 (𝑦′)𝜙𝑖 (𝑦) = 𝑐𝑀 𝜌(𝑇)𝑇𝑛−1
∫
|𝜉 |=1

exp(𝑖〈𝑇𝑑𝑔 (𝑦′, 𝑦), 𝜉〉)𝑑𝜇(𝜉)

+ 𝑂
(
𝜌(𝑇)𝑇𝑛−1𝑑𝑔 (𝑦′, 𝑦)

)
+ 𝑂 (𝑇𝑛−1)

= 𝑐𝑀 𝜌𝑇𝑛−1 (2𝜋)Λ
𝐽Λ (|𝑇𝑑𝑔 (𝑦′, 𝑦) |)
|𝑇𝑑𝑔 (𝑦′, 𝑦) |Λ

+ 𝑂
(
𝜌(𝑇)𝑇𝑛−2

)
+ 𝑂 (𝑇𝑛−1), (4.5)

where Λ = (𝑛 − 2)/2. Thus, the second claim in Lemma 4.5 follows by dividing both sides of (4.5) by
𝑣(𝑇) and compactness of M. The third claim in Lemma 4.5 follows by the second claim in Proposition
4.3 and similar computation to (4.5) (and again the compactness of M). �

4.3. Convergence of finite-dimensional distributions

In this section, we state and prove the following lemma about the convergence of finite-dimensional
distributions of 𝐹𝑥 to the finite-dimensional distributions of 𝐹𝜇.

Lemma 4.6 (Convergence of finite-dimensional distributions). Let m be some positive integer, 𝐵0 =
𝐵(0, 1), let 𝐹𝑥 be as in (4.1) and let 𝐹𝜇 be the random monochromatic wave as in (4.2). Then, under the
assumptions of Theorem 1.1 on 𝜌(𝑇), for every 𝑦1, ...𝑦𝑚 ∈ 𝐵0 ⊆ R𝑛, we have

(𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚))
𝑑−→ (𝐹𝜇 (𝑦1), ..., 𝐹𝜇 (𝑦𝑚)) 𝑇 → ∞,
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where the convergence is in distribution uniformly for all 𝑥 ∈ 𝑀 . Moreover, for every 𝛼 = (𝛼1, ..., 𝛼𝑛),
with |𝛼 | ≤ 2, one has

(𝐷𝛼𝐹𝑥 (𝑦1), ..., 𝐷𝛼𝐹𝑥 (𝑦𝑚))
𝑑−→ (𝐷𝛼𝐹𝜇 (𝑦1), ..., 𝐷𝛼𝐹𝜇 (𝑦𝑚)) 𝑇 → ∞.

In order to prove Lemma 4.6, we will need a simple (not sharp) bound on the maximum value of an
eigenfunction in terms of its eigenvalue.

Claim 4.7. Let (𝑀, 𝑔) be a smooth compact Riemannian manifold of dimension 𝑛 ≥ 2 and let 𝜙𝜆 be a
solution to the eigenvalue problem

Δ𝑔𝜙𝜆 + 𝜆2𝜙𝜆 = 0.

Then, we have

sup
𝑥∈𝑀

|𝜙𝜆 |2 � 𝜆𝑛−1 log 𝜆

and

sup
𝑥∈𝑀

𝜆−2𝛼 |𝐷𝛼𝜙𝜆 |2 � 𝜆𝑛−1 log 𝜆

for all multi indices |𝛼 | ≤ 2.

Proof. Observe that, by the first part of Lemma 4.5, we have

sup
𝑥∈𝑀

|𝜙𝜆 |2 ≤
∑

𝜆 𝑗 ∈[𝜆−log 𝜆,𝜆]
|𝜙 𝑗 |2 = 𝑐𝑀 (log 𝜆)𝜆𝑛−1 + 𝑂 (𝜆𝑛−1)

and the bound on the supremum of 𝜙𝜆 follows. The bound on the derivatives can be obtained similarly
using the second part of Lemma 4.5. �

We also recall, for the convenience of the reader, the following multidimensional version of Lindeberg-
CLT (see, for example, [24, Proposition 6.2] and [10, Theorem 27.2]):

Lemma 4.8 (CLT). Let 𝑑 > 0 be a positive integer and let {𝑉𝑛,𝑘 }𝑛,𝑘 be a triangular array of R𝑑-valued
random variables, so that the random vectors lying on each of its rows are independent and of zero
mean. That is, for any 𝑛, 𝑘 , 𝑉𝑛,𝑘 = (𝑉 𝑖

𝑛,𝑘 )
𝑑
𝑖=1 is a d-dimensional random vector with zero mean, and for

every n fixed and every 𝑘1 ≠ 𝑘2, the vectors 𝑉𝑛,𝑘1 and 𝑉𝑛,𝑘2 are independent. The random variables 𝑉 𝑖
𝑛,𝑘

are normalized by setting

(𝑠𝑖
𝑛)2 =

∑
𝑘

E[(𝑉 𝑖
𝑛,𝑘 )

2]

and

�̃� 𝑖
𝑛,𝑘 = (𝑠𝑖

𝑛)−1𝑉 𝑖
𝑛,𝑘 .

We make the following two assumptions:

(1) The covariance matrices (
Σ𝑛,𝑘

)
)𝑖 𝑗 = E[�̃� 𝑖

𝑛,𝑘�̃�
𝑗
𝑛,𝑘 ]
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of the k-th vector of {�̃�𝑛,𝑘 }𝑛,𝑘 satisfy

lim
𝑛→∞

∑
𝑘

Σ𝑛,𝑘 = Σ0

for some positive definite 𝑑 × 𝑑-positive matrix.
(2) One has

max
𝑖=1,...,𝑑

1
(𝑠𝑖

𝑛)2

∑
𝑘

E

[
(�̃� 𝑖

𝑛,𝑘 )
21�̃� 𝑖

𝑛,𝑘
>𝜀𝑠𝑖𝑛

]
→ 0, 𝑛 → ∞

for any positive 𝜀 > 0, where 1 is the indicator function.

Then we have

𝑊𝑛 :=
∑

𝑘

�̃�𝑛,𝑘
𝑑−→ 𝑁 (0, Σ0) 𝑛 → ∞,

where the convergence is in distribution, and the rate of convergence depends on the rates of convergence
in (1) and (2) only. That is, for every ℎ : R𝑑 → R bounded continuous,

E[ℎ(𝑊𝑛)] → E[ℎ(𝑍)],

where 𝑍 ∼ 𝑁 (0, Σ0), with the rate of convergence depending on h and the rate of convergence in (1)
and (2).

We are now ready to prove Lemma 4.6.

Proof of Lemma 4.6. First, we need a piece of notation that we will use throughout the proof. Let 𝜙𝑖,𝑥

be the scaled restriction of 𝜙𝑖 to 𝐵𝑔 (𝑥, 4/𝑇) via the exponential map; that is,

𝜙𝑖,𝑥 (𝑦) = 𝜙𝑖 (exp𝑥 (𝑦/𝑇)),

for 𝑦 ∈ 𝐵(0, 4) (here we tacitly assume that T is sufficiently large so that 4/𝑇 is less than the injectivity
radius). Before embarking on the proof of Lemma 4.6, we also observe that by Claim 4.7, we have

max
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

sup
𝑥∈𝑀

sup
𝐵0

|𝜙𝑖 |2 � 𝑇𝑛−1 log𝑇. (4.6)

Similarly, given a multi-index |𝛼 | ≤ 2, we also have

max
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

sup
𝑥∈𝑀

sup
𝐵0

|𝐷𝛼𝜙𝑖,𝑥 |2 � 𝑇𝑛−1 log 𝑇. (4.7)

We are going to first consider the distribution of the vector (𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚)) for 𝑥 ∈ 𝑀 . Thanks
to Lemma 4.5, we have

sup
𝑖, 𝑗∈{1,...,𝑚}

𝑥∈𝑀

��E[𝐹𝑥 (𝑦𝑖) · 𝐹𝑥 (𝑦 𝑗 )] − E[𝐹𝜇 (𝑦𝑖) · 𝐹𝜇 (𝑦 𝑗 )]
�� → 0 𝑇 → ∞. (4.8)

Therefore, by the multidimensional version of Lindeberg’s Central Limit Theorem (Lemma 4.8), and
upon using (4.8), it suffices to prove that for every 𝜀 > 0, we have

sup
𝑦∈𝐵0
𝑥∈𝑀

1
𝑣(𝑇)

∑
𝜆𝑖

E[|𝑎𝑖𝜙𝑖,𝑥 (𝑦) |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2] → 0 𝑇 → ∞, (4.9)

where 1 is the indicator function and 𝑣(𝑇) = 𝑐𝑀 𝜌𝑇𝑛−1 (1 + 𝑜(1)).
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Now we prove (4.9). Thanks to Lemma 4.5, we have

1
𝑣(𝑇)

∑
𝜆𝑖

E[|𝑎𝑖𝜙𝑖,𝑥 (𝑦) |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2 ] =
1

𝑣(𝑇)
∑
𝜆𝑖

|𝜙𝑖,𝑥 (𝑦) |2E[|𝑎𝑖 |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2 ]

� sup
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

E[|𝑎𝑖 |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2] .

Therefore, to prove (4.9), it is sufficient to show that

supE[|𝑎𝑖 |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2] → 0 𝑇 → ∞, (4.10)

where the supremum is over all 𝜆𝑖 ∈ [𝑇 − 𝜌, 𝑇], all 𝑦 ∈ 𝐵0 and all 𝑥 ∈ 𝑀 . Thanks to (4.6) and the fact
that 𝑣(𝑇) � 𝑇𝑛−1 (log 𝑇)2, we have

1 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2 ≤ 1 |𝑎𝑖 |�𝜀 log𝑇 .

Hence, since the 𝑎𝑖 are i.i.d. with common distribution 𝑎0 (say), we have

lim
𝑇→∞

supE[|𝑎𝑖 |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2 ] ≤ lim
𝑀→∞

lim
𝑇→∞

∫ 𝑀

𝜀 log𝑇
𝑡2𝑑P(|𝑎0 | > 𝑡) = 0,

where we used Fubini and E[|𝑎0 |2] = 1 to switch the order of the limits. This concludes the proof of
(4.10) and thus of (4.9).

In order to prove the convergence of the derivative vector and upon recalling the second part of
Proposition 4.3, again by the multidimensional version of Lindeberg’s Central Limit Theorem, it is
sufficient to prove that for any 𝜀 > 0 and |𝛼 | ≤ 2, we have

sup
1

𝑣(𝑇)
∑
𝜆𝑖

E[|𝑎𝑖𝐷
𝛼𝜙𝑖,𝑥 (𝑦) |21 |𝑎𝑖𝐷𝛼𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2] → 0 𝑇 → ∞. (4.11)

Similar to the above argument, (4.7) implies (4.11) if |𝛼 | ≤ 2, thus concluding the proof of
Lemma 4.6. �

4.4. Tightness

The aim of this section is to show that Lemma 4.6 implies that 𝐹𝑥 converges as a random function to
𝐹𝜇. To formally state the results of this section, let us first introduce some notation. Let 𝑉 = 𝐵0 and
let 𝜈𝑇 be the sequence of probability measures on 𝐶2(𝑉) induced by the pushforward measure of 𝐹𝑥

(recall that, since the law of 𝑓𝑇 is locally constant, we may assume that T varies along a sequence); that
is, for an open set 𝐻 ⊆ 𝐶2(𝑉), we set

𝜈𝑇 (𝐻) := (𝐹𝑥)∗P(𝐻) = P(𝐹𝑥 (𝜔, ·) ∈ 𝐻). (4.12)

Lemma 4.6 says that there exists a subsequence 𝑇𝑘 such that 𝑣𝑇𝑘 converges to 𝜈∞, the pushforward of
𝐹𝜇 onto 𝐶2(𝑉). Thus, to obtain the convergence of the whole sequence, it is enough to show that the
sequence 𝑣𝑇 is tight.

A sequence of probability measures {𝜈𝑘 }∞𝑘=0 on some topological space X is tight if for every 𝜖 > 0,
there exists a compact set 𝐾 = 𝐾 (𝜖) ⊆ 𝑋 such that

𝜈𝑘 (𝑋\𝐾) ≤ 𝜖,

uniformly for all 𝑘 ≥ 0. We will need the following lemma, borrowed from [47, Lemma 1] (see also [11,
Chapter 6 and 7]), which characterises the tightness in the space of continuously twice differentiable
functions:
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Lemma 4.9 (Tightness). Let V be a compact subset of R𝑛 and {𝜈𝑘 } a sequence of probability measures
on the space 𝐶2(𝑉) of continuously twice differentiable functions on V. Then {𝜈𝑘 } is tight if the following
conditions hold:

(1) There exists some 𝑦 ∈ 𝑉 such that for every 𝜀 > 0, there exists 𝐾 > 0 with

max
|𝛼 | ≤2

𝜈𝑘 (𝑔 ∈ 𝐶2 (𝑉) : |𝐷𝛼𝑔(𝑦) | > 𝐾) ≤ 𝜀

for all 𝑘 ≥ 0.
(2) For every |𝛼 | ≤ 2 and 𝜀 > 0, we have

lim
𝛿→0

lim sup
𝑘→∞

𝜈𝑘

(
𝑔 ∈ 𝐶2 (𝑉) : sup

|𝑦−𝑦′ | ≤𝛿
|𝐷𝛼𝑔(𝑦) − 𝐷𝛼𝑔(𝑦′) | > 𝜀

)
= 0.

Lemma 4.10. Let 𝑉 = 𝐵0 and let 𝜈𝑇 be as in (4.12). Then the sequence 𝜈𝑇 is tight.

Proof. For condition (1) of Lemma 4.9, we observe that Lemma 4.5 implies the bound

E
[
|𝐷𝛼𝐹𝑥 (0) |2

]
� 1

for |𝛼 | ≤ 2 and uniformly for all 𝑥 ∈ 𝑀 . Thus, Chebyshev’s inequality yields

P( |𝐷𝛼𝐹𝑥 (0) | > 𝐾) � 𝐾−2,

and condition (1) follows by taking 𝐾 = 𝜖−1/2.
To check condition (2) of Lemma 4.9, we note that since 𝐹𝑥 is almost surely analytic, we have

sup
|𝑦−𝑦′ | ≤𝛿

|𝐷𝛼𝐹𝑥 (𝑦) − 𝐷𝛼𝐹𝑥 (𝑦′) | � sup
𝐵0

|∇𝐷𝛼𝐹𝑥 |𝛿. (4.13)

Therefore, it is sufficient to prove the following claim:

P(sup
𝐵0

|∇𝐷𝛼𝐹𝑥 | > 𝐾) � 𝐾−2 (4.14)

uniformly for all 𝑥 ∈ 𝑀 . Indeed, as above, (4.14) together with (4.13) imply condition (2) by choosing
𝐾 = 𝜖𝛿−1.

We are now going to prove (4.14). By Sobolev embedding, there exists some 𝑡 = 𝑡 (𝑛) > 1, sufficently
large depending on n only, so that 𝐶3(𝐵0) embeds in 𝐻𝑡 (𝐵0), the Sobolev space. Thus, using Lemma 4.5,
uniformly for all 𝑥 ∈ 𝑀 , we have

E

[
| |𝐹𝑥 | |2𝐶3 (𝐵0)

]
�𝑛 E

[
| |𝐹𝑥 | |2𝐻 𝑡 (𝐵0)

]
� 1, (4.15)

where the constant implied in the ‘�’-notation is independent of T (and 𝑥 ∈ 𝑀). Now, inequality (4.15)
together with Chebyshev’s inequality implies (4.14), and this concludes the proof of Lemma 4.10. �

As mentioned above, combining Lemma 4.6 and Lemma 4.9, we proved the following lemma; see,
for example, [11, Theorem 7.1]:

Lemma 4.11. Let 𝑉 = 𝐵0, 𝑣𝑇 be as in (4.12) and let 𝜈∞ be the pushforward of 𝐹𝜇 on 𝐶2 (𝑉), where 𝐹𝜇

is as in (4.2). Then, under the assumptions of Theorem 1.1, 𝜈𝑇 weak★ converges to 𝜈∞ in the space of
probability measures on 𝐶2 (𝑉).
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4.5. Concluding the proof of Proposition 4.1

To conclude the proof of Proposition 4.1, we just need the following Lemma (see, for example, [48,
Lemma 6.2]), which shows that V (·) – that is, the nodal volume – is a continuous map on the appropriate
space of functions:

Lemma 4.12. Let 𝐵 ⊆ R𝑛 be a ball and define the (open) set

𝐶2
∗ (2𝐵) = {ℎ ∈ 𝐶2(2𝐵) : |ℎ| + |∇ℎ| > 0}.

Then V (·, 𝐵) is a continuous functional on 𝐶2
∗ (2𝐵).

We are now in the position to prove Proposition 4.1.

Proof of Proposition 4.1. An application of Bulinskaya’s lemma (see, for example, [43, Lemma 6])
on 𝐹𝜇 restricted to 𝑉 = 𝐵0 yields that 𝐹𝜇 ∈ 𝐶2

∗ (𝑉) almost surely. Therefore, Lemma 4.11 and the
Continuous Mapping Theorem [11, Theorem 2.7] imply

V (𝐹𝑥)
𝑑→ V (𝐹𝜇) 𝑇 → ∞,

as required. �

5. Nodal volume and the doubling index

Having shown convergence in distribution of the random variable V (𝐹𝑥) in Proposition 4.1, we wish
to pass to the convergence of expectations. In order to do this, we will need to show that the random
variable V (𝐹𝑥) is uniformly integrable. Unfortunately, we will not be able to achieve this for fixed
𝑥 ∈ 𝑀 , averaging with respect to 𝜔 ∈ Ω. However, we will be able to show (Proposition 6.1 below) that
V (𝐹𝑥) is uniformly integrable as a random variable defined on 𝑀 × Ω – that is, averaging with respect
to both 𝑥 ∈ 𝑀 and 𝜔 ∈ Ω. This will be enough for our purposes as Proposition 4.1 directly implies that
V (𝐹𝑥) has a universal limit as a random variable defined on 𝑀 ×Ω.

In this section, we collect some results that will allow us to control the nodal volume of 𝑓𝑇 as in
(1.2) in terms of the doubling index of the harmonic lift of 𝑓𝑇 , defined below. In doing so, we follow the
work of Jerison and Lebeau [41, Section 14] and Lin [35]; see also Kukavica [32, 33, 34] for a different
approach. For the sake of the reader’s convenience, most of the proofs are reproduced here. However,
the proof of the Cauchy uniqueness result (Lemma 5.7 below) is beyond the scope of this article, and
we refer the reader directly to [41, Section 14].

5.1. Bounding the nodal volume of sums of eigenfunctions

For a start, we introduce a few notions. Following [21] and [37, 36], the doubling index of a function
ℎ : 𝑀 → R on a ball 𝐵 = 𝐵𝑔 (𝑥, 𝑟) ⊆ 𝑀 is defined as

Nℎ (𝐵) = N (𝑥, 𝑟) := log
sup2𝐵 |ℎ|
sup𝐵 |ℎ| . (5.1)

The harmonic lift of 𝑓𝑇 in (1.2) is defined [41, Page 231] (see also [35, Section 4]) as the unique solution
𝑓 𝐻 : 𝑀 × R→ R of

(Δ + 𝜕2
𝑡 ) 𝑓 𝐻 (𝑥, 𝑡) = 0 𝑓 𝐻 (𝑥, 0) = 0 𝜕𝑡 𝑓 𝐻 (𝑥, 0) = 𝑓𝑇 . (5.2)

One may express 𝑓 𝐻 explicitly as

𝑓 𝐻 (𝑥, 𝑡) = 𝑣−1/2(𝑇)
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
𝑎𝑖

sinh(𝜆𝑖𝑡)
𝜆𝑖

𝜙𝑖 (𝑥), (5.3)
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where 𝑎𝑖 and 𝜙𝑖 are as in (1.2) and 𝑣(𝑇) is as in (1.3). We also introduce the following piece of notation
that we will use throughout this section:

�̃�(𝑥, 𝑟) := 𝐵𝑔 (𝑥, 𝑟) × [−𝑟, 𝑟] ⊆ 𝑀 × R

will stand for the ‘ball’ of radius 𝑟 > 0 centred at a point 𝑥 ∈ 𝑀 � 𝑀 × {0}, and the doubling index of
𝑓 𝐻 on �̃� is defined via (5.1) as above, with �̃� in place of B. Finally, we recall that for any 𝑠 > 0,

𝑠�̃� := 𝐵𝑔 (𝑥, 𝑠𝑟) × [−𝑠𝑟, 𝑠𝑟]

is the radius-𝑠𝑟 ball centred at the same point as B.
The aim of this section is to prove the following result:

Proposition 5.1. Let 𝑓𝑇 and 𝑓 𝐻 be as in (1.2) and (5.3), respectively. Then there exists some
𝜂 = 𝜂(𝑀, 𝑔) > 0 with the following property: for every ball

�̃�𝑟 := 𝐵𝑔 (𝑥, 𝑟) × [−𝑟, 𝑟] ⊆ 𝑀 × R

centred at a point 𝑥 ∈ 𝑀 � 𝑀 × {0} of radius 0 < 𝑟 < 𝜂/10, we have

V
(
𝑓𝑇 , �̃�𝑟/2 ∩ 𝑀

)
· 𝑟−𝑛+1 � N ( 𝑓 𝐻 , �̃�8𝑟 ),

where the constant implied in the � notation depends only on (𝑀, 𝑔).

Before embarking on the proof of Proposition 5.1, we will recall some standard properties of the
doubling index, which will be used throughout the rest of the paper.

5.2. Monotonicity of the doubling index and a few consequences

The fundamental property of the doubling index of an harmonic function, shown in [25], is that N (·) is
an almost monotonic function of the radial variable in the sense that

N (·, 𝑟1) − 𝐶 ≤ (1 + 𝜀) ·N (·, 𝑟2) + 𝐶

for 𝑟2 ≥ 2𝑟1 and some 𝐶 = 𝐶 (𝑀, 𝑔) ≥ 1. Formally, we have the following (see [36, Lemma 1.3]):

Lemma 5.2. Let (�̃�, 𝑔) be a smooth manifold. For any 0 < 𝜀 < 1 and any point 𝑂 ∈ �̃� , there exists
some 𝐶 = 𝐶 (�̃�, 𝑔, 𝑂, 𝜀) > 0 and 𝑟0 = 𝑟0 (�̃�, 𝑔, 𝑂, 𝜀) > 0 such that

𝑡N (𝑥,𝑟 ) (1−𝜀)−𝐶 ≤
sup𝐵𝑔 (𝑥,𝑡𝑟 ) |𝑢 |
sup𝐵𝑔 (𝑥,𝑟 ) |𝑢 |

≤ 𝑡N (𝑥,𝑡𝑟 ) (1+𝜀)+𝐶

uniformly for all harmonic functions 𝑢 : �̃� → R, for all 𝑥 ∈ �̃� and numbers 𝑟 > 0, 𝑡 > 2 satisfying
𝐵𝑔 (𝑥, 𝑡𝑟) ⊆ 𝐵(𝑂, 𝑟0).

We apply Lemma 5.2 in the following convenient settings. Fix 𝜀 = 1/2 and �̃� = 𝑀 × [−10, 10] in
Lemma 5.2, covering 𝑀 × [−10, 10] by balls of radius 𝑟0. Upon using the compactness of �̃� , we obtain
the following:

Corollary 5.3. Let 𝑓 𝐻 : 𝑀 × [−10, 10] → R be as in (5.2). There exists some 𝐶 = 𝐶 (𝑀, 𝑔) > 0,
independent of 𝑓 𝐻 , such that

𝑡N (𝑥,𝑟 )/2−𝐶 ≤
sup

�̃� (𝑥,𝑡𝑟 )
| 𝑓 𝐻 |

sup
�̃� (𝑥,𝑟 )

| 𝑓 𝐻 |
≤ 𝑡2N (𝑥,𝑡𝑟 )+𝐶
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for all 𝑥 ∈ 𝑀 × [−10, 10] and numbers 𝑟 > 0, 𝑡 > 2 satisfying

𝐵𝑔 (𝑥, 𝑡𝑟) × [−𝑡𝑟, 𝑡𝑟] ⊆ 𝑀 × [−10, 10] .

We conclude this section with a useful consequence of the monotonicity formula for the doubling
index.

Lemma 5.4. Let 𝑓 𝐻 : 𝑀 × [−10, 10] → R be as in (5.2). There exist constants 𝐶1, 𝐶2 ≥ 1 depending
only on 𝑀, 𝑔, such that

sup
𝑑𝑔 (𝑥,𝑦) ≤𝑟/8

N (𝑦, 𝑟/4) ≤ 𝐶1 ·N (𝑥, 𝑟) + 𝐶2,

where 𝑦 ∈ 𝑀 � 𝑀 × {0}, uniformly for all 𝑥 ∈ 𝑀 × [−10, 10] with

�̃�(𝑥, 2𝑟) ⊆ 𝑀 × [−10, 10] .

Proof. Since, in the relevant range, 𝑑𝑔 (𝑥, 𝑦) ≤ 𝑟/8, and by Corollary 5.3 applied with 𝑡 = 8 (say),
we have

sup
�̃� (𝑦,𝑟/2)

�� 𝑓 𝐻
�� ≤ sup

�̃� (𝑥,𝑟 )

�� 𝑓 𝐻
�� ≤ 82N (𝑥,𝑟 )+𝐶 sup

�̃� (𝑥,𝑟/8)

�� 𝑓 𝐻
�� ≤ exp(𝐶1N (𝑥, 𝑟) + 𝐶2) · sup

�̃� (𝑦,𝑟/4)

�� 𝑓 𝐻
��,

as required. �

5.3. Complexification of f

Since (𝑀, 𝑔) is real analytic and compact, by the Bruhat-Whitney Theorem [55], there exists a complex
manifold 𝑀C where M embeds as a totally real manifold. Moreover, it is possible to analytically continue
any Laplace eigenfunction 𝜙𝑖 to a holomorphic function 𝜙C𝑖 defined on a maximal uniform Grauert
tube; that is, there exists some 𝜂0 = 𝜂0(𝑀, 𝑔) > 0 such that 𝜙C𝑖 is an holomorphic function on

𝑀C𝜂0 := {𝜁 ∈ 𝑀C : √𝛾(𝜁) < 𝜂},

where √𝛾(·) is the Grauert tube function; see [60, Chapter 14] for details. For notational brevity, and in
light of the fact that the precise value of 𝜂0 will be unimportant, from now on we write 𝑀C in place of
𝑀C𝜂0 and let 𝑓 C, defined on 𝑀C, be the complexification of f. The nodal volume of f can be controlled
via the order of growth of 𝑓 C using the following classical fact, borrowed from [41, Theorem 14.7] and
[21, Proposition 6.7]:

Lemma 5.5. Let 𝐵C ⊆ C𝑛 be a ball of radius 1 and let H be a holomorphic function on 3𝐵C. If, for
some 𝑁 > 1,

|𝐻 |𝐿∞ (2𝐵C) ≤ 𝑒𝑁 · |𝐻 |𝐿∞ (𝐵C∩R𝑛) ,

then

H𝑛−1
(
{𝐻 = 0} ∩ 1

2
𝐵C ∩ R𝑛

)
�𝑛 𝑁.

5.4. Growth of 𝑓 𝐻 and 𝑓 C

In this section, we wish to quantify the growth of 𝑓 C in terms of the doubling index of 𝑓 𝐻 . Our proof will
proceed by using 𝑓 𝐻 to control the derivatives of f so that we can bound the growth of 𝑓 C by bounding
each term in its power series. Unfortunately, this approach requires introducing an extra (small) constant

https://doi.org/10.1017/fms.2023.74 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.74


Forum of Mathematics, Sigma 21

𝑐 = 𝑐(𝑀, 𝑔) > 0 in the next result in order to control the radius of convergence of the power series. We
will then get rid of this extra technicality in the proof of Proposition 5.1 via a covering argument. All in
all, the aim of this section is to prove the following result:

Lemma 5.6. There exist some (small) numbers 𝜂1 = 𝜂1(𝑀, 𝑔) > 0 and 𝑐 = 𝑐(𝑀, 𝑔) > 0 such that the
following holds. Let f be as in (1.2), 𝑓 𝐻 be as in (5.2) and 𝑓 C be the complexification of f. Moreover, let
�̃� ⊆ 𝑀 × R be a ball centred at a point lying on 𝑀 � 𝑀 × {0} of radius less than 𝜂1/10. Suppose that,
for some (large) 𝑁 > 1, one has

| | 𝑓 𝐻 | |𝐿∞ (�̃�) ≤ 𝑒𝑁 · | | 𝑓 𝐻 | |𝐿∞ ( 𝑐2 �̃�) . (5.4)

Then we have

| | 𝑓 C | |𝐿∞ ( (2𝑐�̃�∩𝑀 )C) ≤ 𝐶 ′𝑒𝐶𝑁 · | | 𝑓 | |𝐿∞ (𝑐�̃�∩𝑀 )

for some constants 𝐶, 𝐶 ′ > 1 depending on 𝑀, 𝑔 only.

To prove Lemma 5.6, we first need the following result on the unique continuation of 𝑓 𝐻 , borrowed
from [41, Page 231]; see also [35, Lemma 4.3].

Lemma 5.7. Let 𝑥 ∈ 𝑀 . There exist constants 𝑟0 = 𝑟0(𝑀, 𝑔, 𝑥) > 0, 𝐶0 = 𝐶0 (𝑀, 𝑔, 𝑥, 𝑟0) > 0 and
0 < 𝛽 = 𝛽(𝑀, 𝑔, 𝑥, 𝑟0) < 1 so that the following holds. Recall that the harmonic lift 𝑓 𝐻 is the function
defined in (5.2). Then one has�� 𝑓 𝐻

��
𝐿∞ (�̃�+) ≤ 𝐶0

��𝑟 · 𝜕𝑡 𝑓 𝐻
��𝛽

𝐿∞ (2�̃�∩𝑀 ) ·
�� 𝑓 𝐻

��1−𝛽

𝐿∞ (2�̃�+)

uniformly w.r.t. balls �̃� of radius 𝑟 > 0 and centred at a point lying in 𝑀 � 𝑀 × {0} such that

�̃� ⊆ 𝐵𝑔 (𝑥, 𝑟0/4) × [−𝑟0/4, 𝑟0/4] ⊆ 𝑀 × R,

where �̃�+ = �̃� ∩ (𝑀 × [0,∞)).

Note that, although not explicated in [41], the constant 𝛽 in Lemma 5.7 depends only on a particular
coordinate patch around the point 𝑥 ∈ 𝑀 , provided this is sufficiently small. Therefore, 𝛽 is uniform with
respect to all the balls contained in the said coordinate patch and well-separated from the boundaries,
as stated in Lemma 5.7. We refer the reader to [1, Theorem 1.7] for the details (in a much more general
scenario). We are now ready to prove Lemma 5.6.

Proof of Lemma 5.6. First, given 𝑥 ∈ 𝑀 , let 𝑟0 = 𝑟0(𝑀, 𝑔, 𝑥) be given by Lemma 5.7. Covering M by
balls of radius 𝑟0 and using the compactness of M, we find that there exists some 𝜂1 > 0, depending
only on M and g, such that the conclusion of Lemma 5.7 is applicable on every ball

𝐵𝑔 (𝑥, 𝜂1/2) × [−𝜂1/2, 𝜂1/2] .

Moreover, we may assume that 𝜂1 ≤ 𝜂0/2, with 𝜂0 as constructed in Section 5.3. Now observe that,
appealing to the compactness of M again, it is sufficient to prove Lemma 5.6 in every coordinate patch
of radius 𝜂1. That is, it is sufficient to prove that, for every 𝑥 ∈ 𝑀 , there exists some 𝑐 > 0 and some
𝐶 ′, 𝐶 ≥ 1, depending on 𝑀, 𝑔, 𝑥, 𝜂1, such that if (5.4) is satisfied, then one has

| | 𝑓 C | |𝐿∞ (2(𝑐�̃�∩𝑀 )C) ≤ 𝐶 ′𝑒𝐶𝑁 · | | 𝑓 | |𝐿∞ (𝑐�̃�∩𝑀 )

uniformly w.r.t. balls �̃� of radius 𝑟 > 0 and centred at a point lying in 𝑀 � 𝑀 × {0}, such that

4�̃� ⊆ 𝐵𝑔 (𝑥, 𝜂1/2) × [−𝜂1/2, 𝜂1/2] .

In what follows, this claim is established.
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Since the supremum norm is scale invariant, we may rescale the metric and assume that �̃� has radius
𝑟 = 1. Since 𝑓 𝐻 satisfies

(𝜕2
𝑡 + Δ) 𝑓 𝐻 = 0,

the elliptic estimates for the operator 𝜕2
𝑡 + Δ (see, for example, [27, Lemma 7.5.1 and equation (4.4.1)]

or [23, Page 330]) imply that there exists some constants 𝐶1, 𝐶2 = 𝐶1, 𝐶2 (𝑀, 𝑔, 𝜂1, 𝑥) such that for any
𝑘 > 0, one has �� 𝑓 𝐻

��
𝐶𝑘 ( 1

2 �̃�) ≤ 𝐶𝑘
1 𝑘! ·

�� 𝑓 𝐻
��

𝐿2 ( 3
4 �̃�) ≤ 𝐶𝑘

2 𝑘! ·
�� 𝑓 𝐻

��
𝐿∞ (�̃�) .

Moreover, by the definition (5.2) of 𝑓 𝐻 , for any multi-index 𝛼 so that |𝛼 | = 𝑘 , we have

sup
1
2 (�̃�∩𝑀 )

|𝐷𝛼 𝑓 | ≤ 2 · ‖ 𝑓 𝐻 ‖𝐶𝑘 (�̃�) .

Therefore, we obtain the bound

sup
1
2 (�̃�∩𝑀 )

|𝐷𝛼 𝑓 |
|𝛼 |! ≤ 2𝐶𝑘

2 ·
�� 𝑓 𝐻

��
𝐿∞ (�̃�) . (5.5)

Now we are going to bound the r.h.s. of (5.5) using the assumed doubling property (5.4). First, observe
that since sinh(·) is an odd function, we have�� 𝑓 𝐻

��
𝐿∞ (�̃�+) =

�� 𝑓 𝐻
��

𝐿∞ (�̃�) .

Thus, using the assumption (5.4) on the doubling of 𝑓 𝐻 (for some 𝑐 > 0 to be chosen later), the
assumption 𝑟 = 1, and the equality��𝜕𝑡 𝑓 𝐻

��
𝐿∞ (𝑟 ′�̃�∩𝑀 ) = ‖ 𝑓 ‖𝐿∞ (𝑟 ′�̃�∩𝑀 )

that follows from (5.2) for any 𝑟 ′ > 0, Lemma 5.7 implies�� 𝑓 𝐻
��

𝐿∞ (�̃�+) =
�� 𝑓 𝐻

��
𝐿∞ (�̃�) ≤ 𝑒𝑁 ·

�� 𝑓 𝐻
��

𝐿∞ ( 𝑐2 �̃�) = 𝑒𝑁 ·
�� 𝑓 𝐻

��
𝐿∞ ( 𝑐2 �̃�+)

�𝑀 𝑒𝐶3 𝑁 · ‖ 𝑓 ‖𝛽

𝐿∞ (𝑐�̃�∩𝑀 ) ·
�� 𝑓 𝐻

��1−𝛽

𝐿∞ (𝑐𝐵+) ≤ 𝑒𝐶3 𝑁 · ‖ 𝑓 ‖𝛽

𝐿∞ (𝑐�̃�∩𝑀 ) ·
�� 𝑓 𝐻

��1−𝛽

𝐿∞ (�̃�+) (5.6)

for some 0 < 𝛽 = 𝛽(𝑀, 𝑔, 𝑥, 𝜂1) < 1 and some 𝐶3 = 𝐶3 (𝑀, 𝑔, 𝑥, 𝜂1) > 1. Since 𝑓 𝐻 is an analytic
function, we have | | 𝑓 𝐻 | |𝐿∞ (�̃�+) ≠ 0; thus, (5.6) implies

| | 𝑓 𝐻 | |𝐿∞ (�̃�+) �𝛽 𝑒𝐶4 𝑁 · ‖ 𝑓 ‖𝐿∞ (𝑐�̃�∩𝑀 ) (5.7)

for some 𝐶4 = 𝐶4 (𝛽, 𝑀, 𝑔) > 1. Therefore, combining (5.5) and (5.7), we obtain

sup
1
2 (�̃�∩𝑀 )

|𝐷𝛼 𝑓 |
|𝛼 |! � 𝑒𝐶5 𝑁+𝐶6 |𝛼 | sup

𝑐�̃�∩𝑀

| 𝑓 | (5.8)

for some 𝐶5, 𝐶6 > 1 depending only on 𝑀, 𝑔, 𝑥, 𝜂1. Since f is real analytic, we may expand

𝑓 C(𝑧) =
∑
𝛼

𝐷𝛼 𝑓 (𝑦)
|𝛼 |! 𝑧 |𝛼 |
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into an absolutely convergent Taylor series in (2𝑐�̃� ∩ 𝑀)C for some sufficiently small 0 < 𝑐 =
𝑐(𝑀, 𝑔, 𝑥, 𝜂1) < 1/2. Then, (5.8) gives

sup
(2𝑐�̃�∩𝑀 )C

| 𝑓 C | ≤ 𝐶7 exp(𝐶8𝑁) sup
𝑐�̃�∩𝑀

| 𝑓 |

for some constants 𝐶7, 𝐶8 > 1 depending only on 𝑀, 𝑔, 𝑥, 𝜂1, as required. �

5.5. Concluding the proof of Proposition 5.1

We are finally in a position to prove Proposition 5.1:

Proof. First, we take 𝜂 = 𝑐 min{𝜂0, 𝜂1, 𝑟0(𝑀)}, where 𝜂0 is given at the beginning of Section 5.3, 𝜂1 is
given by Lemma 5.6 and 𝑟0(𝑀) is the injectivity radius of M and 𝑐 = 𝑐(𝑀, 𝑔) > 0 is as in Lemma 5.6.
Next, denote

�̃�𝑟 = 𝐵𝑔 (𝑥, 𝑟) × [−𝑟, 𝑟]

to be the ball as in the statement of Proposition 5.1 and let 𝑐1 = 𝑐1(𝑀, 𝑔) = 𝑐/8 with 𝑐 = 𝑐(𝑀, 𝑔) given
as in Lemma 5.6. We cover the ball 1

2 �̃�𝑟 by balls �̃�𝑖 of radius 𝑐1𝑟/2 and centre 𝑥𝑖 so that

V
(
𝑓 , �̃�𝑟/2 ∩ 𝑀

)
� max

𝑖
V
(
𝑓 , �̃�𝑖 ∩ 𝑀

)
,

where the constant implied in the � notation depends only on (𝑀, 𝑔). Now let 𝑓 𝑖
𝑐1𝑟 be a version of f

rescaled by a factor of 𝑐1𝑟 in the ball �̃�𝑖 in the normal coordinates; that is,

𝑓 𝑖
𝑐1𝑟 = 𝑓 (exp𝑥𝑖 (𝑐1𝑟𝑦))

for 𝑦 ∈ 𝐵0 ⊂ R𝑛, where 𝐵0 is the unit ball. The scaling property of the nodal volume gives

V
(
𝑓 , �̃�𝑖 ∩ 𝑀

)
� 𝑟𝑛−1V

(
𝑓 𝑖
𝑐1𝑟 ,

1
2

𝐵0

)
, (5.9)

where the constant implied in the � notation depends only on (𝑀, 𝑔). Thus, Lemma 5.5 and invariance
of the 𝐿∞-norm w.r.t. scaling imply

V
(

𝑓 𝑖
𝑐1𝑟 ,

1
2

𝐵0

)
� log

sup2(𝐵0)C | ( 𝑓 𝑖)C𝑐1𝑟 |
sup𝐵0 | 𝑓

𝑖
𝑐1𝑟 |

� log
sup2(�̃�𝑖∩𝑀 )C | 𝑓 C |

sup(�̃�𝑖∩𝑀 ) | 𝑓 |
, (5.10)

where 𝑓 C is the complexification of f. Then, denoting 𝑁 𝑖 = N 𝑓 𝐻 (2𝑐−1
1 �̃�𝑖) with 𝑓 𝐻 as in (5.2), Lemma

5.6, applied under the assumption 𝑟 < 𝜂/10, and Corollary 5.3 yield

log
sup2(�̃�𝑖∩𝑀 )C | 𝑓 C |

sup(�̃�𝑖∩𝑀 ) | 𝑓 |
� log

sup𝑐−1 �̃�𝑖 | 𝑓 𝐻 |
sup 1

2 �̃�𝑖
𝑟
| 𝑓 𝐻 |

� 𝑁 𝑖 . (5.11)

Since �̃�𝑖 have, by construction, radius 𝑐𝑟/8, we find that

𝑁 𝑖 = N (𝑥𝑖 , 𝑟/4) � N 𝑓 𝐻 (�̃�8𝑟 ),

where the second inequality follows from Lemma 5.4. Hence, the statement of Proposition 5.1 follows
by combining (5.9), (5.10) and (5.11). �
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5.6. Estimates for the local nodal volume

In this section, we deduce a bound on V (𝐹𝑥) from Proposition 5.1. We begin with the following estimate
(see [41, page 231]):

Lemma 5.8. Let 𝑓 𝐻 be as in (5.2) and let �̃� ⊆ 𝑀 ×R be a ball centred at some point on 𝑀 � 𝑀 × {0}
and of any radius less than 𝜂/10, where 𝜂 is given by Proposition 5.1. Then

| | 𝑓 𝐻 | |𝐿∞ (2�̃�) � 𝑒𝐶𝑇 | | 𝑓 𝐻 | |𝐿∞ (�̃�) (5.12)

with some 𝐶 = 𝐶 (𝑀, 𝑔) > 1.

Although we do not wish to reproduce the proof of Lemma 5.8 in full detail, for the sake of com-
pleteness, we quickly indicate how Lemma 5.8 follows from Lemma 5.7. Indeed, applying Lemma 5.7
to 𝐵 = 𝑀 with 𝐿2-norm instead of 𝐿∞-norm (which is possible by elliptic estimates), upon observing
that | | 𝑓 𝐻 | |𝐿2 (𝑀×[−𝑎,𝑎]) � exp(𝑇)

∑
𝑖 |𝜙𝑖 |2 for 𝑎 = 1, 2, we obtain

| | 𝑓 𝐻 | |𝐿∞ (2�̃�) � 𝑒𝐶𝑇 | | 𝑓 𝐻 | |𝐿∞ (�̃�)

at macroscopic scales. Now, Lemma 5.8 follows by Corollary 5.3. As a direct consequence of Lemma
5.8, we have the following bound:

Lemma 5.9. For 𝐹𝑥 as in (4.1), one has

sup
𝑥∈𝑀

V (𝐹𝑥) � 𝑇.

Proof. Applying Proposition 5.1 on f as in (1.2) with

�̃� = 𝐵𝑔 (𝑥, 1/𝑇) × (−1/𝑇, 1/𝑇)

(where we tacitly assume that T is sufficiently large so that 1/𝑇 ≤ 𝜂/80 with 𝜂 as in Proposition 5.1),
we obtain

V
(

𝑓 ,
1
2

�̃� ∩ 𝑀

)
𝑇𝑛−1 � N 𝑓 𝐻 (8�̃�).

Lemma 5.8 gives N 𝑓 𝐻 (8�̃�) � 𝑇 . Therefore, Lemma 5.9 follows upon noticing that the definition (4.1)
of 𝐹𝑥 , being the scaled version of 𝑓𝑇 , implies that

V (𝐹𝑥) � 𝑇𝑛−1V
(

𝑓 ,
1
2

�̃� ∩ 𝑀

)
� N 𝑓 𝐻 (8�̃�) � 𝑇. �

6. Anti-concentration

The aim of this section is to show that V (𝐹𝑥 (𝜔, ·)) is uniformly integrable as a random variable on
𝑀 ×Ω equipped with the measure 𝑑𝜎 = 𝑑 Vol ⊗𝑑P/Vol(𝑀); that is, we prove the following result:

Proposition 6.1. Let 𝐹𝑥 be as in (4.1), 𝑣(𝑇) be as in (1.3), 𝜗𝑛 as in (1.8), 𝜌(𝑇) the energy window
width, 𝜌0 as in Corollary 4.4, and ℎ(𝑡) = 𝑡 log 𝑡.

(i) For 𝑛 ≤ 4, assume that

𝜌(𝑇) ≥ 𝑇 𝜗𝑛 (log𝑇)2.
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Then there exists a constant 𝐶 = 𝐶 (𝑀, 𝑔) > 1, independent of T, such that∫
𝑀×Ω

ℎ(V (𝐹𝑥))𝑑𝜎 < 𝐶.

(ii) For 𝑛 ≥ 5, the conclusions of (i) hold for all 𝜌 ≥ 𝜌0; that is, there exists a constant 𝐶 = 𝐶 (𝑀, 𝑔) > 1,
independent of T, such that ∫

𝑀×Ω
ℎ(V (𝐹𝑥))𝑑𝜎 < 𝐶.

As discussed in Section 2, the required estimates for a proof of Proposition 6.1 are of the form

𝜎({(𝑥, 𝜔) ∈ 𝑀 ×Ω : V (𝐹𝑥) > 𝐻}) � 1
𝐻 (log 𝐻)𝑐 ,

with 𝑐 > 2 an absolute constant. We begin with a deterministic, weak 𝐿1-type estimate that will be
improved later for random f.

6.1. Weak 𝐿1 estimate for the local nodal volume

We collect here a well-known result about the locality of the nodal volume, which will also be useful
later in the proof, allowing for an 𝐿1-weak type estimate for the volume of 𝑥 ∈ 𝑀 with V (𝐹𝑥) large.
Lemma 6.2. Let 𝐹𝑥 and f be as in (4.1) and (1.2), respectively, and let 𝜔𝑛 be the unit n-ball volume.
Then one has:

V ( 𝑓 ) = 2𝑛𝑇

𝜔𝑛
(1 + 𝑜𝑇→∞(1)) ·

∫
𝑀
V (𝐹𝑥)𝑑 Vol(𝑥).

Proof. First, we observe that we may write

V
(

𝑓 , 𝐵𝑔

(
𝑥,

1
2𝑇

))
=
∫

𝑓 −1 (0)
1𝐵𝑔 (𝑥,1/(2𝑇 )) (𝑦)𝑑H𝑛−1(𝑦), (6.1)

where 1 is the indicator function and H𝑛−1 is the Hausdorff measure. Then, integrating both sides of
(6.1) and using Fubini’s Theorem, we have∫

𝑀
V
(

𝑓 , 𝐵𝑔

(
𝑥,

1
2𝑇

))
𝑑 Vol(𝑥) =

∫
𝑓 −1 (0)

Vol𝑔
(
𝐵𝑔

(
𝑦,

1
2𝑇

))
𝑑H𝑛−1(𝑦). (6.2)

Now, we observe that in light of the definition of 𝐹𝑥 in Section 4.1, since 1/𝑇 is smaller than the
injectivity radius of M, we have

V (𝐹𝑥) = V
(

𝑓 , 𝐵𝑔

(
𝑥,

1
2𝑇

))
· 𝑇𝑛−1 (1 + 𝑜𝑇→∞(1)),

where we have used the scaling property of the nodal volume

V (𝐹𝑥) = V
(
𝐹𝑥 (·),

1
2

𝐵0

)
= 𝑇𝑛−1V

(
𝐹𝑥 (𝑇 ·), 𝐵

(
1

2𝑇

))
.

Thus, the l.h.s. of (6.2) is∫
𝑀
V
(

𝑓 , 𝐵𝑔

(
𝑥,

1
2𝑇

))
𝑑 Vol(𝑥) = 1

𝑇𝑛−1 (1 + 𝑜𝑇→∞(1))
∫

𝑀
V (𝐹𝑥)𝑑 Vol𝑔 (𝑥). (6.3)
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Moreover, for all 𝑦 ∈ 𝑀 , we also have

Vol𝑔
(
𝐵𝑔

(
𝑦,

1
2𝑇

))
= VolR𝑛

(
𝐵

(
0,

1
2𝑇

)) (
1 + 𝑂

(
𝑇−1

))
=

𝜔𝑛

(2𝑇)𝑛 (1 + 𝑂 (𝑇−1)).

Thus, the r.h.s. of (6.2) is∫
𝑓 −1 (0)

Vol𝑔
(
𝐵𝑔

(
𝑦,

1
2𝑇

))
𝑑H𝑛−1(𝑦) = 𝜔𝑛

(2𝑇)𝑛
(
1 + 𝑂

(
𝑇−1

))
· V ( 𝑓 ) (6.4)

Hence, Lemma 6.2 follows upon inserting (6.3) and (6.4) into (6.2). �

As a direct consequence of Lemma 6.2, we have the following result:
Corollary 6.3. Let 𝐹𝑥 be as in (4.1). Then, uniformly for all 𝑡 > 0,

Vol𝑔 (𝑥 : V (𝐹𝑥) > 𝑡) � 𝑡−1.

Proof. We first aim to prove (1.6), that is claimed no novelty of, but was decided to be included for
the sake of completeness. Let 𝜂 > 0 be as prescribed by Proposition 5.1. Then, by Proposition 5.1 and
Lemma 5.8, we have

V ( 𝑓𝑇 , 𝐵𝜂) � 𝑇

for any ball 𝐵𝜂 ⊆ 𝑀 of radius 𝜂/20. Covering M by finitely many such balls, we obtain

V ( 𝑓𝑇 ) � 𝑇, (6.5)

which is (1.6). Inserting (6.5) into Lemma 6.2, we obtain∫
𝑀
V (𝐹𝑥)𝑑 Vol(𝑥) � 1.

Hence, Corollary 6.3 follows from Markov’s inequality. �

6.2. A probabilistic anti-concentration inequality for the doubling index

The aim of this section is to prove the following result that, unlike Proposition 6.1 for 𝑛 ≤ 4, will not
require the growth of 𝜌(𝑇):
Lemma 6.4. Let 𝑓 𝐻 be as in (5.3), 𝜂 > 0 as in Proposition 5.1, 𝑣(𝑇) as in (1.3) and 𝜌0 as in
Corollary 4.4. Moreover, given a parameter 100/𝜂 ≤ 𝐴 ≤ 50𝑇 , let

�̃�𝐴 = 𝐵𝑔 (𝑥, 𝐴−1) ×
[
− 1

𝐴
,

1
𝐴

]
⊆ 𝑀 × [−10, 10]

be a ball centred at some (𝑥, 0) ∈ 𝑀 × {0}. If 𝜌(𝑇) ≥ 𝜌0, then for all 𝑄 ≥ 100, one has

P

(
N 𝑓 𝐻 (�̃�𝐴) >

𝑄 · 𝑇
𝐴

)
� exp

(
−𝑄 · 𝑇

50𝐴

)
+ 𝐸𝐴(𝑥),

where

𝐸𝐴(𝑥) := 𝑣(𝑇)−3/2 ·
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
𝐴𝑛

∫
𝐵𝑔 (𝑥, (2𝐴)−1)

|𝜙𝑖 (𝑦) |3𝑑 Vol𝑔 (𝑦)

and the constant involved in the ‘�’-notation may depend on 𝑀, 𝑔, but not on 𝑄, 𝐴, 𝑇 or x.
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Before giving a proof to Lemma 6.4, we would like to describe the intuition behind its proof. By
the definition (5.1) of the doubling index, a large doubling index of 𝑓 𝐻 indicates a rapid growth of 𝑓 𝐻

on concentric balls. This could happen in two possible scenarios: either 𝑓 𝐻 is large on the larger ball
or 𝑓 𝐻 is small on the smaller ball. The probability of the former event can be controlled using some
𝐿2-bounds and Chebyshev’s inequality, whereas the probability of the latter one is controlled with the
following lemma:

Lemma 6.5. Let 𝑓 𝐻 (𝑥) be as in (5.3), 𝑣(𝑇) as in (1.3), and 𝜌0 as in Corollary 4.4. Denote

Ψ(𝑡) = 1
√

2𝜋

∫ 𝑡

−∞
exp

(
− 𝑧2

2

)
𝑑𝑧

to be the standard Gaussian cumulative distribution function, and, given 𝑥 ∈ 𝑀 , denote 𝑥 =
(𝑥, (100𝑇)−1) ∈ 𝑀 × [−10, 10]. Then if 𝜌(𝑇) ≥ 𝜌0, one has

sup
𝑡 ∈R

����P( 𝑓 𝐻 (𝑥)
E[| 𝑓 𝐻 (𝑥) |2]1/2 ≤ 𝑡

)
− Ψ(𝑡)

���� � 𝐸 (𝑥),

where the constant implied in the ‘�’-notation depends only on (𝑀, 𝑔) and

𝐸 (𝑥) := 𝑣(𝑇)−3/2
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜙𝑖 (𝑥) |3.

Proof. For 𝜆𝑖 ∈ [𝑇 − 𝜌, 𝑇], let us write

𝑋𝑖 = 𝑋𝑖 (𝑥) :=
𝑎𝑖

𝜆−1
𝑖

sinh
(

𝜆𝑖

100𝑇

)
· 𝜙𝑖 (𝑥),

and, on recalling that 𝜆𝑖/𝑇 = 1 + 𝑜𝑇→∞(1),

𝜎𝑖 = 𝜎𝑖 (𝑥) := E
[
|𝑋𝑖 |2

]1/2
= 𝜆−1

𝑖

����sinh
(

𝜆𝑖

100𝑇

)
· 𝜙𝑖 (𝑥)

���� � 𝑇−1 · |𝜙𝑖 (𝑥) |, (6.6)

where the constant in the ‘�’-notation is absolute. Moreover, let

𝜏𝑖 = 𝜏𝑖 (𝑥) := E
[
|𝑋𝑖 (𝑥) |3

]
� 𝜎3

𝑖 (𝑥).

On recalling (5.3), observe that we have

E
[
| 𝑓 𝐻 (𝑥) |2

]
=

∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

𝜎2
𝑖 (𝑥).

By the well-known Berry-Esseen Theorem [8, 22] applied to the sum of the 𝑋𝑖’s, we have

sup
𝑡 ∈R

����P( 𝑓 𝐻 (𝑥)
E[ 𝑓 𝐻 (𝑥)]1/2 < 𝑡

)
− Ψ(𝑡)

���� � ���
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜎𝑖 (𝑥) |2

���
−3/2 ∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
𝜏𝑖 (𝑥)

�
���

∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

|𝜎𝑖 |2
���
−3/2 ∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜎𝑖 |3, (6.7)
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where the constant implied in the ‘�’-notation is absolute. Using (6.6), the r.h.s of (6.7) may be
bounded as

���
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜎𝑖 (𝑥) |2

���
−3/2 ∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜎𝑖 (𝑥) |3 �

���
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜙𝑖 (𝑥) |2

���
−3/2 ∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
|𝜙𝑖 (𝑥) |3.

Hence, Lemma 6.5 follows from Corollary 4.4; that is,∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

|𝜙𝑖 (𝑥) |2 � 𝑣(𝑇). �

Lemma 6.5 gives the following bound on the supremum of 𝑓 𝐻 of the ball �̃�𝐴 as in Lemma 6.7:

Corollary 6.6. Let 𝑓 𝐻 be as in (5.3), 𝜂 > 0 as in Proposition 5.1, and 𝜌0 as in Corollary 4.4. Given a
parameter 100/𝜂 ≤ 𝐴 ≤ 50𝑇 , let

�̃�𝐴 = 𝐵𝑔 (𝑥, 𝐴−1) ×
[
− 1

𝐴
,

1
𝐴

]
⊆ 𝑀 × [−10, 10]

be a ball centred at some (𝑥, 0) ∈ 𝑀 × {0}. Moreover, let us write 𝑐(𝑥) := E[| 𝑓 𝐻 (𝑥) |2], where
𝑥 := (𝑥, (100𝑇)−1). Suppose that 𝜌(𝑇) ≥ 𝜌0. Then, for all 𝜏 > 0 (which may depend on A), we have

P

(
sup
�̃�𝐴

���� 𝑓 𝐻

𝑐(𝑥)1/2

���� ≤ 𝜏

)
� 𝜏 + 𝐸𝐴(𝑥),

where

𝐸𝐴(𝑥) := 𝑣(𝑇)−3/2 ·
∑

𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]
𝐴𝑛

∫
𝐵𝑔 (𝑥, (2𝐴)−1)

|𝜙𝑖 (𝑦) |3𝑑 Vol𝑔 (𝑦),

and the constant involved in the ‘�’-notation may depend on 𝑀, 𝑔 but not on 𝐴, 𝑇 or x.

Proof. Since for every �̃� := (𝑦, (100𝑇)−1) with 𝑦 ∈ 𝐵𝑔 (𝑥, 𝐴−1), we have

P

(
sup
�̃�𝐴

���� 𝑓 𝐻

𝑐(𝑥)1/2

���� ≤ 𝜏

)
≤ P

(���� 𝑓 𝐻 ( �̃�)
𝑐(𝑥)1/2

���� ≤ 𝜏

)
,

we have the bound

P

(
sup
�̃�𝐴

���� 𝑓 𝐻

𝑐(𝑥)1/2

���� ≤ 𝜏

)
≤ inf

𝑦∈𝐵𝑔 (𝑥,𝐴−1)
P

(���� 𝑓 𝐻 ( �̃�)
𝑐(𝑥)1/2

���� ≤ 𝜏

)
.

Bounding the infimum by the average (over, say, a slightly smaller ball), we obtain

P

(
sup
�̃�𝐴

���� 𝑓 𝐻

𝑐(𝑥)1/2

���� ≤ 𝜏

)
� 𝐴𝑛

∫
𝐵𝑔 (𝑥, (2𝐴)−1)

P

(���� 𝑓 𝐻 ( �̃�)
𝑐(𝑥)1/2

���� ≤ 𝜏

)
𝑑 Vol𝑔 (𝑦)

� 𝐴𝑛

∫
𝐵𝑔 (𝑥, (2𝐴)−1)

P

(���� 𝑓 𝐻 ( �̃�)
𝑐( �̃�)1/2

���� ≤ 𝑐(𝑥)1/2

𝑐( �̃�)1/2 𝜏

)
𝑑 Vol𝑔 (𝑦).
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Therefore, Lemma 6.5 yields

P

(
sup
�̃�𝐴

���� 𝑓 𝐻

𝑐(𝑥)1/2

���� ≤ 𝜏

)
� 𝑐(𝑥)1/2𝜏𝐴𝑛

∫
𝐵𝑔 (𝑥, (2𝐴)−1)

1
𝑐( �̃�)1/2 𝑑 Vol𝑔 (𝑦) + 𝐸𝐴(𝑥). (6.8)

Now, using Lemma 4.5, for all 𝑦 ∈ 𝐵𝑔 (𝑥, 𝐴−1) (and so in particular for x), we have

𝑐( �̃�) = E
[
| 𝑓 𝐻 (𝑦, (100𝑇)−1) |2

]
=

∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

����𝜆−1
𝑖 sinh

(
𝜆𝑖

100𝑇

)
𝜙𝑖 (𝑥)

����2
� 𝑇−2

∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

|𝜙𝑖 (𝑥) |2 � 𝑇−2.

Thus, the first term on the r.h.s. of (6.8) is

𝑐(𝑥)1/2𝜏𝐴𝑛

∫
𝐵𝑔 (𝑥, (2𝐴)−1)

1
𝑐( �̃�)1/2 � 𝜏,

and this concludes the proof of Corollary 6.6. �

We are finally ready to prove Lemma 6.4:

Proof of Lemma 6.4. To simplify notation, we will use the following shorthand: 𝑥 = (𝑥, (100𝑇)−1)
and �̃� = �̃�𝐴. First, we may renormalize 𝑓 𝐻 by dividing it by the nonvanishing number 𝑐(𝑥) :=
E[| 𝑓 𝐻 (𝑥, (100𝑇)−1) |2]; that is, by a slight abuse of notation, we write 𝑓 𝐻 in place of

𝑓 𝐻

E[| 𝑓 𝐻 (𝑥, (100𝑇)−1) |2]1/2 =
𝑓 𝐻

𝑐(𝑥)1/2 =
1

𝑐(𝑥)1/2𝑣(𝑇)1/2

∑
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

𝑎𝑖
sinh(𝜆𝑖𝑡)

𝜆𝑖
𝜙𝑖 (𝑥), (6.9)

throughout the proof of Lemma 6.4. We are now in a position to commence the proof of Lemma 6.4.
To bound the probability that the doubling index us large, we note that it could occur under two

possible scenarios: either sup
�̃�

| 𝑓 𝐻 | is small or sup
2�̃�

| 𝑓 𝐻 | is large. Given some 𝜏 > 0 to be determined

later, we write

P

(
N (𝑥, 𝐴−1) >

𝑄 · 𝑇
𝐴

)
= P

(
N (𝑥, 𝐴−1) >

𝑄 · 𝑇
𝐴

and sup
�̃�

| 𝑓 𝐻 | < 𝜏

)
+ P

(
N (𝑥, 𝐴−1) >

𝑄 · 𝑇
𝐴

and sup
�̃�

| 𝑓 𝐻 | ≥ 𝜏

)
. (6.10)

The first term on the r.h.s. of (6.10) can be bounded as

P

(
N (𝑥, 𝐴−1) >

𝑄 · 𝑇
𝐴

and sup
�̃�

| 𝑓 𝐻 | < 𝜏

)
≤ P(sup

�̃�

| 𝑓 𝐻 | ≤ 𝜏).

Thus, Corollary 6.6 gives

P

(
N (𝑥, 𝐴−1) >

𝑄 · 𝑇
𝐴

and sup
�̃�

| 𝑓 𝐻 | < 𝜏

)
� 𝜏 + 𝐸𝐴(𝑥). (6.11)
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Now we bound the second term on the r.h.s. of (6.10). To this end, we use the definition (5.1) of the
doubling index, and since, under the relevant event, sup�̃� | 𝑓 𝐻 | ≥ 𝜏, we may write under the same event

𝑄 · 𝑇
𝐴

< N (𝑥, 𝐴−1) ≤ log
| | 𝑓 𝐻 | |𝐿∞ (2�̃�)

𝜏
.

Thus, we obtain

| | 𝑓 𝐻 | |𝐿∞ (2�̃�) ≥ exp
(
𝑄 · 𝑇

𝐴

)
𝜏. (6.12)

Now we claim the following:

E

[
| | 𝑓 𝐻 | |2

𝐿∞ (2�̃�)

]
� exp

(
8

𝑇

𝐴

)
, (6.13)

where the constant implied in the ‘�’-notation may depend on (𝑀, 𝑔) only. Upon using the elliptic
regularity [23, Page 330], we have

| | 𝑓 𝐻 | |2
𝐿∞ (2�̃�) � 𝐴𝑛+1 | | 𝑓 𝐻 | |2

𝐿2 (4�̃�) ,

where the constant implies in the ‘�’-notation depends only on (𝑀, 𝑔). Therefore, using the formula
(5.3), exchanging the order of the expectation and the summation, and upon bearing in mind that 𝑓 𝐻 is
normalized via (6.9), we have

E

[
| | 𝑓 𝐻 | |2

𝐿∞ (2�̃�)

]
� 𝐴𝑛+1

E

[
| | 𝑓 𝐻 | |2

𝐿2 (4�̃�)

]
� 𝑐(𝑥)−1𝑣(𝑇)−1

∑
𝜆𝑖

sinh(8𝜆𝑖/𝐴)
𝜆2

𝑖

𝐴𝑛

∫
𝐵𝑔 (𝑥,4/𝐴)

|𝜙𝑖 (𝑥) |2𝑑 Vol𝑔 (𝑥),

where the constant implied in the ‘�’-notation may depend on (𝑀, 𝑔) only. Switching the sum with the
integral, using Lemma 4.5, the obvious bound sinh(·) ≤ exp(·), and, again, 𝜆𝑖/𝑇 = 1 + 𝑜𝑇→∞(1), we
obtain

E

[
| | 𝑓 𝐻 | |2

𝐿∞ (2�̃�)

]2
� 𝑐(𝑥)−1𝑇−2 exp

(
8

𝑇

𝐴

)
, (6.14)

where, again, the constant implied in the ‘�’-notation may depend on (𝑀, 𝑔) only. Since 𝑐(𝑥)−1 � 𝑇−2,
(6.13) follows from (6.14).

Using (6.13) together with Chebyshev’s inequality, (6.10), (6.11) and (6.12), we obtain

P

(
N (𝑥, 𝐴−1) >

𝑄 · 𝑇
𝐴

)
� 𝜏 + exp

(
8

𝑇

𝐴
− 2𝑄 · 𝑇

𝐴

)
𝜏−2 + 𝐸𝐴(𝑥).

Hence, Lemma 6.4 follows by taking 𝜏 = exp(−𝑄𝑇/(50𝐴)) and 𝑄 ≥ 100 (say). �

6.3. Sogge’s bound and the decay of the doubling index

The aim of this section is to prove the following lemma, which shows that outside an event of small
probability, the doubling index decreases uniformly for all 𝑥 ∈ 𝑀 . In accordance with the results in the
previous section except Proposition 6.1 for 𝑛 ≤ 4, the following lemma is stated for 𝜌(𝑇) ≥ 𝜌0 without
the growth assumption of Theorem 1.1.
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Lemma 6.7. Let 𝑓 𝐻 be as in (5.3), and 𝜌0 as in Corollary 4.4. If 𝜌(𝑇) ≥ 𝜌0, then there exists some
constant 𝐶 = 𝐶 (𝑀, 𝑔) > 1 such that

P

(
sup
𝑥∈𝑀

N 𝑓 𝐻

(
(𝑥, 0), 𝐴−1

)
≥ 𝐶

𝑇

𝐴

)
� (log 𝑇)−1,

where

𝐴 = 𝐴(𝑇) =
⎧⎪⎪⎨⎪⎪⎩

𝑇
𝑛−1
4𝑛 𝜌(𝑇) 1

2𝑛 · 1
(log𝑇 ) 1

𝑛
𝑛 ≤ 4

𝑇
1
𝑛 𝜌(𝑇) 1

2𝑛 · 1
(log𝑇 ) 1

𝑛
𝑛 ≥ 5.

.

To prove Lemma 6.7, we use Lemma 6.4 together with the following bound on the 𝐿 𝑝-norm of
eigenfunctions due to Sogge [54]. Let 𝜙𝑖 be an eigenfunction with eigenvalue 𝜆2

𝑖 . Then we have the
following estimate on the 𝐿 𝑝 norms of 𝜙𝑖 (see also [60, Theorem 10.1]):

| |𝜙𝑖 | |𝐿𝑝 (𝑀 ) � 𝜆𝜎 (𝑝)
𝑖 | |𝜙𝑖 | |𝐿2 (𝑀 ) , (6.15)

where

𝜎(𝑝) =
⎧⎪⎪⎨⎪⎪⎩

𝑛−1
2

(
1
2 − 1

𝑝

)
2 < 𝑝 ≤ 2(𝑛+1)

𝑛−1

𝑛
(

1
2 − 1

𝑝

)
− 1/2 𝑝 ≥ 2(𝑛+1)

𝑛−1 .

We are now in a position to prove Lemma 6.7.

Proof of Lemma 6.7. Let 𝐴 = 𝐴(𝑇) be some parameter to be chosen later and apply Lemma 6.4 on the
ball

�̃�𝐴 = 𝐵𝑔 (𝑥, 𝐴−1) × [−1/𝐴, 1/𝐴]

with 𝑄 = 100 (say) to yield

P

(
N 𝑓 𝐻 (𝑥, 𝐴−1) ≥ 100𝑇

𝐴

)
� exp

(
−2𝑇

𝐴

)
+ 𝐸𝐴(𝑥),

where 𝑥 := (𝑥, 0). Using the monotonicity of the doubling index of Lemma 5.4 with 𝑟 = 𝐴, we deduce
that there exists some (large) constant 𝐶1 = 𝐶1 (𝑀, 𝑔) ≥ 1 such that

P

(
sup

𝑦∈𝐵𝑔 (𝑥, (10𝐴)−1)
N 𝑓 𝐻 (𝑦, (4𝐴)−1) ≥ 𝐶1𝑇

𝐴

)
� exp

(
−2𝑇

𝐴

)
+ 𝐸𝐴(𝑥),

where we have tacitly assumed that 𝑇/𝐴 is sufficiently large depending on 𝑀, 𝑔 only. Taking the union
bound over at most 𝑂 (𝐴𝑛) balls 𝐵(𝑥 𝑗 , (10𝐴)−1), we obtain

P

(
sup
𝑥∈𝑀

N 𝑓 𝐻 (𝑥, (4𝐴)−1) ≥ 𝐶1𝑇

𝐴

)
� 𝐴𝑛 exp

(
−2𝑇

𝐴

)
+
∑

𝑗

𝐸𝐴(𝑥 𝑗 ). (6.16)

Assuming that A is sufficiently large so that 𝐴−1 is smaller than the injectivity radius, each ball
𝐵(𝑥 𝑗 , (10𝐴)−1) intersects finitely many (depending on n only) other balls in the collection; therefore,

𝑣(𝑇)3/2
∑

𝑗

𝐸𝐴(𝑥 𝑗 ) = 𝐴𝑛
∑

𝜆𝑖 ∈[𝑇 ,𝑇 −𝜌]

∑
𝑗

∫
𝐵 (𝑥 𝑗 , (10𝐴)−1)

|𝜙𝑖 |3𝑑 Vol � 𝐴𝑛
∑

𝜆𝑖 ∈[𝑇 ,𝑇 −𝜌]
| |𝜙𝑖 | |3𝐿3 (𝑀 ) .
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Using Sogge’s bound (6.15), we conclude that∑
𝑗

𝐸𝐴(𝑥 𝑗 ) �
∑

𝜆𝑖 ∈[𝑇 ,𝑇 −𝜌]

𝐴𝑛𝑇3𝜎 (3)

𝑣(𝑇)3/2 , (6.17)

with 𝜎(3) as in (6.15).
Finally, inserting (6.17) into (6.16) and summing over i, which gives a contribution of 𝑣(𝑇), we obtain

P

(
sup
𝑥∈𝑀

N 𝑓 𝐻 (𝑥, 4−1 𝐴−1) ≥ 𝐶1𝑇

𝐴

)
� 𝐴𝑛 exp

(
−2𝑇

𝐴

)
+ 𝐴𝑛𝑇3𝜎 (3)𝑣(𝑇)−1/2.

Hence, Lemma 6.7 follows by observing that

3𝜎(3) =
{

𝑛−1
4 𝑛 ≤ 4

𝑛
2 − 3

2 𝑛 ≥ 5
,

𝑣(𝑇)1/2 � 𝑇
𝑛−1

2 𝜌(𝑇)1/2,

and taking for 𝑛 ≤ 4,

𝐴 = 𝑇
𝑛−1
4𝑛 𝜌(𝑇)

1
2𝑛 · 1

4(log 𝑇) 1
𝑛

and for 𝑛 > 5,

𝐴 = 𝑇
1
𝑛 𝜌(𝑇)

1
2𝑛 · 1

4(log 𝑇) 1
𝑛

. �

6.4. Concluding the proof of Proposition 6.1

Proof of Proposition 6.1. Since the proof of the Proposition 6.1 is somewhat long, we break it up into
a series of steps:

Step 1: Controlling the distribution ofV (𝐹𝑥).
Recall that 𝑑𝜎 =

𝑑 Vol𝑔
Vol(𝑀 ) ⊗ 𝑑P. The aim of this step is to obtain some bounds on 𝜎(V (𝐹𝑥) > 𝑡) for

all 𝑡 ≥ 𝐶0 for some 𝐶0 = 𝐶0 (𝑀, 𝑔) ≥ 1. First, by Proposition 5.1, bearing in mind the rescaling factor,
we have

V (𝐹𝑥) ≤ 𝐶1N 𝑓 𝐻 ((𝑥, 0), 8𝑇−1) and N 𝑓 𝐻 ((𝑥, 0), 8𝑇−1) := N𝑇 (𝑥) = N (𝑥)

for some 𝐶1 = 𝐶 (𝑀, 𝑔) ≥ 1. Therefore, Lemma 6.4, applied with 𝐴 = 4𝑇 and 𝑄 = 𝑐0𝑡 := 𝐶−1
1 𝑡 (which

is larger than 100 taking 𝐶0 sufficiently large in terms of 𝐶1), gives

P(V (𝐹𝑥) ≥ 𝑡) ≤ P(N (𝑥) ≥ 𝑐0𝑡) � exp
(
−𝑐0𝑡

10

)
+ 𝐸𝑇 (𝑥),

where 𝐸𝑇 is as in Lemma 6.4 (and we write 𝐸𝑇 in place of 𝐸𝑇 /8 as shorthand). Thus, we have

𝜎(V (𝐹𝑥) > 𝑡) = 1
Vol(𝑀)

∫
𝑀
P(V (𝐹𝑥) ≥ 𝑡)𝑑 Vol𝑔

� exp
(
−𝑐0𝑡

10

)
+
∫

𝑀
𝐸𝑇 (𝑥)𝑑 Vol𝑔 . (6.18)
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We are now going to bound the second term on the r.h.s. of (6.18). By Sogge’s bound, we have∫
𝑀

|𝜙𝑖 (𝑥) |3𝑑 Vol𝑔 � 𝑇3𝜎 (3) ,

with 𝜎(3) as in (6.15). Therefore, in light of the fact that the sum over i in the definition of 𝐸𝑇 (𝑥) in
Lemma 6.5 has 𝑣(𝑇)-terms, 𝑣(𝑇) � 𝜌(𝑇)𝑇𝑛−1 and exchanging the integrals, we have∫

𝑀
𝐸𝑇 (𝑥)𝑑 Vol � 𝑇 𝛼(𝑛) 𝜌(𝑇)−1/2, (6.19)

with

𝛼(𝑛) := 3𝜎(3) − 𝑛 − 1
2

=

{
− 𝑛−1

4 𝑛 ≤ 4
−1 𝑛 ≥ 5

.

Inserting (6.19) into (6.18), we see that

𝜎(V (𝐹𝑥) > 𝑡) � exp
(
−𝑐0𝑡

10

)
+ 𝑇 𝛼(𝑛) 𝜌(𝑇)−1/2. (6.20)

Step 2: Sharpening the upper bound
By Lemma 5.9, we have

sup
𝑥∈𝑀

V (𝐹𝑥) � 𝑇.

Our task in this step is to obtain a better upper bound, outside an event of small probability, using
Lemma 6.7. Let 𝐴 = 𝐴(𝑇) be as in Lemma 6.7. Since the monotonicity of the doubling index of Lemma
5.4 implies that

N (𝑥) � N 𝑓 𝐻

(
(𝑥, 0), 𝐴−1

)
+ 𝐶3

for some 𝐶3 = 𝐶3 (𝑀, 𝑔) > 1, an application of Lemma 6.7 gives

sup
𝑥∈𝑀

V (𝐹𝑥) ≤ 𝐶4
𝑇

𝐴
=: 𝑝(𝑇) (6.21)

for some 𝐶4 = 𝐶4 (𝑀, 𝑔) > 0, outside an event Ω1 with P(Ω1) � (log 𝑇)−1.
We now show that the event Ω1 does not positively contribute to the integral of Proposition 6.1.

Indeed, we write∫
𝑀×Ω

ℎ(V (𝐹𝑥))𝑑𝜎 =
∫

𝑀×(Ω\Ω1)

ℎ(V (𝐹𝑥))𝑑𝜎 +
∫

𝑀×Ω1

ℎ(V (𝐹𝑥))𝑑𝜎

≤
∫

𝑀×Ω

ℎ(V (𝐹𝑥)) · 1V (𝐹𝑥 ) ≤𝑝 (𝑇 )𝑑𝜎 + 𝑂
���(log 𝑇)−1 sup

𝜔∈Ω

∫
𝑀

ℎ(V (𝐹𝑥))𝑑 Vol(𝑥)���.
(6.22)

Since ℎ(𝑡) = 𝑡 log 𝑡 and V (𝐹𝑥) � 𝑇 , the second term on the r.h.s of (6.22) can be bounded by

(log 𝑇)−1 sup
𝜔∈Ω

∫
𝑀

ℎ(V (𝐹𝑥))𝑑 Vol(𝑥) � sup
𝜔∈Ω

∫
𝑀
V (𝐹𝑥)𝑑 Vol(𝑥) = 𝑂 (1),
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where, in the last inequality, we have used Lemma 6.2, which is deterministic, in the form

sup
𝜔∈Ω

∫
𝑀
V (𝐹𝑥)𝑑 Vol(𝑥) = 𝑂 (1).

Thus, we have shown that∫
𝑀×Ω

ℎ(V (𝐹𝑥))𝑑𝜎 �
∫

𝑀×Ω
ℎ(V (𝐹𝑥))1V (𝐹𝑥 ) ≤𝑝 (𝑇 )𝑑𝜎 + 𝑂 (1), (6.23)

with 𝑝(𝑇) as in (6.21). This concludes step 2.

Step 3: Collecting the estimates.
We begin by rewriting the integral on the r.h.s of (6.23) as∫

𝑀×Ω
ℎ(V (𝐹𝑥))1V (𝐹𝑥 ) ≤𝑝 (𝑇 )𝑑𝜎 =

∫ 𝑝 (𝑇 )

0
ℎ(𝑡)𝑑𝜎(V (𝐹𝑥) > 𝑡).

Integrating by parts, we obtain∫
𝑀×Ω

ℎ(V (𝐹𝑥))1V (𝐹𝑥 ) ≤𝑝 (𝑇 )𝑑𝜎 �
∫ 2𝑝 (𝑇 )

𝐶0

ℎ′(𝑡)𝜎(V (𝐹𝑥) > 𝑡)𝑑𝑡 + 𝑂 (1), (6.24)

with 𝐶0 as in Step 1. Now, recall that in Step 2, we had

𝐴 = 𝐴(𝑇) =
⎧⎪⎪⎨⎪⎪⎩

𝑇
𝑛−1
4𝑛 𝜌(𝑇) 1

2𝑛 · 1
(log𝑇 ) 1

𝑛
𝑛 ≤ 4

𝑇
1
𝑛 𝜌(𝑇) 1

2𝑛 · 1
(log𝑇 ) 1

𝑛
𝑛 ≥ 5,

and in Step 1, we had

𝛼(𝑛) := 3𝜎(3) − 𝑛 − 1
2

=

{
− 𝑛−1

4 𝑛 ≤ 4
−1 𝑛 ≥ 5

.

Since ℎ(𝑡) = 𝑡 log 𝑡, we have ℎ′(𝑡) = log 𝑡 + 1 ≤ 2 log 𝑡. Thus, using Step 1, namely (6.20), Step 2,
(6.24) and the definition of 𝐴(𝑇) above, we have∫

𝑀×Ω
ℎ(V (𝐹𝑥))𝑑𝜎 �

∫
𝑀×Ω

ℎ(V (𝐹𝑥))1V (𝐹𝑥 ) ≤𝑝 (𝑇 )𝑑𝜎 + 𝑂 (1)

�
∫ 2𝑝 (𝑇 )

𝐶0

ℎ′(𝑡)𝜎(V (𝐹𝑥) > 𝑡)𝑑𝑡 + 𝑂 (1) � 𝑝(𝑇)𝑇 𝛼(𝑛) 𝜌(𝑇)−1/2(log 𝑇) + 𝑂 (1)

�
𝑇1+𝛼(𝑛)

𝐴
𝜌(𝑇)−1/2(log 𝑇) + 𝑂 (1) � 𝑞(𝑇)𝜌(𝑇)−

𝑛+1
2𝑛 (log𝑇)

𝑛+1
𝑛 + 𝑂 (1), (6.25)

where the constant implied in the ‘�’-notation depends only on (𝑀, 𝑔) and

𝑞(𝑇) :=

{
𝑇 · 𝑇− 𝑛−1

4 (1+ 1
𝑛 ) 𝑛 ≤ 4

𝑇− 1
𝑛 𝑛 ≥ 5.

Hence, taking

𝜌(𝑇) ≥
{
𝑇

−𝑛2+4𝑛+1
2(𝑛+1) (log𝑇)2 𝑛 ≤ 4

1 𝑛 ≥ 5
,

we see that the r.h.s. of (6.25) is bounded, as required. �
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7. Proof of Theorem 1.1

Before concluding the proof of Theorem 1.1, we state a result, whose proof is a straightforward
application of the Kac-Rice formula, performed below for the reader’s convenience.

Lemma 7.1. Let 𝐹𝜇 be as in (4.2) and 𝜔𝑛 be the volume of the unit ball in R𝑛. Then we have

E[V (𝐹𝜇)] = 2−𝑛𝜔𝑛

(
1
𝜋𝑛

)1/2 Γ
(

𝑛+1
2

)
Γ
(
𝑛
2
) .

Proof. Since the support of 𝜇, being the unit sphere, is not contained in an hyperplane, the distribution
of (𝐹𝜇,∇𝐹𝜇) is nondegenerate. Thus, we may apply the Kac-Rice formula [3, Theorem 6.1] to see that

E[V (𝐹𝜇)] =
∫

2−1𝐵0

E
[
‖∇𝐹𝜇 (𝑦)‖

��𝐹𝜇 (𝑦) = 0
]
· 𝜑𝐹𝜇 (𝑦) (0)𝑑𝑦, (7.1)

where 𝜑𝐹𝜇 (𝑦) (0) is the density of 𝐹𝜇 (𝑦) at the point 0. Since E[|𝐹𝜇 (𝑦) |2] = 1, ∇𝐹𝜇 and 𝐹𝜇 are
independent, and bearing in mind that 𝐹𝜇 is stationary, we have

E
[
‖∇𝐹𝜇 (𝑦)‖

��𝐹𝜇 (𝑦) = 0
]
· 𝜑𝐹𝜇 (𝑦) (0) = E

[
‖∇𝐹𝜇 (0)‖

]
· 𝜑𝐹𝜇 (0) (0). (7.2)

The latter can be computed explicitly (see, for example, [50, Proposition 4.1]) to be

E
[
‖∇𝐹𝜇 (0)‖

]
· 𝜑𝐹𝜇 (0) (0) =

(
1

𝜋𝑛

)1/2 Γ
(

𝑛+1
2

)
Γ
(
𝑛
2
) . (7.3)

Hence, Lemma 7.1 follows upon inserting (7.3) into (7.1) via (7.2). �

Proof of Theorem 1.1. Thanks to Lemma 6.2 and Fubini’s Theorem, we have

E[V ( 𝑓 )] = 2𝑛𝑇

𝜔𝑛
(1 + 𝑜𝑇→∞(1)) ·

∫
𝑀
E[V (𝐹𝑥)]𝑑 Vol(𝑥)

=
2𝑛 Vol(𝑀)𝑇

𝜔𝑛
(1 + 𝑜𝑇→∞(1)) ·

∫
𝑀×Ω

V (𝐹𝑥)𝑑𝜎. (7.4)

Thanks to Proposition 4.1, and since Proposition 6.1, valid under the hypotheses of Theorem 1.1, implies
the uniform integrability hypothesis [11, (3.15)] of [11, Theorem 3.5], we have∫

𝑀×Ω
V (𝐹𝑥)𝑑𝜎 = E[V (𝐹𝜇)] · (1 + 𝑜𝑇→∞(1)). (7.5)

Combining (7.4), (7.5) and Lemma 7.1, we obtain

E[V ( 𝑓 )] = 2𝑛

𝜔𝑛
Vol(𝑀)E[V (𝐹𝜇)] · (𝑇 + 𝑜𝑇→∞(𝑇))

= Vol(𝑀)
(

1
𝜋𝑛

)1/2 Γ
(

𝑛+1
2

)
Γ
(
𝑛
2
) 𝑇 + 𝑜𝑇→∞(𝑇),

as required. �

8. Asymptotic of the spectral projector for constant energy windows

The purpose of this section is to prove a substitute for Proposition 4.3 under the ‘less restrictive’
assumption on the energy window width 𝜌(𝑇) ≡ 𝜌0 (𝑀) (with arguments working verbatim for
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𝜌(𝑇) ≥ 𝜌0). Our result holds for all dimensions provided that the following assumption on M holds (cf.
Section 1.3 and Theorem 1.3):

Definition 8.1 (Assumption 𝒜0). Let 𝑛 ≥ 2 and let (𝑀, 𝑔) be a real analytic, compact Riemannian
n-manifold. We say that (𝑀, 𝑔) satisfies assumption 𝒜0 if either the geodesic flow on M is periodic or
the geodesic flow on M is aperiodic and the set of self-focal points of M is of measure 0.

Since, in the case of constant energy windows, the local Weyl’s law may fail around some ‘bad’
points 𝑥 ∈ 𝑀 , we will show that the set of such points is small; that is, we prove the following result:

Proposition 8.2. Let 𝐹𝑥 (·) be as in (4.1) (with 𝜌 ≡ 𝜌0) and 𝜇 the normalized Lebesgue measure on
the 𝑛 − 1 dimensional sphere S𝑛−1. Then, if that M satisfies assumption 𝒜0 as in (8.1), there exists a
(measurable) subset A1 = A1(𝑇) ⊆ 𝑀 of volume Vol(A1) = 𝑜𝑇→∞(1) such that

sup
𝑥∈𝑀\A1
𝑦,𝑦′ ∈𝐵0

����E[𝐹𝑥 (𝑦) · 𝐹𝑥 (𝑦′)] − (2𝜋)Λ 𝐽Λ (|𝑦 − 𝑦′ |)
|𝑦 − 𝑦′ |Λ

���� → 0 𝑇 → ∞,

with Λ = (𝑛 − 2)/2 and 𝐽Λ (·) the Λ-th Bessel function. Moreover, we can also differentiate both sides
any arbitrary finite number of times; that is,

E[𝐷𝛼𝐹𝑥 (𝑦) · 𝐷𝛼′
𝐹𝑥 (𝑦′)] = (−1) |𝛼′ |𝑖 |𝛼 |+ |𝛼′ |

∫
|𝜉 |=1

𝜉 𝛼+𝛼′
exp(𝑖〈𝑦 − 𝑦′, 𝜉〉)𝑑𝜇(𝜉) + 𝑜𝑇→∞(1),

valid on 𝑥 ∈ 𝑀\A1, 𝑦, 𝑦′ ∈ 𝐵0, where 𝛼, 𝛼′ are multi-indices, and 𝜉 𝛼 = (𝜉 𝛼1
1 , ..., 𝜉 𝛼𝑛

𝑛 ).

8.1. Preliminaries: Geodesic flow and the spectrum of
√
−Δ

For a reference to the facts contained in this section, we suggest the exposition in [60]. Let 𝑇∗𝑀 and
𝑆∗𝑀 be the co-tangent and the co-sphere bundle on M, respectively. The geodesic flow

𝐺𝑡 : 𝑇∗𝑀 → 𝑇∗𝑀

is the Hamiltonian flow of the metric norm function

𝐻 : 𝑇∗𝑀 → R 𝐻 (𝑥, 𝜉) =
𝑛∑

𝑖, 𝑗=1
𝑔𝑖 𝑗𝜉𝑖𝜉 𝑗 ,

where 𝑔 = 𝑔𝑖 𝑗 is the metric on M and 𝑔𝑖 𝑗 is its inverse. Since 𝐺𝑡 is homogeneous, from now on, we will
consider only its restriction to 𝑆∗𝑀 . We will need the following simple lemma (see also [51, Lemma
1.3.8]):

Lemma 8.3. If (𝑀, 𝑔) is a real analytic manifold, then the set of closed geodesics, on the co-sphere
bundle equipped with the Liouville measure, has either full measure or measure zero.

Proof. Since (𝑀, 𝑔) is real analytic, the geodesic flow 𝐺𝑡 (·, ·) is a real analytic function on 𝑆★𝑀 .
Therefore, for fixed 𝑡 > 0, solutions to

𝐺𝑡 (𝑥, 𝜉) = (𝑥, 𝜉)

consist of the zero set of an analytic function. This must have codimension at least 1 or be trivial. �

Lemma 8.3 implies that the geodesic flow on a real analytic manifold is either aperiodic if the set of
closed geodesics has measure zero or periodic with (minimal) period 𝐻 > 0 if 𝐺𝐻 = 𝑖𝑑. For the former
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case, the two-term Weyl’s law of Duistermaat-Guilleimin(-Ivrii) states

|{𝑖 > 0 : 𝜆𝑖 ≤ 𝑇}| = 𝑐𝑀𝑇𝑛 + 𝑜(𝑇𝑛−1).

For the latter case, the spectrum of
√
Δ is a union of clusters of the form

𝐶𝑘 :=
{

2𝜋

𝐻

(
𝑘 + 𝛽

4

)
+ 𝜇𝑘𝑖 for 𝑖 = 1, ..., 𝑑𝑘

}
𝑘 = 1, 2...,

where 𝜇𝑘𝑖 = 𝑂 (𝑘−1) uniformly for all i, 𝑑𝑘 is a polynomial in k of degree 𝑛 − 1 and 𝛽 is the common
Morse index of the closed geodesics of M.

8.2. Local Weyl’s law revisited

The aim of this section is to prove Proposition 8.2. As we will see below, Proposition 8.2 is a direct
consequence of Egorov’s Theorem and the following:

Proposition 8.4. Let (𝑀, 𝑔) be a compact, real analytic manifold with empty boundary, 𝜌0 as in
Corollary 4.4, and suppose that either the geodesic flow on M is periodic or 𝑥 ∈ 𝑀 is not a self-focal
point (Definition 1.2). Then

sup
𝑦,𝑦′ ∈𝐵𝑔 (𝑥,10/𝑇 )

������ ∑
𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ]

𝜙𝑖 (𝑦)𝜙𝑖 (𝑦′) − 𝑐𝑀𝑇𝑛JΥ(𝑇 ) (𝑇𝑑𝑔 (𝑦, 𝑦′))

������ = 𝑜𝑥 (𝑇𝑛−1), (8.1)

where 𝑑𝑔 (𝑦, 𝑦′) is the geodesic distance between 𝑦, 𝑦′, 𝑐𝑀 > 0 is given in (1.3), Υ(𝑇) = 1 − 𝜌0
𝑇 and

JΥ(𝑇 ) (𝑤) =
∫
Υ(𝑇 ) ≤ |𝜉 | ≤1

exp(𝑖〈𝑤, 𝜉〉)𝑑𝜉.

Moreover, we can also differentiate both sides of (8.1) an arbitrary finite number of times; that is,

sup
𝑦,𝑦′ ∈𝐵𝑔 (𝑥,10/𝑇 )

����∑𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ] 𝐷𝛼
𝑦 𝜙𝑖 (𝑦)𝐷𝛼′

𝑦′ 𝜙𝑖 (𝑦′) −
𝑐𝑀𝑇 𝑛𝐷𝛼

𝑦 𝐷𝛼′
𝑦′ JΥ(𝑇 ) (𝑇 𝑑𝑔 (𝑦,𝑦′))
(2𝜋)𝑛

����
𝑇 |𝛼 |+ |𝛼′ | = 𝑜𝑥 (𝑇𝑛−1),

where 𝛼, 𝛼′ are multi-indices, and 𝜉 𝛼 = (𝜉 𝛼1
1 , ..., 𝜉 𝛼𝑛

𝑛 ) and the derivatives are understood after taking
normal coordinates around the point x.

The proof of Proposition 8.4 follows directly from the following two lemmas. In the periodic case,
we have a full asymptotic expansion for the spectral projector kernel [58, Theorem 2]; see also [59]. In
particular, we have the following:

Lemma 8.5 (Zelditch). Let (𝑀, 𝑔) be a compact, real analytic manifold with empty boundary. Suppose
that the geodesic flow on M is periodic (i.e., M is a Zoll manifold). Then the conclusions of Proposition 8.4
hold.

The second lemma is borrowed from Canzani-Hanin [16, 17]; see also the preceding work of
Safarov [52]:

Lemma 8.6. Let (𝑀, 𝑔) be a compact, real analytic manifold with empty boundary, and suppose that
𝑥 ∈ 𝑀 is not self-focal. Then the conclusions of Proposition 8.4 hold.
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We are finally ready to prove Proposition 8.2:

Proof of Proposition 8.2. First we observe that, under the assumptions of Theorem 1.3, (8.1) and its
term-wise differentiation hold for almost all 𝑥 ∈ 𝑀 , that is outside a set of measure zero. Indeed, thanks
to Lemma 8.3, the geodesic flow on M is either aperiodic or periodic. In the latter case, the conclusion
of Proposition 8.4 holds for all 𝑥 ∈ 𝑀 . In the former case, Proposition 8.4 holds for almost all 𝑥 ∈ 𝑀 .
Thus, it remains to show that (8.1) and its term-wise differentiation, holding for almost all 𝑥 ∈ 𝑀 implies
the conclusion of Proposition 8.2.

Following along identical lines to the proof of Proposition 4.3 (which we do not reproduce here for
the sake of brevity) shows that the function

ℎ(𝑥) := sup
𝑦,𝑦′ ∈𝐵0

����E[𝐹𝑥 (𝑦) · 𝐹𝑥 (𝑦′)] − (2𝜋)Λ 𝐽Λ (|𝑦 − 𝑦′ |)
|𝑦 − 𝑦′ |Λ

����
converges point-wise to 0 for almost all 𝑥 ∈ 𝑀 . Therefore, Egorov’s Theorem implies that there exists a
(measurable) set A1 = A1(𝑇) ⊆ 𝑀 of volume Vol(A1) = 𝑜(1) such that h converges to zero uniformly
for all 𝑥 ∈ 𝑀\A1. This concludes the proof of the first claim of Proposition 8.2 (recall that the set of
relevant T is a discrete subset of R). The proof of the second claim is similar and therefore omitted. �

9. Proof of Theorem 1.3

In order to conclude the proof of Theorem 1.3, we need the following weaker, averaged w.r.t. position,
version of Proposition 4.1, valid in all dimensions. The proof of Theorem 1.3 is verbatim the proof of
Theorem 1.1, with Proposition 9.1 in place of Proposition 4.1 (see the discussion immediately after
Proposition 4.1 and (4.3), in particular).

Proposition 9.1. Let 𝐹𝑥 be as in (4.1), 𝜌0 as in Corollary 4.4, and 𝐹𝜇 be as above. Suppose that M
satisfies assumption 𝒜0 as in Definition 8.1 and 𝜌 ≡ 𝜌0. Then one has

V (𝐹𝑥)
𝑑−→ V (𝐹𝜇) 𝑇 → ∞, (9.1)

where the convergence is in distribution as a random variable on (𝑀 ×Ω, 𝑑𝜎).

We stress that the convergence (9.1) is in the product space (𝑀 ×Ω, 𝑑𝜎) rather than for an individual
𝑥 ∈ 𝑀 w.r.t. 𝑑P. To the best of our knowledge, it is not known whether there exist counter-examples
for the latter, stronger convergence; that is, whether, for some M (that might or might not satisfy the
assumptions of Theorem 1.3), there exist 𝑥 ∈ 𝑀 with the convergence (9.1) failing as a random function
on (Ω, P).

Assuming Proposition 9.1, we can conclude the proof of Theorem 1.3 along identical lines to the
proof of Theorem 1.1.

Proof of Theorem 1.3. Thanks to Lemma 6.2 and Fubini’s Theorem, we have

E[V ( 𝑓 )] = 2𝑛 Vol(𝑀)𝑇
𝜔𝑛

(1 + 𝑜𝑇→∞(1)) ·
∫

𝑀×Ω
V (𝐹𝑥)𝑑𝜎.

Thanks to Proposition 9.1, and since Proposition 6.1, which remains valid under the assumptions of
Theorem 1.3, implies the uniform integrability hypothesis [11, (3.15)] of [11, Theorem 3.5], we have∫

𝑀×Ω
V (𝐹𝑥)𝑑𝜎 = E[V (𝐹𝜇)] · (1 + 𝑜𝑇→∞(1)).
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Hence, Lemma 7.1 gives

E[V ( 𝑓 )] = 2𝑛

𝜔𝑛
Vol(𝑀)E[V (𝐹𝜇)] · (𝑇 + 𝑜𝑇→∞(𝑇))

= Vol(𝑀)
(

1
𝜋𝑛

)1/2 Γ
(

𝑛+1
2

)
Γ
(
𝑛
2
) 𝑇 + 𝑜𝑇→∞(𝑇),

as required. �

The rest of the script is dedicated to the proof of Proposition 9.1.

9.1. Sogge’s bound and large values of the eigenfunctions

In addition to the possible failure of the local Weyl’s law around self-focal points, another difficulty of
the constant energy window regime is the possibility of

sup
𝑥

|𝜙𝑖 (𝑥) | � 𝑣(𝑇)1/2

for some 𝜙𝑖 in the summation (1.2) (for example, it might occur for the sphere S𝑛). This problem was
not present in the growing energy window case thanks to Claim 4.7. Thus, we would not be able to
apply Lindeberg’s CLT as in the proof of Lemma 4.6. In order to circumvent this difficulty, we show
that |𝜙𝑖 (𝑥) | = 𝑜(𝑇) for all 𝜆𝑖 ∈ [𝑇 − 𝜌0, 𝑇] and for all 𝑥 ∈ 𝑀 outside a set of small measure. That is, the
main result of this section is to prove the following consequence of (6.15):

Lemma 9.2. Let 𝑇 > 0 be given, 𝑣(𝑇) as in (1.3), 𝜌0 as in Corollary 4.4, and let 𝐾 = 𝐾 ≥ 1 be some
parameter (that may depend on T). Then there exists a subset A2 = A2 (𝑇, 𝐾) ⊆ 𝑀 of volume at most
𝑂 (𝐾2 𝑛+1

𝑛−1 𝑇−1) with the following properties:

(1) We have

sup
𝑥∈𝑀\A2

max
𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ]

| |𝜙𝑖 | |𝐿∞ (𝐵 (𝑥,2/𝑇 )) � 𝐾−1𝑣(𝑇)1/2.

(2) Uniformly for all multi-indices |𝛼 | ≤ 2, one has

sup
𝑥∈𝑀\A2

max
𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ]

| |𝑇−𝛼𝐷𝛼𝜙𝑖 | |𝐿∞ (𝐵 (𝑥,2/𝑇 )) � 𝐾−1𝑣(𝑇)1/2.

In order to state a preliminary result towards the proof of Lemma 9.2, we recall some notation.
Given a Laplace eigenfunction 𝜙𝑖 , we denote by 𝜙𝑖,𝑥 the scaled restriction of 𝜙𝑖 to 𝐵𝑔 (𝑥, 4/𝑇) via the
exponential map; that is,

𝜙𝑖,𝑥 (𝑦) = 𝜙𝑖 (exp𝑥 (𝑦/𝑇))

for 𝑦 ∈ 𝐵(0, 4) (here we tacitly assume that T is sufficiently large so that 4/𝑇 is less than the injectivity
radius). With this notation in mind, we prove the following consequence of elliptic regularity for
harmonic functions:

Lemma 9.3. Let 𝑇 ≥ 1, 𝜌0 as in Corollary 4.4, and let 𝜙𝑖 be a Laplace eigenfunction with eigenvalue
𝜆𝑖 ∈ [𝑇 − 𝜌0, 𝑇]. Then

(1) Uniformly for all 𝑥 ∈ 𝑀 , we have

sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝜙𝑖 |2 �
∫

𝐵 (0,4)
|𝜙𝑖,𝑥 (𝑦) |2𝑑𝑦.
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(2) Uniformly for all 𝑥 ∈ 𝑀 , we have

sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝑇−𝛼𝐷𝛼𝜙𝑖 |2 �
∫

𝐵 (0,4)
|𝜙𝑖,𝑥 (𝑦) |2𝑑𝑦,

uniformly for all multi-indices |𝛼 | ≤ 2.

Before embarking on the proof of Lemmas 9.2 and 9.3, we would like to briefly discuss their
statements. Lemmas 9.2 and 9.3 are stated in the precise form that will be used in Section 4.3. However,
in the literature, the conclusions of Lemmas 9.2 and 9.3 are often stated as

sup
𝐵𝑔 (𝑥,𝑐/𝜆𝑖 )

|𝜙𝑖 | � 𝐾−1𝑣(𝑇)1/2 sup
𝐵𝑔 (𝑥,𝑐/𝜆𝑖 )

|𝜙𝑖 |2 �
∫

𝐵 (0,2𝑐)
|𝜙𝑖,𝑥 (𝑦) |2𝑑𝑦 (9.2)

for some small 𝑐 = 𝑐(𝑀) with an analogous statement for the bounds on the derivatives. Since
𝜌0 = 𝑂𝑀 (1), and for 𝜆𝑖 ∈ [𝑇 − 𝜌0, 𝑇],

𝜆−1
𝑖 = 𝑇−1 (1 + 𝑜(1)),

(9.2) is equivalent to Lemmas 9.2 and 9.3 up to the constant 2 and a simple covering argument.

Proof of Lemma 9.3. Given 𝜙𝑖 , let us consider the function ℎ(𝑥, 𝑡) = 𝜙𝑖 (𝑥)𝑒𝜆𝑖 𝑡 defined on 𝑀 × [−2, 2]
and let us write ℎ𝑇 (·) = ℎ(𝑇−1·) (where the rescaling is to be understood in normal coordinates). Then,
since the supremum norm is scale invariant, we have

sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝜙𝑖 | � sup
𝐵𝑔 (𝑥,2/𝑇 )×[−2/𝑇 ,2/𝑇 ]

|ℎ| � | |ℎ𝑇 | |𝐿∞ (�̃�) (9.3)

sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝐷𝛼𝜙𝑖 | � sup
𝐵𝑔 (𝑥,2/𝑇 )×[−2/𝑇 ,2/𝑇 ]

|𝐷𝛼ℎ| � 𝑇 𝛼 | |ℎ𝑇 | |𝐶1 (�̃�) , (9.4)

where �̃� = 𝐵𝑔 (𝑥, 2) × [−2, 2] and |𝛼 | ≤ 2 is a multi-index. Since h is a harmonic function (Δℎ = 0) and
�̃� has radius 4, for any 𝑘 ≥ 0, elliptic regularity [23, Page 330] gives

| |ℎ𝑇 | |𝐶𝑘 (�̃�) �𝑘 | |ℎ𝑇 | |𝐿2 (2�̃�) . (9.5)

The constant implied in the notation is independent of 𝑥 ∈ 𝑀 . Thus, Lemma 9.3 follows by inserting
(9.5) into (9.3) and (9.4) and noticing that | |ℎ𝑇 | |𝐿2 (2�̃�) � | |𝜙𝑖,𝑥 | |𝐿2 (𝐵 (0,4)) . �

Proof of Lemma 9.2. First, we observe that given 𝑝 ≥ 2, the function 𝑥 → 𝑥𝑝/2 is convex for 𝑥 ≥ 0.
Therefore, applying Jensen’s inequality to part (1) of Lemma 9.3, we obtain(

sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝜙𝑖 |
) 𝑝

�𝑝

(∫
𝐵 (0,4)

|𝜙𝑖,𝑥 (𝑦) |2𝑑𝑦

) 𝑝/2
�𝑝

∫
𝐵 (0,4)

|𝜙𝑖,𝑥 (𝑦) |𝑝𝑑𝑦 (9.6)

and similarly, (
sup

𝐵𝑔 (𝑥,2/𝑇 )
|𝑇−𝛼𝐷𝛼𝜙𝑖 |

) 𝑝

�𝑝

∫
𝐵 (0,4)

|𝜙𝑖,𝑥 (𝑦) |𝑝𝑑𝑦, (9.7)
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where |𝛼 | ≤ 2 is a multi-index. We are now going to prove part (1) of Lemma 9.2. By Sogge’s bound
(6.15) with 𝑝 ≤ 2(𝑛 + 1)/(𝑛 − 1), bearing in mind that | |𝜙𝑖 | |𝐿2 = 1, we have(∫

𝑀
|𝜙𝑖 (𝑥) |𝑝𝑑 Vol𝑔 (𝑥)

)1/𝑝

� 𝑇
𝑛−1

2

(
1
2−

1
𝑝

)
=: 𝑇

for all 𝜆𝑖 ≤ 𝑇 . Thus, integrating both sides of (9.6) with respect to 𝑥 ∈ 𝑀 and exchanging the order of
the integrals, we obtain∫

𝑀

(
sup

𝐵𝑔 (𝑥,2/𝑇 )
|𝜙𝑖 |

) 𝑝

𝑑 Vol𝑔 (𝑥) �
∫

𝐵 (0,4)

∫
𝑀

|𝜙𝑖,𝑥 (𝑦) |𝑝𝑑 Vol𝑔 (𝑥)𝑑𝑦 � 𝑇 𝑝 .

Therefore, by Chebyshev’s bound, for any 𝐾1 > 0, we have

Vol𝑔

({
𝑥 ∈ 𝑀 : sup

𝐵𝑔 (𝑥,2/𝑇 )
|𝜙𝑖 | ≥ 𝐾1

})
� 𝐾−𝑝

1 𝑇 𝑝 ,

and taking the union bound over the 𝑂 (𝑣(𝑇)) choices for i, we deduce

Vol𝑔

({
𝑥 ∈ 𝑀 : max

𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ]
sup

𝐵𝑔 (𝑥,2/𝑇 )
|𝜙𝑖 | ≥ 𝐾1

})
� 𝐾−𝑝

1 𝑣(𝑇) · 𝑇 𝑝 . (9.8)

Thus, taking 𝐾1 = 𝐾−1𝑣(𝑇)1/2 � 𝐾−1(𝑇𝑛−1)1/2 in (9.8) and recalling that 𝑇 = 𝑇
𝑛−1

2

(
1
2−

1
𝑝

)
, we have

Vol𝑔

({
𝑥 ∈ 𝑀 : max

𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ]
sup

𝐵𝑔 (𝑥,2/𝑇 )
|𝜙𝑖 | ≥ 𝐾−1𝑣(𝑇)1/2

})
�𝑝 𝐾 𝑝𝑇 𝜈 (𝑛,𝑝) , (9.9)

where

𝜈(𝑛, 𝑝) : = −𝑝
𝑛 − 1

2
+ 𝑛 − 1 + 𝑛 − 1

2

( 𝑝

2
− 1

)
=

𝑛 − 1
2

(
1 − 𝑝

2

)
.

Hence, taking 𝑝 = 2(𝑛 + 1)/(𝑛 − 1) in (9.9), we have

Vol𝑔

({
𝑥 ∈ 𝑀 : max

𝜆𝑖 ∈[𝑇 −𝜌0 ,𝑇 ]
sup

𝐵𝑔 (𝑥,2/𝑇 )
|𝜙𝑖 | ≥ 𝐾−1𝑣(𝑇)1/2

})
� 𝐾 𝑝𝑇−1,

as required. Thanks to (9.7), the proof of part (2) of Lemma 9.2 follows along the lines of the proof of
its part (1). �

9.2. Concluding the proof of Proposition 9.1

As we saw in the course of the proof of Proposition 4.1, to prove Proposition 9.1, it is sufficient
to consider the convergence of finite-dimensional distributions. Indeed, Lemma 4.10 implies that the
measure induced by 𝐹𝑥 (as a random variable on (𝑀 ×Ω, 𝑑𝜎)) onto 𝐶2(𝐵0) is tight. Thus, to conclude
the proof of Proposition 9.1, it is sufficient to prove the following result:

Lemma 9.4 (Convergence of finite-dimensional distributions). Let m be some positive integer, 𝐵0 =
𝐵(0, 1), 𝜌0 as in Corollary 4.4, 𝐹𝑥 be as in 4.1 and 𝐹𝜇 be the random monochromatic wave as in (4.2).
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Then, assuming that M satisfies the assumption𝒜0 as in (8.1) and 𝜌 ≡ 𝜌0, for every 𝑦1, ...𝑦𝑚 ∈ 𝐵0 ⊆ R𝑛,
we have

(𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚))
𝑑−→ (𝐹𝜇 (𝑦1), ..., 𝐹𝜇 (𝑦𝑚)) 𝑇 → ∞,

where the convergence is in distribution as a random vector defined on (𝑀 × Ω, 𝑑𝜎). Moreover, for
every 𝛼 = (𝛼1, ..., 𝛼𝑛), with |𝛼 | ≤ 2, one has

(𝐷𝛼𝐹𝑥 (𝑦1), ..., 𝐷𝛼𝐹𝑥 (𝑦𝑚))
𝑑−→ (𝐷𝛼𝐹𝜇 (𝑦1), ..., 𝐷𝛼𝐹𝜇 (𝑦𝑚)) 𝑇 → ∞.

Using some classical probability language [11, Theorem 2.6], we may reformulate Lemma 9.4 as
follows:

Lemma 9.5. Let 𝐵0 = 𝐵(0, 1), 𝜌0 as in Corollary 4.4, 𝐹𝑥 be as in (4.1), and 𝐹𝜇 be as in (4.2). Assuming
that M satisfies assumption 𝒜0 of Definition 8.1 and 𝜌 ≡ 𝜌0, there exists a set A3 = A3 (𝑇) ⊆ 𝑀 of
volume Vol(A3) = 𝑜𝑇→∞(1), such that the following holds. Given a uniformly continuous and bounded
function 𝑔 : R𝑚 → R, as 𝑇 → ∞, one has

sup
𝑥∈𝑀\A3

����∫
Ω

𝑔(𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚))𝑑P −
∫
Ω

𝑔(𝐹𝜇 (𝑦1), ..., 𝐹𝜇 (𝑦𝑚))𝑑P
���� → 0,

and, for all multi-index |𝛼 | ≤ 2, one also has

sup
𝑥∈𝑀\A3

����∫
Ω

𝑔(𝐷𝛼𝐹𝑥 (𝑦1), ..., 𝐷𝛼𝐹𝑥 (𝑦𝑚))𝑑P −
∫
Ω

𝑔(𝐷𝛼𝐹𝜇 (𝑦1), ..., 𝐷𝛼𝐹𝜇 (𝑦𝑚))𝑑P
���� → 0.

For the reader’s convenience, we provide a proof that Lemma 9.5 implies Lemma 9.4:

Proof of Lemma 9.4 assuming Lemma 9.5. By Portmanteau Theorem [11, Theorem 2.1], Lemma 9.4 is
equivalent to the following:∫

𝑀×Ω
𝑔(𝐹𝑥 (𝑦1), ..., (𝐹𝑥 (𝑦𝑚))𝑑𝜎 →

∫
Ω

𝑔(𝐹𝜇 (𝑦1), ..., (𝐹𝜇 (𝑦𝑚))𝑑P 𝑇 → ∞ (9.10)

for all bounded and uniformly continuous functions 𝑔 : R𝑚 → R. Suppose that (9.10) fails for some g.
Then there exists some 𝜀 = 𝜀(𝑔) > 0 such that����∫

𝑀×Ω
𝑔(𝐹𝑥 (𝑦1), ..., (𝐹𝑥 (𝑦𝑚))𝑑𝜎 −

∫
Ω

𝑔(𝐹𝜇 (𝑦1), ..., (𝐹𝜇 (𝑦𝑚))𝑑P
���� ≥ 𝜀

along a subsequence 𝑇𝑖 → ∞. Now, let A3 ⊆ 𝑀 be as in Lemma 9.5. Then∫
𝑀×Ω

𝑔(𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚))𝑑𝜎 =
∫
(𝑀\A3)×Ω

𝑔(𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚))𝑑𝜎 + 𝑜𝑔 (1)

=
∫
(𝑀\A3)×Ω

𝑔(𝐹𝜇 (𝑦1), ..., 𝐹𝜇 (𝑦𝑚))𝑑𝜎 + 𝑜𝑔 (1),

making use of g being bounded. Therefore, we have����∫
𝑀×Ω

𝑔(𝐹𝑥 (𝑦1), ..., (𝐹𝑥 (𝑦𝑚))𝑑𝜎 −
∫
Ω

𝑔(𝐹𝜇 (𝑦1), ..., (𝐹𝜇 (𝑦𝑚))𝑑P
���� < 𝜀

for all sufficiently large 𝑇 ≥ 𝑇0. This contradiction concludes the proof of Lemma 9.4 �

https://doi.org/10.1017/fms.2023.74 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.74


Forum of Mathematics, Sigma 43

We are now going to prove Lemma 9.5. The proof is similar to the proof of Lemma 4.6, but we
reproduce it for completeness:

Proof of Lemma 9.5. Let 𝜙𝑖,𝑥 be the restriction of 𝜙𝑖 to 𝐵𝑔 (𝑥, 1/𝑇) and let A3 = A1 ∪ A2, where A1
is the exceptional set prescribed by Proposition 8.2 and A2 is the set constructed within Lemma 9.2
applied with 𝐾 = (log 𝑇)

𝑛−1
2(𝑛+1) = (log 𝑇)𝑐 . By Lemma 9.2, for all 𝑥 ∈ 𝑀\A3, we have

max
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝜙𝑖 | �
𝑣(𝑇)1/2

(log𝑇)𝑐 ,

where the constant implied in the ‘�’ notation is absolute. Moreover, given and multi-index |𝛼 | ≤ 2,
bearing in mind that

sup
𝐵0

|𝐷𝛼𝜙𝑖,𝑥 | � sup
𝐵𝑔 (𝑥,2/𝑇 )

|𝑇−𝛼𝐷𝛼𝜙𝑖 |,

we also have

max
𝜆𝑖 ∈[𝑇 −𝜌,𝑇 ]

sup
𝐵0

|𝐷𝛼𝜙𝑖,𝑥 | �
𝑣(𝑇)1/2

(log𝑇)𝑐 . (9.11)

We are going to first consider the distribution of the vector (𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚)) for 𝑥 ∈ 𝑀\A3.
Thanks to Proposition 8.2, we have

sup
𝑖, 𝑗∈{1,...,𝑚}

𝑥∈𝑀\A3

��E[𝐹𝑥 (𝑦𝑖) · 𝐹𝑥 (𝑦 𝑗 )] − E[𝐹𝜇 (𝑦𝑖) · 𝐹𝜇 (𝑦 𝑗 )]
�� → 0 𝑇 → ∞. (9.12)

Therefore, by the multidimensional version of Lindeberg’s Central Limit Theorem (Lemma 4.8), and
upon using (9.12), it suffices to prove that for every 𝜀 > 0, we have

sup
𝑦∈𝐵0

𝑥∈𝑀\A3

1
𝑣(𝑇)

∑
𝜆𝑖

E[|𝑎𝑖𝜙𝑖,𝑥 (𝑦) |21 |𝑎𝑖 𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2] → 0 𝑇 → ∞ (9.13)

uniformly for all 𝑦 ∈ 𝐵0 and all 𝑥 ∈ 𝑀\A3, where 1 is the indicator function and 𝑣(𝑇) = 𝑐𝑀 𝜌𝑇𝑛−1 (1 +
𝑜(1)). Mind that the convergence of (𝐹𝑥 (𝑦1), ..., 𝐹𝑥 (𝑦𝑚)) is not asserted for a single fixed 𝑥 ∈ 𝑀 ,
but rather for any sequence of ‘good’ x, and therefore, as a random variable on 𝑀 × Ω, in accordance
with the assertion of Lemma 9.5; see the explanation in Section 2. The calculation leading to (9.13) is
identical to the calculation in Lemma 4.6 and is therefore omitted.

In order to prove the convergence of the derivative vector and upon recalling the second part of
Proposition 8.2, again by the multidimensional version of Lindeberg’s Central Limit Theorem, it is
sufficient to prove that for any 𝜀 > 0 and |𝛼 | ≤ 2, we have

sup
1

𝑣(𝑇)
∑
𝜆𝑖

E[|𝑎𝑖𝐷
𝛼𝜙𝑖,𝑥 (𝑦) |21 |𝑎𝑖𝐷𝛼𝜙𝑖,𝑥 (𝑦) |>𝜀𝑣 (𝑇 )1/2] → 0 𝑇 → ∞. (9.14)

Similar to the above argument, (9.11) implies (9.14) if |𝛼 | ≤ 2, thus concluding the proof of
Lemma 9.5. �
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