INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE

TAKAHIKO NAKAZI¹ AND TOMOKO OSAWA²

¹Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan (nakazi@math.sci.hokudai.ac.jp) ²Mathematical and Scientific Subjects, Asahikawa National College of Technology, Asahikawa 071-8142, Japan (ohsawa@asahikawa-nct.ac.jp)

(Received 29 April 2004)

Abstract Let $L^2 = L^2(D, rdrd\theta/\pi)$ be the Lebesgue space on the open unit disc D and let $L^2_a = L^2 \cap \operatorname{Hol}(D)$ be a Bergman space on D. In this paper, we are interested in a closed subspace \mathcal{M} of L^2 which is invariant under the multiplication by the coordinate function z, and a Hankel-type operator from L^2_a to \mathcal{M}^{\perp} . In particular, we study an invariant subspace \mathcal{M} such that there does not exist a finite-rank Hankel-type operator except a zero operator.

Keywords: Bergman space; invariant subspace; Hankel-type operator

2000 Mathematics subject classification: Primary 47B35; 47A15

1. Introduction

Let D be the open unit disc in \mathbb{C} and $\operatorname{Hol}(D)$ be the set of all holomorphic functions on D. Let $d\mu = rdrd\theta/\pi$ and $L^2 = L^2(D, d\mu)$ the Lebesgue space. The Bergman space L^2_a on D is defined by $L^2_a = L^2 \cap \operatorname{Hol}(D)$. Then L^2_a is the closed subspace of L^2 . When \mathcal{M} is a closed subspace of L^2 and $z\mathcal{M} \subseteq \mathcal{M}$, \mathcal{M} is called an invariant subspace. For φ in $L^{\infty} = L^{\infty}(D, d\mu)$, a Hankel-type operator is defined by

$$H^{\mathcal{M}}_{\omega}f = (I - P^{\mathcal{M}})(\varphi f) \quad (f \in L^2_a),$$

where $P^{\mathcal{M}}$ is the orthogonal projection from L^2 onto \mathcal{M} . When $\mathcal{M} = L_a^2$, $H_{\varphi}^{\mathcal{M}}$ is called a big Hankel operator and when $\mathcal{M} = (\bar{z}\overline{L_a^2})^{\perp}$, $H_{\varphi}^{\mathcal{M}}$ is called a small Hankel operator. When $L_a^2 \subseteq \mathcal{M} \subseteq (\bar{z}\overline{L_a^2})^{\perp}$, $H_{\varphi}^{\mathcal{M}}$ is called an intermediate Hankel operator.

It is easy to see that there does not exist a finite-rank big Hankel operator except a zero one (see [3, 6]). On the other hand, there exist a lot of finite-rank non-zero small Hankel operators (see [6]). In fact, it is easy to see the results. Strouse [7] described completely all finite-rank intermediate Hankel operators for some invariant subspace. In the previous paper [6], we began to study finite-rank intermediate Hankel operators for arbitrary invariant subspace. In [6, Theorem 3.2], we gave three necessary and sufficient

conditions for \mathcal{M} such that there does not exist a finite-rank intermediate Hankel operator except a zero one. In this paper, without the hypothesis on an invariant subspace \mathcal{M} , we give a new necessary and sufficient condition for \mathcal{M} which have a finite-rank Hankel-type operator except a zero one.

For an invariant subspace \mathcal{M} in L^2 , ker $H^{\mathcal{M}}_{\varphi}$ denotes the kernel of $H^{\mathcal{M}}_{\varphi}$ and then ker $H^{\mathcal{M}}_{\varphi} = \{f \in L^2_a; \varphi f \in \mathcal{M}\}$. Hence ker $H^{\mathcal{M}}_{\varphi}$ is also an invariant subspace in L^2_a . Thus each invariant subspace \mathcal{M} in L^2 is related to an invariant subspace in L^2_a by a Hankeltype operator. In this paper, the following property of invariant subspaces in L^2 is important.

Definition 1.1. Let \mathcal{M} be an invariant subspace of L^2 . \mathcal{M} is called weakly divisible if whenever $f \in \mathcal{M}$ and $|f(z)| \leq \gamma |z - a|$ for some $a \in D$ and some $\gamma \geq 0$ then f(z) = (z - a)g(z) and g is a function in \mathcal{M} .

In §2, we generalize a theorem of Axler and Bourdon [1], which will be used later on. In §3, we show that there does not exist a finite-rank Hankel-type operator $H_{\varphi}^{\mathcal{M}}$ except a zero one if and only if \mathcal{M} is weakly divisible. In §4, we give several examples of weakly divisible invariant subspaces.

In this paper $[S]_*$ denotes the weak^{*} closed linear span of a subset S in L^{∞} and $[S]_2$ denotes the closed linear span of a subset S in L^2 .

2. An invariant subspace and the index

In this section, for a given invariant subspace \mathcal{M} we are interested in two invariant subspaces \mathcal{M}' and \mathcal{M}'' such that $\mathcal{M}' \subseteq \mathcal{M} \subseteq \mathcal{M}''$, dim $\mathcal{M} \ominus \mathcal{M}' < \infty$ and dim $\mathcal{M}'' \ominus \mathcal{M} < \infty$. Under some conditions on \mathcal{M} , \mathcal{M}' and \mathcal{M}'' , we describe \mathcal{M}' and \mathcal{M}'' using \mathcal{M} . Corollary 2.4 will be used in §§ 3 and 4. Corollary 2.4 (i) is known from [1].

When \mathcal{M} is an invariant subspace of L^2 , for $a \in \mathbb{C}$ put $\operatorname{ind}_a \mathcal{M} = \dim\{\mathcal{M} \ominus (z-a)\mathcal{M}\}$. ind_a \mathcal{M} is called the index of \mathcal{M} at a. It is known (cf. [1]) that for each n ($0 \leq n \leq \infty$) and for any a ($\in D$) there exists an invariant subspace \mathcal{M} with $\operatorname{ind}_a \mathcal{M} = n$.

Theorem 2.1. Let \mathcal{M} , \mathcal{M}_1 and \mathcal{M}_2 be invariant subspaces of L^2 and $\mathcal{M}_1 \subseteq \mathcal{M}_2$.

- (i) $\operatorname{ind}_a \mathcal{M} = 0$ for any $a \notin D$.
- (ii) If dim $\mathcal{M}_2 \ominus \mathcal{M}_1 < \infty$, then there exists a polynomial b such that $b\mathcal{M}_2 \subseteq \mathcal{M}_1$, $Z(b) \subset D$ and the degree of $b \leq \dim \mathcal{M}_2 \ominus \mathcal{M}_1$ and

$$\sum (\operatorname{ind}_a \mathcal{M}_2; a \in Z(b)) \geqslant \dim \mathcal{M}_2 \ominus \mathcal{M}_1.$$

Proof. (i) If |a| > 1, then $(z-a)^{-1} \in H^{\infty}$ and $\mathcal{M} = (z-a)\mathcal{M}$. Hence $\operatorname{ind}_{a} \mathcal{M} = 0$. If |a| = 1, then $(z-a)\mathcal{M} = (z-a)\{z-a(1+\varepsilon)\}^{-1}\mathcal{M}$. For any $f \in \mathcal{M}$, it is easy to see that

$$\int_{D} \left| \frac{z - a}{z - a(1 + \varepsilon)} f - f \right|^2 \mathrm{d}\mu \to 0 \quad (\varepsilon \to 0)$$

by Lebesgue's convergence theorem. This implies that $(z - a)\mathcal{M}$ is dense in \mathcal{M} and so $\operatorname{ind}_a \mathcal{M} = 0$ for |a| = 1.

480

(ii) Put $\mathcal{N} = \mathcal{M}_2 \ominus \mathcal{M}_1$ and $\mathcal{S}_z = PM_z | \mathcal{N}$, where M_z is a multiplication operator on L^2 by the coordinate function z and P is the orthogonal projection from L^2 to \mathcal{N} . If $n = \dim \mathcal{N} < \infty$, then there exists a polynomial b of degree n such that $\mathcal{S}_b = b(\mathcal{S}_z) = 0$ and so $b\mathcal{M}_2 \subseteq \mathcal{M}_1$. By (i), we may assume that $Z(b) \subset D$. We will prove that $\sum (\operatorname{ind}_a \mathcal{M}_2; a \in Z(b)) \ge n$. We can write that $b = a_0 \prod_{j=1}^n (z - a_j)$ and so $Z(b) = \{a_1, a_2, \ldots, a_n\}$, where $a_0 \in \mathbb{C}$. If $\sum (\operatorname{ind}_a \mathcal{M}_2; a \in Z(b)) \le n - 1$, then we may assume ind_{a_1} \mathcal{M}_2 = 0. Since $[(z - a_1)\mathcal{M}_2]_2 = \mathcal{M}_2$,

$$\prod_{j=2}^{n} (z-a_j)\mathcal{M}_2 \subseteq \mathcal{M}_1 \subset \mathcal{M}_2.$$

Then it is easy to see that dim $\mathcal{M}_2 \ominus [\prod_{j=2}^n (z-a_j)\mathcal{M}_2]_2 \leqslant n-1$ because $\operatorname{ind}_{a_j} \mathcal{M}_2 \leqslant 1$ for $2 \leqslant j \leqslant n$. This contradicts that dim $\mathcal{M}_2 \ominus \mathcal{M}_1 = n$.

Corollary 2.2. Let \mathcal{M}_1 and \mathcal{M}_2 be invariant subspaces of L^2 and $\mathcal{M}_1 \subseteq \mathcal{M}_2$. If $\dim \mathcal{M}_2 \ominus \mathcal{M}_1 = 1$, then $(z - a)\mathcal{M}_2 \subseteq \mathcal{M}_1 \subsetneq \mathcal{M}_2$ for some $a \in D$ and $\operatorname{ind}_a \mathcal{M}_2 \ge 1$. If $\operatorname{ind}_a \mathcal{M}_1 = 1$ or $\operatorname{ind}_a \mathcal{M}_2 = 1$, then $\mathcal{M}_1 = [(z - a)\mathcal{M}_2]_2$.

Proof. By Theorem 2.1, $(z-a)\mathcal{M}_2 \subseteq \mathcal{M}_1$ for some $a \in D$ and so $\operatorname{ind}_a \mathcal{M}_2 \ge 1$. Since $(z-a)\mathcal{M}_1 \subseteq (z-a)\mathcal{M}_2 \subseteq \mathcal{M}_1 \subsetneq \mathcal{M}_2, \mathcal{M}_1 = [(z-a)\mathcal{M}_2]_2$ if $\operatorname{ind}_a \mathcal{M}_1 = 1$ or $\operatorname{ind}_a \mathcal{M}_2 = 1$.

Corollary 2.3. Let \mathcal{M}_1 and \mathcal{M}_2 be invariant subspaces such that $\mathcal{M}_1 \subsetneq \mathcal{M}_2$ and dim $\mathcal{M}_2 \ominus \mathcal{M}_1 = n < \infty$. Suppose that $(z - a)\mathcal{M}_j$ is closed for any a in D when j = 1, 2. If ind_a $\mathcal{M}_1 = 1$ for any a in D or ind_a $\mathcal{M}_2 = 1$ for any a in D, then $\mathcal{M}_1 = b\mathcal{M}_2$ and $\mathcal{M}_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus \mathcal{M}_1$, where $b = \prod_{i=1}^n (z - a_i), \{a_i\} \subset D$ and $\{f_j\} \subset \mathcal{M}_1$.

Proof. By Theorem 2.1 there exists a polynomial b such that $b\mathcal{M}_2 \subseteq \mathcal{M}_1$ and $Z(b) \subset D$ and the degree of $b \leq n$. Hence $b = \prod_{j=1}^{\ell} (z - a_j)$ and $\{a_j\} \subset D$ and $\ell \leq n$. When $\operatorname{ind}_a \mathcal{M}_2 = 1$ for any a in D, $\dim \mathcal{M}_2 \ominus b\mathcal{M}_2 = \ell$ because $(z - a_j)\mathcal{M}_2$ is closed for $1 \leq j \leq \ell$ and so $\ell = n$. Hence $\mathcal{M}_1 = b\mathcal{M}_2$. When $\operatorname{ind}_a \mathcal{M}_1 = 1$ for any a in D, $\dim \mathcal{M}_1 \ominus b\mathcal{M}_1 = \ell$ by the same reason. Since $b\mathcal{M}_1 \subseteq b\mathcal{M}_2 \subseteq \mathcal{M}_1$ and $\dim b\mathcal{M}_2 \ominus b\mathcal{M}_1 = n$, $\ell = n$ and so $\mathcal{M}_1 = b\mathcal{M}_2$. Put $\mathcal{M}_2 = \langle \varphi_1, \ldots, \varphi_n \rangle \oplus \mathcal{M}_1$, where $\{\varphi_j\}$ are orthogonal to \mathcal{M}_1 . What was just proved above, $b\mathcal{M}_2 = \mathcal{M}_1$ and so $b\mathcal{M}_2 = \langle b\varphi_1, \ldots, b\varphi_n \rangle \oplus b\mathcal{M}_1 = \mathcal{M}_1$. Put $f_j = b\varphi_j$ for $j = 1, \ldots, n$, then $\{f_j\}$ are in \mathcal{M}_1 and $\mathcal{M}_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus \mathcal{M}_1$.

Corollary 2.4. Let \mathcal{M} be an invariant subspace of L^2 .

- (i) If dim $L^2_a \ominus \mathcal{M} = n < \infty$ and $n \neq 0$, then $\mathcal{M} = bL^2_a$, where $b = \prod_{j=1}^n (z a_j)$ and $\{a_i\} \subset D$.
- (ii) If dim $\mathcal{M} \ominus L_a^2 = n < \infty$, then $\mathcal{M} = L_a^2$.

Proof. It is known that $\operatorname{ind}_a L_a^2 = 1$ and $(z-a)L_a^2$ is closed for each $a \in D$. Hence we can apply Corollary 2.3 to $\mathcal{M}_1 = L_a^2$ or $\mathcal{M}_2 = L_a^2$. If $\mathcal{M}_1 = \mathcal{M}$ and $\mathcal{M}_2 = L_a^2$, then (i) follows. If $\mathcal{M}_1 = L_a^2$ and $\mathcal{M}_2 = \mathcal{M}$, then $\mathcal{M} = \langle f_1/b, \ldots, f_n/b \rangle \oplus L_a^2$, where $b = \prod_{j=1}^n (z-a_j), \{a_j\} \subset D$ and $\{f_j\} \subset L_a^2$. For each $1 \leq \ell \leq n, f_\ell/b \in L^2$ and so $f_{\ell}(a_j) = 0$ for $1 \leq j \leq n$. Then f_{ℓ}/b belongs to L_a^2 and so $f_{\ell}/b = 0$ for each ℓ . Thus $\mathcal{M} = L_a^2$ and so (ii) follows.

3. Finite-rank Hankel-type operators

In this section, we study the relation between finite-rank Hankel-type operators and invariant subspaces.

Theorem 3.1. Let \mathcal{M} be an invariant subspace of L^2 . Then there does not exist a finite-rank Hankel-type operator $H_{\varphi}^{\mathcal{M}}$ except a zero one if and only if \mathcal{M} is weakly divisible.

Proof. Suppose \mathcal{M} is weakly divisible. If $H_{\varphi}^{\mathcal{M}}$ is of finite rank, then ker $H_{\varphi}^{\mathcal{M}}$ is an invariant subspace in L_a^2 and dim $L_a^2/\ker H_{\varphi}^{\mathcal{M}} < \infty$. By (i) of Corollary 2.4, ker $H_{\varphi}^{\mathcal{M}} = bL_a^2$ for some polynomial b with $Z(b) \subset D$ and so $b\varphi$ belongs to \mathcal{M} . Put $f = b\varphi$, then $|f(z)| \leq \gamma |b(z)| \ (z \in D)$, where $\gamma = \|\varphi\|_{\infty}$. Suppose $b(z) = a_0 \prod_{j=1}^n (z - a_j)$, where $\{a_j\} \subset D$. For any ℓ with $1 \leq \ell \leq n$,

$$\left|\frac{f(z)}{z-a_{\ell}}\right| \leqslant \gamma |a_0| \prod_{j \neq \ell} |z-a_j| \quad (z \in D)$$

and $f(z)/(z - a_{\ell})$ belongs to \mathcal{M} because $a_{\ell} \in D$ and \mathcal{M} is weakly divisible. Thus $\varphi(z) = f(z)/b(z)$ belongs to \mathcal{M} . Hence $H_{\varphi}^{\mathcal{M}} = 0$.

Conversely, if \mathcal{M} is not weakly divisible, then there exists a function f in \mathcal{M} and a point a in D such that $|f(z)| \leq \gamma |z-a|$ $(z \in D)$ and f(z)/(z-a) does not belong to \mathcal{M} . Put $\varphi = f(z)/(z-a)$, then $\varphi \in L^{\infty}$ and $H_{\varphi}^{\mathcal{M}}$ is not zero because $\varphi \notin \mathcal{M}$. On the other hand, $(z-a)\varphi \in \mathcal{M}$ and so the kernel of $H_{\varphi}^{\mathcal{M}}$ contains $(z-a)L_a^2$. This implies that $H_{\varphi}^{\mathcal{M}}$ is of rank one because $L_a^2/(z-a)L_a^2 = \mathbb{C}$.

Proposition 3.2. If there exists a symbol φ such that $r(H_{\varphi}^{\mathcal{M}}) = n \ge 1$, then there exists a symbol φ_j such that $r(H_{\varphi_j}^{\mathcal{M}}) = j$ for any j with $0 \le j \le n-1$.

Proof. Suppose $1 \leq n = r(H_{\varphi}^{\mathcal{M}}) < \infty$. Then $\ker H_{\varphi}^{\mathcal{M}} =$ the kernel of $H_{\varphi}^{\mathcal{M}}$ is an invariant subspace of L_a^2 and $L_a^2/\ker H_{\varphi}^{\mathcal{M}}$ is of finite dimension n. By Corollary 2.4, $\ker H_{\varphi}^{\mathcal{M}} = bL_a^2$, where $b = \prod_{\ell=1}^n (z - a_\ell)$ and $(a_\ell) \subset D$. Hence $b\varphi$ belongs to \mathcal{M} . Put

$$\varphi_j = \varphi \prod_{\ell=j+1}^n (z - a_\ell) \text{ for } 1 \leqslant j \leqslant n - 1,$$

then $\varphi_j \notin \mathcal{M}$ for $1 \leq j \leq n-1$ and $\varphi_0 = b\varphi$. Since ker $H_{\varphi_j}^{\mathcal{M}} = b_j L_a^2$ for $1 \leq j \leq n-1$, where $b_j = \prod_{\ell=1}^j (z - a_\ell), H_{\varphi_j}^{\mathcal{M}}$ is of finite rank j for $0 \leq j \leq n-1$.

Corollary 3.3. The following two expressions are equivalent for an invariant subspace \mathcal{M} .

(i) If
$$r(H_{\omega}^{\mathcal{M}}) < \infty$$
, then $r(H_{\omega}^{\mathcal{M}}) = 0$.

482

483

(ii) If $r(H_{\varphi}^{\mathcal{M}}) \leq 1$, then $r(H_{\varphi}^{\mathcal{M}}) = 0$.

Proof. (i) \Rightarrow (ii). This is clear.

(ii) \Rightarrow (i). If (i) is not true, then there exists a symbol φ with $r(H_{\varphi}^{\mathcal{M}}) = n \ge 2$. By Proposition 3.2 there exists a symbol φ_1 such that $r(H_{\varphi_1}^{\mathcal{M}}) = 1$. This contradicts (ii). \Box

4. Weakly divisible invariant subspaces

For a function f in L_a^2 , put $Z(f) = \{a \in D; f(a) = 0\}$ and $Z(G) = \cap\{Z(f); f \in G\}$ for a subset G in L_a^2 . For $1 \leq p \leq \infty$, if E is an open set in D, H_E^p denotes the set of all functions in L^p that are analytic on E. In Corollary 4.2, a weakly divisible invariant subspace \mathcal{M} is described completely when \mathcal{M} is in L_a^2 . There exists a non-zero invariant subspace \mathcal{M} in L_a^2 such that $\mathcal{M} \cap L^\infty = \langle 0 \rangle$. For it is known (see [5]) that there exists a non-zero function f in L_a^2 such that Z(f) does not satisfy the Blaschke condition.

Theorem 4.1. Let \mathcal{M} be an invariant subspace of L^2 .

- (i) If $\mathcal{M} \cap L^{\infty} \subseteq H^{\infty}$ and $Z(\mathcal{M} \cap L^{\infty}) = \emptyset$, then \mathcal{M} is weakly divisible.
- (ii) If $\mathcal{M} \cap L^{\infty} = H_E^{\infty}$ for some open set E, then \mathcal{M} is weakly divisible.
- (iii) If $\mathcal{M} \cap L^{\infty} = \langle 0 \rangle$, then \mathcal{M} is weakly divisible.

Proof. (i) If $\{f_n\}$ is a sequence in $\mathcal{M} \cap L^{\infty}$ which converges pointwise boundedly to f, then $f \in \mathcal{M}$. By the Krein–Schmulian criterion (see [4, IV 2.1]), $\mathcal{M} \cap L^{\infty}$ is weak^{*} closed. Hence, by a well-known theorem of Beurling [2] $\mathcal{M} \cap L^{\infty} = qH^{\infty}$ for some inner function q. Hence if $f \in \mathcal{M}$ and $|f(z)| \leq \gamma |z - a|$ ($z \in D$) for some $a \in D$, then f = qh for some $h \in H^{\infty}$. Since $Z(\mathcal{M} \cap L^{\infty}) = \emptyset$, |q(z)| > 0 ($z \in D$) and so h(a) = 0. Hence $f(z)/(z-a) = q(z) \times (h(z)/(z-a)) \in qH^{\infty}$. Thus f(z)/(z-a) belongs to \mathcal{M} .

(ii) If $f \in H_E^{\infty}$ and $|f(z)| \leq \gamma |z-a|$ $(z \in D)$ for some $a \in D$, then $f(z)/(z-a) \in L^{\infty}$ and f(z)/(z-a) is analytic on E. Hence f(z)/(z-a) belongs to H_E^{∞} and so \mathcal{M} is weakly divisible.

(iii) This is clear.

Corollary 4.2. Let \mathcal{M} be an invariant subspace of L^2_a . Then \mathcal{M} is weakly divisible if and only if $\mathcal{M} \cap L^{\infty} = \langle 0 \rangle$ or $Z(\mathcal{M} \cap L^{\infty}) = \emptyset$.

Proof. The part of 'if' is a result of (i) and (iii) of Theorem 4.1. Conversely, suppose that \mathcal{M} is weakly divisible. If $\mathcal{M} \cap L^{\infty} \neq \langle 0 \rangle$, then by a theorem of Beurling there exists an inner function q with $\mathcal{M} \cap L^{\infty} = qH^{\infty}$. If q(a) = 0 for some $a \in D$, then there exists a finite positive constant γ such that $|q(z)| \leq \gamma |z-a|$ ($z \in D$) and $q/(z-a) \notin \mathcal{M}$. This contradicts the weak divisibility of \mathcal{M} and so $Z(q) = Z(\mathcal{M} \cap L^{\infty}) = \emptyset$.

Corollary 4.3. Let \mathcal{M} be an invariant subspace of L^2 .

(i) If $\mathcal{M} \subsetneq L^2_a$ and dim $L^2_a/\mathcal{M} < \infty$, then \mathcal{M} is not weakly divisible.

T. Nakazi and T. Osawa

(ii) If $\mathcal{M} \supseteq L_a^2$ and dim $\mathcal{M}/L_a^2 < \infty$, then \mathcal{M} is weakly divisible.

Proof. (i) If $\mathcal{M} \subsetneq L_a^2$ and $\dim L_a^2/\mathcal{M} = \ell < \infty$, then by (i) of Corollary 2.4 $\mathcal{M} = bL_a^2$, where $b = \prod_{j=1}^{\ell} (z - a_j)$ and $a_j \in D$ $(1 \leq j \leq \ell)$. Hence $Z(\mathcal{M} \cap L^\infty) = Z(b) \neq \emptyset$ and so by Corollary 4.2 \mathcal{M} is not weakly divisible.

(ii) By (2) of Corollary 2.4 $\mathcal{M} = L_a^2$ and so $\mathcal{M} \cap L^{\infty} = H^{\infty}$. Hence (i) of Theorem 4.1 implies that \mathcal{M} is weakly divisible.

Corollary 4.4. If $\mathcal{M} = H_E^2$ for some open set E in D, then \mathcal{M} is weakly divisible.

Proof. It is a result of (ii) of Theorem 4.1.

Proposition 4.5. Suppose that \mathcal{M}_j is a weakly divisible invariant subspace of L^2 for j = 1, 2, ... and $\mathcal{M}_j \times \mathcal{M}_\ell = \{fg; f \in \mathcal{M}_j \text{ and } g \in \mathcal{M}_\ell\} = \langle 0 \rangle$ if $j \neq \ell$. If $\mathcal{M} = \sum_{j=1}^{\infty} \oplus \mathcal{M}_j$, then \mathcal{M} is a weakly divisible invariant subspace.

Proof. If $f \in \mathcal{M}$, then $f = \sum_{j=1}^{\infty} f_j$ and $|f(z)| = \sum_{j=1}^{\infty} |f_j(z)|$ $(z \in D)$ by hypothesis. This implies that \mathcal{M} is weakly divisible.

Corollary 4.6. Let $1 \leq \ell \leq \infty$. Suppose D_j is an open set in D with $\mu(\partial D_j) = 0$ for $1 \leq j \leq \ell$, $D_i \cap D_j = \emptyset(i \neq j)$ and $D = \bigcup_{j=1}^{\ell} D_j$. Then $\mathcal{M} = \sum_{j=1}^{\ell} \oplus L_a^2(D_j)$ is weakly divisible.

Proof. This is a result of Corollary 4.4 and Proposition 4.5.

Proposition 4.7. If \mathcal{M} is a weakly divisible invariant subspace of L^2 and φ is a unimodular function in L^{∞} , then $\varphi \mathcal{M}$ is a weakly divisible invariant subspace.

Proof. From the definition of weak divisibility, the proposition follows trivially. \Box

Corollary 4.8. If φ is a unimodular function in L^{∞} , then φL^2_a is weakly divisible.

Acknowledgements. This research was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

References

- 1. S. AXLER AND P. BOURDON, Finite-codimensional invariant subspaces of Bergman spaces, *Trans. Am. Math. Soc.* **306** (1988), 805–817.
- 2. A. BEURLING, On two problems concerning linear transformations in Hilbert space, *Acta Math.* **81** (1948), 239–255.
- 3. N. DAS, The kernel of a Hankel operator on the Bergman space, *Bull. Lond. Math. Soc.* **31** (1999), 75–80.
- 4. T. W. GAMELIN, Uniform algebras (Prentice Hall, Englewood Cliffs, NJ, 1984).
- 5. H. HEDENMALM, B. KORENBLUM AND K. ZHU, *Theory of Bergman Spaces*, Graduate Texts in Mathematics, vol. 199 (Springer, 2000).
- 6. T. NAKAZI AND T. OSAWA, Finite-rank intermediate Hankel operators on the Bergman space, *Int. J. Math. Math. Sci.* **25** (2001), 19–31.
- 7. E. STROUSE, Finite rank intermediate Hankel operators, Arch. Math. 67 (1996), 142–149.

484