Platelet Taurine Uptake in Spinocerebellar Degeneration

A. FILLA, R. F. BUTTERWORTH, G. GEOFFROY, B. LEMIEUX AND A. BARBEAU

SUMMARY: The uptake of 14C-taurine was studied in the platelets of 20 ataxic patients and 20 age-matched normal control subjects. No significant differences were found in uptake or kinetics of taurine between the two groups of subjects. If a transport defect in taurine exists in Friedreich's ataxia, it is not present in all tissues. Preliminary indication was obtained in favor of heterogeneity of the uptake pattern between ataxic individuals.

INTRODUCTION

Platelets appear to be a model for uptake and binding systems in serotonergic (Stacey, 1961; Pletscher, 1968; Pletscher et al., 1971; Meynert et al., 1968) and dopaminergic (Boullin, 1970) nerve endings in the brain and sympathetic nerve endings in the periphery (Abrams, 1969; Paasonen, 1973). This evidence has prompted studies of the monoamine and enzymatic content of platelets in several neurological disorders known to have alterations in biogenic amines in the brain, like endogenous depression (Baldessarini, 1972), phenylketonuria (Pare, 1959), Down's syndrome (Lott, 1972), schizophrenia (Murphy et al., 1972; Wyatt et al., 1973; Buchsbaum et al., 1976), Huntington's chorea (Butterworth et al., 1977) and Parkinson's disease (Boullin et al., 1970; Yamaguchi et al., 1972; Barbeau et al., 1975).

Other studies showed that platelets are rich in taurine (Castro et al., 1959), that the transport of taurine into human platelets is a metabolically dependent process (Ahtee et al., 1974), that the uptake can be suppressed by metabolic inhibitors, structural analogs, putative neurotransmitters and convulsants, and that there is a similarity of taurine uptake by human platelets and rat brain slices (Gaut et al., 1976). These data, according to Gaut and Nauss (1976), suggested that platelets may also serve as model for taurine uptake in the brain. A decreased V\textsubscript{max}, without change of K\textsubscript{m} and endogenous taurine, has been reported in mongoloid trisomy 21 and mentally retarded patients (Boullin et al., 1975).

Moreover, taurine seems to be implicated in many of the metabolic abnormalities observed in Friedreich's ataxia (Barbeau, 1976). In patients with this disease and other types of ataxia we found an increase in the urinary excretion of taurine, β-alanine, and BAIB (β-amino-isobutyric acid) with normal plasma levels and with marked increases in the renal clearance rate of taurine (Lemieux et al., 1976). Increased renal clearance rates in the absence of overflow may indicate impaired tubular reabsorption, a membrane transport defect. It has been demonstrated (Scrimer and Rosenberg, 1973) that taurine, β-alanine and BAIB share the same transport system. A specific defect in this system has been described in the mouse (Goldman and Scrimer, 1967; Chesney et al., 1975).

It seemed worthwhile to explore the possibility that the renal defect found in the ataxic patients might also be reflected in platelets. If present, it would suggest a generalized defect of uptake and storage of taurine in this disease.

SUBJECTS, MATERIALS AND METHODS

1) Subjects

a) Controls

Twenty normal volunteer subjects of either sex ranging in age from 20 to 35 years were tested.

b) Patients

Twenty patients of either sex, ranging from 16 to 49 years, were tested. All were affected with Friedreich's ataxia or with other kinds of ataxia. They were divided into sub-groups according to the classification of Barbeau (1976) (Table I). Two patients were receiv-

Vol. 5, No. 1 FEBRUARY 1978 - 119
Table 1: Ataxic Patients

<table>
<thead>
<tr>
<th>GROUP</th>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP Ia</td>
<td>10</td>
<td>"Typical" Friedreich's ataxia - Complete picture</td>
</tr>
<tr>
<td>GROUP Ib</td>
<td>1</td>
<td>"Typical" Friedreich's ataxia - Incomplete picture (without pes cavus)</td>
</tr>
<tr>
<td>GROUP IIa</td>
<td>7</td>
<td>Atypical Friedreich's ataxia - Possible autosomal recessive Roussy-Levy</td>
</tr>
<tr>
<td>GROUP IIb</td>
<td>2</td>
<td>Not Friedreich's ataxia - Other diagnosis proposed</td>
</tr>
</tbody>
</table>

Values are the mean ± S.E. of the mean (± S.E.) obtained in the number of subjects indicated (n).

Table 2: Platelet Counts

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean X 10^3 (mm^2) ± S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLS</td>
<td>20</td>
<td>304.86 ± 10.46</td>
</tr>
<tr>
<td>PATIENTS</td>
<td>20</td>
<td>311.08 ± 13.23</td>
</tr>
</tbody>
</table>

Table 3: Uptake of Taurine by Platelets

<table>
<thead>
<tr>
<th>TIME OF INCUBATION (minutes)</th>
<th>UPTAKE EXPRESSED AS nmol of (^14C)-Taurine PER 10^11 PLATELETS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTROLS (mean ± S.E.)</td>
</tr>
<tr>
<td>10</td>
<td>4.63 ± 0.39</td>
</tr>
<tr>
<td>30</td>
<td>14.77 ± 0.81</td>
</tr>
<tr>
<td>60</td>
<td>26.94 ± 1.49</td>
</tr>
<tr>
<td>90</td>
<td>36.81 ± 1.67</td>
</tr>
<tr>
<td>120</td>
<td>47.51 ± 2.06</td>
</tr>
</tbody>
</table>

The above results were obtained in experiments with platelets from 20 ataxic and 20 controls incubated with 1 uM of (^14C)-taurine for different times.

Table 4: Uptake of Taurine in Patients Divided into Sub-Groups

<table>
<thead>
<tr>
<th>SUB-GROUPS</th>
<th>UPTAKE AFTER 120 MIN (nmol/10^11)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia + Ib</td>
<td>47.20 ± 3.20</td>
<td>p > 0.5</td>
</tr>
<tr>
<td>Ia</td>
<td>47.34 ± 3.54</td>
<td>p > 0.5</td>
</tr>
<tr>
<td>IIa + IIb</td>
<td>48.19 ± 2.56</td>
<td>p > 0.5</td>
</tr>
<tr>
<td>IIa</td>
<td>46.07 ± 2.68</td>
<td>p > 0.5</td>
</tr>
<tr>
<td>IIb</td>
<td>55.62 ± 3.90</td>
<td>P > 0.4</td>
</tr>
</tbody>
</table>

The value are mean ± S.E. and are expressed as nmol/10^11 platelets after 120 min of incubation - Student's t-test was used.

Platelet Taurine and Ataxia

2) Materials

(^14C-1,2) Taurine, specific activity 56.08 mCi/mmol, was obtained from New England Nuclear Corp., Boston, Mass., U.S.A.

3) Methods

a) Preparation of platelets rich plasma

Blood was collected by venipuncture at 9 a.m. from fasting subjects in 20 ml plastic syringes, each containing 1.5 ml sodium ethylenediaminetetraacetic acid (EDTA) solution; 13.5 ml of blood was taken per syringe (final EDTA concentration 0.1%). The total blood volume withdrawn was 60 ml. Blood was transferred immediately to centrifuge tubes and cooled in ice. Each patient was matched with a control subject done the same day. Tubes were centrifuged (120 g, 15 minutes, 4°C) to obtain platelet rich plasma. Platelet count was done microscopically in platelet rich plasma. Four counts were performed on each platelet rich sample according to the Rees-Ecker method and the mean value per mm³ used for calculation.

b) Uptake of (^14C-1,2) Taurine by platelets in vitro

One ml samples of platelet-rich plasma were incubated in an atmosphere of 95% O₂ and 5% CO₂ at 37°C, using a Dubnoff metabolic incubator (Precision Scientific Co., Chicago). After 10 minutes of preincubation, 1 n mol of (^14C-1,2) taurine in 10 Ml of a solution of 0.01 N HCl was added to each sample and rapidly mixed.
(Vortex Mixer) to give a final (14C-1,2) taurine concentration of 1 μM. Incubation then was continued for samples of each subject for periods of 10, 30, 60, 90, 120 minutes.

c) Kinetics of uptake of (14C-1,2) taurine by platelets

1 n mol of labelled taurine and different concentrations of cold taurine were added to the samples to give four different final concentrations of taurine: 48 μM, 24 μM, 4.8 μM, 2.4 μM. The incubation was continued for 15 minutes and was then stopped by cooling in ice: Platelets were isolated by centrifugation (20,000 G, 5 minutes, 4°C) and platelet poor plasma was decanted directly into liquid scintillation vials, containing 12 ml of a mixture of Triton X-100 and toluene (1:2 v/v) containing PPO 8.25 g; dimethyl POPOP 0.25 g, in “scintanalyzed grade” toluene 1,000 ml (Fisher Scientific Co., Ltd). To each platelet pellet was added 1 ml bidistilled water and the platelets were disrupted by sonication (15 seconds, Sonic 300 dismembrator, setting power 30% of the maximum). Platelet lysates were transferred to liquid scintillation vials. Platelets and platelet poor plasma radioactivity was determined by liquid scintillation spectrometry using a Packard model 3375 Tri-Carb liquid scintillation counter. Each sample was counted 5 minutes and corrected for machine efficiency.

d) Statistical analysis

Student’s t-test was carried out according to Goldstein (1964).

RESULTS

Platelet counts

There is no significant difference between controls and ataxic patients (Table 2).

Uptake of taurine by platelets

When platelets were incubated in plasma containing (14C-1,2) taurine, substantial accumulation took place, which did not reach saturation after 120 minutes of incubation. We could not find any statistical difference between controls and ataxic patients, even when we divided them into sub-groups (Tables 3 and 4).

Moreover, in the two tested families affected by typical Friedreich’s ataxia, we found that all the members from the same family had similar uptakes. All three patients from family 1 were low uptakers (mean = 36.52 n mol/10^11 platelets; S.E. ± 1.4) and all the three members from family 2 were high uptakers (mean = 57.73 n mol/10^11 platelets; S.E. ± 5.8).

Kinetics of uptake of taurine by platelets

Analyses of the data according to the Lineweaver-Burk method (1934) were calculated according to the Michaelis-Menten equation used to describe saturable enzyme/substrate interactions.
indicated that there is no significant difference between controls and ataxic patients, even when we divided them into their clinical subgroups (Tables 5, 6).

DISCUSSION

Previous studies (Lemieux et al., 1976) have indicated that the urinary excretion and the renal clearance rate of taurine and \(\beta \)-alanine are markedly elevated in most patients with Friedreich’s ataxia. This could be the result of a genetic transport defect in the reuptake of taurine in the proximal tubules of the kidney. Alternatively, the taurine loss could be the secondary manifestation of competition for the same transport system by excessive \(\beta \)-alanine excretion. Finally, abnormally elevated secretion of taurine or of \(\beta \)-alanine from the distal tubule could explain the initial observation. In the latter case, one would expect elevated tissue concentrations of taurine, at least in the kidney.

In order to investigate the first possibility, a genetic transport defect in taurine, we looked at the transport and kinetics of taurine in the platelet, considered a model of brain transport. We found no significant change in platelet taurine uptake or kinetics. This indicates that there is no generalized transport defect for taurine in Friedreich’s ataxia. This, of course, does not eliminate the possibility that the defect is localized in the kidney, or in other tissues such as the intestine.

Our studies also offer preliminary evidence for a familial characteristic in uptake of taurine in platelets. High uptake families could be distinguished from low uptake families, with relatively constant patterns between individuals of the same family group. Moreover, repeat determinations of taurine uptake in the same individual over a period of time were remarkably constant, giving more importance to our finding of inter-family heterogeneity in taurine uptake. This observation may be of importance in the interpretation of the overall role of taurine in the pathogenesis of Friedreich’s ataxia (Barbeau, 1976).

REFERENCES

