THE DOUBLE TRANSITIVITY OF A CLASS OF PERMUTATION GROUPS

RONALD D. BERCOV

1. Introduction. Certain finite groups H do not occur as a regular subgroup of a uniprimitive (primitive but not doubly transitive) group G. If such a group H occurs as a regular subgroup of a primitive group G, it follows that G is doubly transitive. Such groups H are called B-groups (8) since the first example was given by Burnside (1, p. 343), who showed that a cyclic p-group of order greater than p has this property (and is therefore a B-group in our terminology).

Burnside conjectured that all abelian groups are B-groups. A class of counterexamples to this conjecture due to W. A. Manning was given by Dorothy Manning in 1936 (3). This class of counter-examples has been generalized by Wielandt, who showed that if H is the direct product of two or more groups of the same order greater than two, then H is not a B-group (8, p. 79).

In 1933, Schur (4) developed a new method which he used to show that a cyclic group of composite order is a B-group.

In 1935, Wielandt $(6,8)$ used the method of Schur to show that if an abelian group H of composite order has a cyclic Sylow subgroup, then it is a B-group.

In 1937, Kochendörffer (2) used the Schur methods to show that if H is the direct product of two cyclic groups of order p^{α}, p^{β} respectively where $\alpha>\beta>0$, then H is a B-group.

This paper is a generalization of these results. Let H be abelian, P a Sylow p-subgroup of H, and a an element of P of maximal order, p^{α}. Let A be the cyclic group generated by a. Then $H=A \times B \times C$, where $P=A \times B$ and C is of order prime to p. We prove that if $B \neq 1$ is of exponent $p^{\beta}<p^{\alpha}$ (with the additional assumption $\alpha \geqslant 3$ if $p=2$), then either H is a direct product of groups of the same order greater than 2 , or else H is a B-group. If $B=1$, we have by the theorem of Wielandt that H is a B-group unless $C=1$ and $\alpha=1$. Thus apart from the case $p=2, \alpha=2, \beta=1$, the question of whether or not the abelian group H is a B -group is settled unless H is the direct product of two groups of the same exponent.

We might also mention that two classes of non-abelian B-groups are known. Wielandt (7) has shown that dihedral groups are B-groups and Scott (5) has shown that generalized dicyclic groups are B-groups.
2. Notation, definitions, and theorems from the theory of Schur rings. Let G be a primitive permutation group on the letters $\{1, \ldots, n\}$. Let

[^0]H be a regular abelian subgroup of G. We denote the image of the letter j under the permutation $g \in G$ by j^{g}. Since H is regular, there is a unique $h \in H$ for which $1^{h}=j$. We call this element h_{j}. The correspondence $j \leftrightarrow h_{j}$ allows us to regard G as a permutation group on H. To the permutation $g \in G$ (on $\{1, \ldots, n\}$) corresponds the permutation $\binom{h}{h}$ (on H) where h^{g} is the element of H uniquely determined by the formula
$$
1^{h o}=1^{h g}
$$

We continue to denote the permutation $\binom{h}{h g}$ by g, and the group of such permutations by G.

Let $R(H)$ be the group ring of H over the rational integers. For

$$
\eta=\sum_{h \in H} \gamma(h) h \in R(H)
$$

and any integer j we put $\eta^{(j)}=\sum_{h \in \boldsymbol{H}} \gamma(h) h^{j}$. Let

$$
|\eta|=\left|\sum_{h \in H} \gamma(h) h\right|=\sum_{h \in H} \gamma(h) .
$$

With $K \subseteq H$ we associate the element

$$
\bar{K}=\sum_{h \in H} \gamma(h) h \in R(H), \quad \text { where } \gamma(h)=\left\{\begin{array}{lll}
1 & \text { if } & h \in K, \\
0 & & h \notin K .
\end{array}\right.
$$

For $K \subseteq H$, let $|K|=|\bar{K}|$, the number of elements of K. Let $\langle K\rangle$ be the smallest subgroup of H containing K. Let G_{1} be the subgroup of G (regarded as a permutation group on H) fixing 1 , the identity element of H. Let $\{1\}=T_{0}, T_{1}, \ldots, T_{k}$ be the orbits of G_{1}, where $T_{i} \subseteq H$ for $i=0, \ldots, k$. Let

$$
R\left(H, G_{1}\right)=\left\{\sum_{i=0}^{k} \gamma_{i} \overline{T_{i}}\right\}
$$

be the additive subgroup of $R(H)$ spanned by the \bar{T}_{i}. Throughout this paper k will denote the number of orbits of G_{1} different from $\{1\} . G$ is doubly transitive if and only if $k=1$.

Theorem 1 (Schur, 1933).
(i) $R\left(H, G_{1}\right)$ is a subring of $R(H)$.
(ii) $\left\langle T_{i}\right\rangle=H$ for $i=1, \ldots, k$.
(iii) $\bar{T}_{i}^{(j)}=\bar{T}_{q}$ for appropriate q if $(j,|H|)=1$.

Definition 1. $\eta^{(j)}$ is said to be conjugate to $\eta \in R(H)$ if $(j,|H|)=1$.
Definition 2. If $\eta=\eta^{(j)}$ for all j with $(j,|H|)=1$, then η is said to be rational.

Definition 3. The sum of all distinct conjugates of $\eta \in R(H)$ is called the trace of η and is denoted by $\operatorname{tr} \eta$.
$\operatorname{tr} \eta$ is clearly rational and lies in $R\left(H, G_{1}\right)$ whenever η does, by Theorem 1.

Definition 4. For $h \in H, \operatorname{tr}\{h\}$ is called the elementary trace of h and is denoted by tr h.

Clearly if k has non-zero coefficient in $\operatorname{tr} h$, then $\operatorname{tr} h=\operatorname{tr} k$.
By Theorem $1, \operatorname{tr} \bar{T}_{i}$ is a sum of distinct \bar{T}_{q}. Thus $\operatorname{tr} \bar{T}_{i}=\bar{S}_{i}$, where

$$
S_{i}=\left\{t^{j} \mid t \in T_{i},(j, n)=1\right\}
$$

If necessary by renumbering the T_{i}, we may assume without loss of generality that S_{1}, \ldots, S_{r} are distinct and that for any $j>r$ there is an $i \leqslant r$ with $S_{i}=S_{j}$. Clearly $S_{0}=1$.

Theorem 2 (Schur, 1933). Let

$$
S=\left\{\sum_{i=0}^{r} \gamma_{i} \overline{S_{i}} \mid \gamma_{i} \text { rational integers }\right\}
$$

Then S is a subring of $R\left(H, G_{1}\right)$ all of whose elements are rational.
Our notation so far has been that of (8). We now introduce further notation.
For $K, L \subseteq H$, let $K-L$ be the set of elements of K not belonging to L. For $K \subseteq H$ let $K^{\#}=K-\{1\}$. For $h \in H, K \subseteq H$, let

$$
K(h)=\left\{k \in K \mid k^{-1} h \in K\right\} .
$$

Thus $K(h)$ is the set of those elements of K which "hit" other elements of K in such a way as to contribute to the coefficient of h in $[\bar{K}]^{2}$, and $|K(h)|$ is this coefficient.

Let $H=A \times B \times C$, where $A=\langle a\rangle$ is cyclic of order p^{α}, B is of exponent $p^{\beta}, 0<\beta<\alpha$, and $(|C|, p)=1$. Let $u=a^{p^{a-1}}$ and $U=\langle u\rangle$; thus $|U|=p$.

We assume without loss of generality that $u \in T_{1} \subseteq S_{1}$, and we put

$$
T=T_{1}, \quad S=S_{1}
$$

By Theorem $2,[\bar{S}]^{2}$ is a linear combination of the $\overline{S_{i}}(i=0, \ldots, r)$. Thus we have

Lemma 2.1. $|S(h)|=|S(k)|$ for $h, k \in S_{i}(i=1, \ldots, r)$.
$h \in H$ has a unique representation of the form $h=a^{s p^{\lambda}} b c$ where $(s, p)=1$, $b \in B, c \in C$. For $K \subseteq H$ we define K_{X}, K_{Y}, K_{Z} as follows:
$K_{X}=\{k \in K \mid \lambda=0\}$ is the set of all elements of K of order divisible by p^{α}.
$K_{Y}=\left\{k \in K\left|\lambda \neq 0,|\langle b\rangle|<p^{\alpha-\lambda}\right\}\right.$ is the set of elements of K with p-part having order less than p^{α} but larger than the order of the B-component.
$K_{Z}=\left\{k \in K| |\langle b\rangle \mid \geqslant p^{\alpha-\lambda}\right\}$ is the set of elements of K with p-part having order equal to the order of the B-component.

Thus K is the set union of the three disjoint sets K_{X}, K_{Y}, K_{Z}.
For $b \in B, K \subseteq H$, let $K^{b}=\left\{k \in K \mid k=a^{s p^{\lambda}} b^{t} c\right.$, where $\left.(t, p)=1\right\}$, be the set of elements of K whose B component is a power of b with exponent prime to p. We have $\left(K_{X}\right)^{b}=\left(K^{b}\right)_{X}$ and denote this set by $K_{X}{ }^{b}$. For $b \in B$, let C_{b} be the set of all elements of C which occur as the p^{\prime}-part of some element of $S_{X}{ }^{b}$.

We now show that by appropriate choice of a we may assume that C_{1} is non-empty.

Lemma 2.2. If necessary by changing a (the generator of A) we have C_{1} nonempty.

Proof. By Theorem 1(ii), $\langle T\rangle=H$; hence $\langle S\rangle=H$. Thus S has an element of order divisible by p^{α}, say $a^{s} b c$. Now $H=\left\langle a^{s} b\right\rangle \times B \times C$ and since $\exp B<\alpha$ holds, we have $\left(a^{s} b\right)^{p^{a-1}}=u^{s}$, which is in S since $u \in S$ and \bar{S} is rational.

Henceforth we assume that C_{1} is non-empty. We are now in a position to state the two theorems of this paper.

Theorem A. Assume that

1. G is a primitive group of degree n;
2. H is a regular abelian subgroup of G;
3. p is a prime dividing n;
4. P is a Sylow p-subgroup of H;
5. $P=A \times B$, where $A=\langle a\rangle$ is cyclic of order p^{α} and B is of exponent $p^{\beta}, 0 \neq \beta<\alpha$;
6. $\{1\}=T_{0}, T_{1}, \ldots, T_{k}$ are the orbits of G_{1} and $\overline{S_{i}}=\operatorname{tr} \bar{T}_{i}=\bar{H}^{\#}$ for $i=1, \ldots, k$.

Then G is doubly transitive (i.e. $k=1$).
Theorem B. Let Hypotheses 1-5 of Theorem A hold. In addition if $p=2$, let $\alpha \geqslant 3$. Then if G is not doubly transitive, there exist $e \geqslant 2$ subgroups H_{i} of G such that $H=H_{1} \times \ldots \times H_{e}$ and

$$
\left|H_{i}\right|=\left|H_{j}\right|>2 \quad \text { for } i, j=1, \ldots, e .
$$

Remark. Schur (4) proved what I have called Theorem A for all abelian groups H which are not of prime power order. Thus Theorem A of this paper is new only in the case $C=1$.

We first prove Theorem A and then devote the greater part of the paper to showing that Hypothesis 6 of Theorem A follows from the hypotheses of Theorem B unless H has the special direct product structure indicated.
3. Proof of theorem A. We begin by proving a lemma which is of importance also in the proof of Theorem B.

Lemma 3.1. Let Hypotheses 1-5 of the above statement of Theorem A hold. Let $h \notin\left(H_{X} \cup H_{Y}\right)-U C$. Let $1 \leqslant j \leqslant p-1$. Then there exists $q \equiv 1(\bmod p)$ with $(q, H \mid)=1$ such that

$$
h^{q}=u^{j} h .
$$

Proof. Let $h=a^{s p^{\lambda}} b c$, where $(s, p)=1, b \in B, c \in C$. Let $|C|=m$ and let s^{\prime}, m^{\prime} satisfy $s^{\prime} s \equiv 1\left(\bmod p^{\alpha}\right)$, and $m^{\prime} m \equiv 1\left(\bmod p^{\alpha}\right)$. Then it is easily seen that $q=1+m m^{\prime} s^{\prime} j p^{\alpha-\lambda-1}$ has the desired properties.

For the remainder of Section 3 we assume that Hypotheses 1-6 in the above statement of Theorem A hold.

Lemma 3.2. \bar{T} is conjugate to \bar{T} for $q=1, \ldots, k$.
Proof. We have assumed $\operatorname{tr} \bar{T}_{q}=\bar{H}^{\#}$ for $q=1, \ldots, k$. Thus $T_{q} \cap U^{\sharp}$ is non-empty. Let $u^{j} \in T_{q} \cap U^{\#}$ and let $l \equiv j(p)$ with $(l,|H|)=1$. By Theorem $1, \bar{T}^{(l)}$ is a \bar{T}_{i}. Now since u^{j} belongs to both T_{i} and T_{Q} it follows that these orbits are the same and $\overline{T_{q}}=\bar{T}^{(l)}$.

Lemma 3.3. Let $l=\left|T \cap U^{*}\right|, n=|H|$. Then
(i) $k=(p-1) / l$,
(ii) $\left|T_{q}\right|=(n-1) / k$ for $q=1, \ldots, k$,
(iii) $\left|\left(T_{q}\right)_{x}\right|=\frac{p-1}{p} \frac{n}{k}$ for $q=1, \ldots, k$.

Proof. Since each conjugate of \bar{T} has l elements of $U^{\#}$ and $\left|U^{\#}\right|=p-1$, it follows that \bar{T} has $(p-1) / l$ conjugates; thus $k=(p-1) / l$. Since $\overline{T_{q}}$ is conjugate to $\bar{T},\left|T_{q}\right|=|T|$. Moreover,

$$
\left|\bigcup_{i=1}^{q} T_{q}\right|=n-1
$$

since $T_{0}=1$ and the $T_{\underline{g}}$ are disjoint. Thus each T_{q} has order $(n-1) / k$. Since $\overline{T_{q}}$ is conjugate to \bar{T}, T_{q} and T have the same number of elements of H_{X} and T_{0} has no such elements. Moreover, $\left|H_{X}\right|=((p-1) / p)|H|$. Thus we have

$$
\left|\left(T_{q}\right)_{X}\right|=\frac{1}{k} \frac{p-1}{p} n .
$$

Lemma 3.4. The coefficient of u^{j} in $\bar{T} \bar{T}^{(-1)}$ is $\geqslant\left|T_{X}\right|$ for $j=1, \ldots, p-1$.
Proof. By Lemma 3.1 for $x \in T_{X}$, there is a $q \equiv 1(\bmod p)$ with $(q, n)=1$ such that $u^{-j} x$ has non-zero coefficient in $\bar{T}^{(q)}$. By Theorem $1, \bar{T}^{(q)}=\bar{T}_{i}$ for some i. But $u^{q}=u$ since $q \equiv 1(\bmod p)$. Thus u belongs to both T and T_{i}, and $T=T_{i}$. We conclude that $u^{-j} x \in T$. Thus $x\left(u^{j} x^{-1}\right)$ contributes to the coefficient of u^{j} in $\bar{T} \bar{T}^{(-1)}$ for all $x \in T_{X}$, so this coefficient must be $\geqslant\left|T_{X}\right|$.

Lemma 3.5. The coefficient of $h \in H$ in $\bar{T} \bar{T}^{(-1)}$ is $\geqslant\left|T_{X}\right|$.
Proof. By Theorem 1, $\bar{T}^{(-1)} \in R\left(H, G_{1}\right)$ holds and

$$
\bar{T} \bar{T}^{(-1)}=\sum_{i=0}^{k} \gamma_{i} \bar{T}_{i} .
$$

Since each T_{i} has an element of $U^{\#}$ and each element of $U^{\#}$ has coefficient $\geqslant\left|T_{X}\right|$, we have $\gamma_{i} \geqslant\left|T_{X}\right|$ for $i=1, \ldots, k$. Clearly $\gamma_{0}=|T| \geqslant\left|T_{X}\right|$, and $h \in H$ belongs to some T_{i}.

Theorem A. $k=1$.

Proof. By Lemma 3.5 we have that

$$
\left|\bar{T} \bar{T}^{(-1)}\right|=|T|^{2} \geqslant\left|T_{X}\right||H| .
$$

By Lemma 3.3 we have

$$
|T|=(n-1) / k
$$

and

$$
\left|T_{x}\right|=\frac{p-1}{p} \frac{n}{k}
$$

Thus we have

$$
\left(\frac{n-1}{k}\right)^{2} \geqslant \frac{p-1}{p} \frac{n}{k} n>\frac{p-1}{p} \frac{(n-1)^{2}}{k}
$$

and

$$
k<\frac{p}{p-1} \leqslant 2
$$

Since k is a positive integer, it follows that $k=1$ and Theorem A is proved.
4. Proof of Theorem B. Throughout Section 4 we assume the hypotheses of Theorem B. We begin with two important lemmas.

Lemma 4.1. Let $R \subseteq H$ such that \bar{R} is rational. Then

$$
\left(R_{X} \cup R_{Y}\right)-u^{j} C \subseteq R\left(u^{j}\right) \quad \text { for } j=1, \ldots, p-1
$$

Proof. Let $h \in\left(R_{X} \cup R_{Y}\right)-u^{j} C$. By Lemma 3.1 if $h \notin U C$, there exists q prime to $|H|$ such that $h^{q}=u^{-j} h$. For $h=u^{i} c, i \neq j$ (and $0<i \leqslant p-1$), $c \in C$, such a q obviously exists. Now $h^{-q}=h^{-1} u^{j} \in R$ holds by the rationality of \bar{R}. Thus we have $h \in R\left(u^{j}\right)$.

Lemma 4.2. Let $x \in H_{X}$ and let $R \subseteq H$ such that \bar{R} is rational. Let $1 \leqslant j \leqslant p-1$. Then if h belongs to $R(x)-R\left(u^{j}\right)$, the element $u^{j} h^{-1} x$ belongs to $R\left(u^{j}\right)-R(x)$.

Proof. Let $h, h^{-1} x \in R$. If $h \notin R\left(u^{j}\right)$ we have by Lemma 4.1 that $h \in R_{Y} \cup R_{Z} . h^{-1} x$ therefore lies in R_{X}. We may now conclude by Lemma 3.1 that $u^{j} h^{-1} x \in R_{X}$ holds, and Lemma 4.1 now tells us that $u^{j} h^{-1} x \in R\left(u^{j}\right)$ holds. We now assume that $u^{j} h^{-1} x \in R(x)$. This means that $\left(u^{j} h^{-1} x\right)^{-1} x=$ $u^{-j} h \in R$ and by the rationality of \bar{R} we would have $u^{j} h^{-1} \in R$. This contradicts $h \notin R\left(u^{j}\right)$. Thus we have $u^{j} h^{-1} x \in R\left(u^{j}\right)-R(x)$.

Lemma 4.3. Let $x \in H_{X}$ and let $R \subseteq H$ such that \bar{R} is rational. Let $1 \leqslant j \leqslant p-1$ and $|R(x)|=\left|R\left(u^{j}\right)\right|$. Let $k \in R\left(u^{j}\right)-R(x)$. Then
(i) $k \in H_{X}$,
(ii) $u^{-j} k \in R(x)$,
(iii) $k^{-1} x \in H_{Z} \cup\left(u^{-j} C\right)$.

Proof. By Lemma 4.2, $h \rightarrow u^{j} h^{-1} x$ is a 1-1 map of $R(x)-R\left(u^{j}\right)$ into $R\left(u^{j}\right)-R(x)$. Since $|R(x)|=\left|R\left(u^{j}\right)\right|$, this map must be onto $R\left(u^{j}\right)-R(x)$. Thus there exists $h \in R(x)-R\left(u^{j}\right)$ such that

$$
k=u^{j} h^{-1} x .
$$

Because of Lemma 4.1 we may conclude from $h \notin R\left(u^{i}\right)$ that $h \notin H_{X}$. Thus $k=u^{j} h^{-1} x \in H_{X}$ holds. Moreover, $u^{-j} k=h^{-1} x \in R(x)$ holds since $\left(h^{-1} x\right)^{-1} x=$ $h \in R$. By Lemma 4.1, $h \in R_{Z} \cup\left(u^{j} C\right)$ holds since $h \notin R\left(u^{j}\right)$. Therefore $k^{-1} x=u^{-j} h$ belongs to H_{z} unless $h \in C$, in which case we have $k^{-1} x \in u^{-j} C$.

Lemma 4.4. Let $x \in S_{X}, 1 \leqslant j \leqslant p-1$, and $k \in S\left(u^{j}\right)$. Then $k^{-1} x \in S$ holds whenever any one of the following four conditions are satisfied:
(i) $k \notin H_{X}$,
(ii) $u^{-i} k \notin S(x)$ for some i such that $1 \leqslant i \leqslant p-1$,
(iii) $k^{-1} x \notin H_{Z} \cup(u C)$,
(iv) $k^{-1} x \notin H_{z}$ and $p \neq 2$.

Proof. \bar{S} is rational and $|S(x)|=\left|S\left(u^{i}\right)\right|$ for $i=1, \ldots, p-1$ by Lemma 2.1. If $k^{-1} x \notin S$ we have $k \in S\left(u^{j}\right)-S(x)$. Thus $k \in H_{X}$ by Lemma 4.3 and $k \in S\left(u^{i}\right)-S(x)$ by Lemma 4.1 for $i=1, \ldots, p-1$. Thus we have by Lemma 4.3 that
(i) $k \in H_{X}$,
(ii) $u^{-i} k \in S(x), i=1, \ldots, p-1$,
(iii) $k^{-1} x \in H_{Z} \cup\left(u^{-i} C\right), i=1, \ldots, p-1$.

If p is odd we cannot have $k^{-1} x \in u^{-i} C$ for all $i=1, \ldots, p-1$ and we conclude that $k^{-1} x \in H_{z}$.

Remark. Lemma 4.4 allows us to conclude that certain elements $k^{-1} x$ lie in S. This will enable us to determine S and in the case $S \neq H^{\#}$ we will be able to get information about the structure of H from S.

Lemma 4.5. Let $c \in C_{1}$, the set of elements $d \in C$ for which some element $a^{q} d$ belongs to S, where $(q, p)=1$. Then
(i) $S_{X}{ }^{1}=A_{X} C_{1}$,
(ii) $S_{Y}{ }^{1}=A_{Y} C_{1} c$ $S_{Y}{ }^{1}-u C=\left(A_{Y}-\{u\}\right) C_{1} c \quad$ if $p=2$.
Proof. Since $\overline{A_{x}}=\operatorname{tr}(a)$ and for $d \in C_{1}, \operatorname{tr} a d=\operatorname{tr} a \operatorname{tr} d$, it is immediate from the definition of C_{1} that $S_{X}{ }^{1}=A_{X} C_{1}$.

For $d \in C_{1},(s, p)=1,0<\lambda \leqslant \alpha-1$ we have $k=a^{1-s p^{\lambda}} d \in S\left(u^{j}\right)$ by Lemma 4.1, and $x=a c \in S_{X}$. Moreover,

$$
k^{-1} x=\left(a^{1-s p^{\lambda}} d\right)^{-1} a c=a^{s p^{\lambda}} d^{-1} c
$$

If $p \neq 2$ or $\lambda \neq \alpha-1$, Lemma 4.4 implies $a^{s p^{\lambda}} d^{-1} c \in S$. If $p=2, \lambda=\alpha-1$,
we have $a^{s p^{\lambda}} d^{-1} c \in u C$. But $C_{1}=\left\{d^{-1} \mid d \in C_{1}\right\}$ since \bar{S} is rational. Thus we have
and $\quad S_{Y}{ }^{1} \supseteq\left(A_{Y}-u\right) C_{1} c \quad$ in any case.
Now let $y d \in S_{Y}{ }^{1}-U C, y \in A, d \in C$. By Lemmas 4.1 and 4.4, $y^{-1} a d^{-1} c \in S$ holds. This is clearly an element of $A_{X} C$. Hence from the definition of C_{1} we conclude that $d^{-1} c$, and hence $d c^{-1}$, belongs to C_{1} and d belongs to $C_{1} c$. Thus $S_{Y}{ }^{1}-U C \subseteq\left(A_{Y}-U^{\prime}\right) C_{1} c$. If $p=2$, this completes the demonstration that

$$
S_{Y}{ }^{1}-U C=\left(A_{Y}-u\right) C_{1} c .
$$

If $p \neq 2$, let $y d \in U^{\#} C \cap S$, say $y=u^{i}, d \in C$. Then if $u^{j} \neq u^{i}, u^{j} \in U^{\#}$, we have $u^{i-j} d \in S$ since \bar{S} is rational. Thus we have $u^{j-i} d^{-1} \in S$ and $u^{i} d \in S\left(u^{j}\right)$. By Lemma 4.4 we have that $\left(u^{i} d\right)^{-1} a c \in S$. We conclude, as before, since this is an element of $A_{X} C$, that $d^{-1} c$ and $d c^{-1}$ are in C_{1} and d is in $C_{1} c$. Thus we have $U^{\#} C \cap S \subseteq U^{\#} C_{1} c$. This completes the demonstration, in the case $p \neq 2$, that $S_{Y}{ }^{1}=A_{Y} C_{1} c$.

Lemma 4.6. C_{1} is a subgroup of C.
Proof. C_{1} is non-empty by Lemma 2.2 . We consider two cases.
Case 1. $p \neq 2$. Let $c, d \in C_{1}$. We have $a^{2} c, a d \in S_{X^{1}}$, and $(a d)^{-1} a^{2} c=$ $a d^{-1} c \notin H_{z}$. We conclude by Lemmas 4.4 and 4.5 that $d^{-1} c \in C_{1}$.

Case 2. $p=2$. The additional hypothesis $\alpha \geqslant 3$ allows us to conclude in this case that $a^{2} \notin U$, and Lemma 4.5(ii) tells us that $a^{2} C_{1} c \subseteq S_{Y}{ }^{1}-u C=$ $\left(A_{Y}-u\right) C_{1} d$ for $c, d \in C_{1}$. We conclude that $C_{1} c=C_{1} d=C_{1}{ }^{2}, C_{1} d^{2}=C_{1}{ }^{3}$ for $d \in C_{1}$, and $\left|C_{1}\right|=\left|C_{1}{ }^{3}\right|$. But $C_{1} \subseteq C_{1}{ }^{3}$ since $d^{-1} \in C_{1}$ holds for $d \in C_{1}$; thus $C_{1}=C_{1}{ }^{3}$ and $C_{1}{ }^{2}=\left(C_{1}{ }^{2}\right)^{2} . C_{1}{ }^{2}$ is therefore a subgroup of C containing $\left|C_{1}\right|$ elements. Since C is a p-complement and we are considering the case $p=2$, we conclude from $\left|C_{1}\right|=\left|C_{1}{ }^{2}\right|$ and the rationality of \bar{S} that $C_{1}{ }^{2}=$ $\left\{d^{2} \mid d \in C_{1}\right\}=C_{1}$.

Lemma 4.7. $S^{1}-C=A^{\#} C_{1}$ if $p \neq 2 . S^{1}-U C=\left(A^{*}-u\right) C_{1}$ if $p=2$.
Proof. See Lemmas 4.5 and 4.6.
Lemma 4.8. Let $1 \neq b \in B$ such that $S_{X}{ }^{b}$ is non-empty. Then
(i) $S_{X}{ }^{b}=P_{X}{ }^{b} C_{b}$,
(ii) $S_{Y}{ }^{b} \supseteq P_{Y}{ }^{b} C_{b}$,
(iii) $\left|S_{Z}{ }^{b} \cap P_{Z}{ }^{b} C_{b}\right| \geqslant \frac{p-1}{p}\left|P_{Z}{ }^{b} C_{b}\right|$,
where C_{b} is the set of elements of C which occur as p^{\prime}-part of some element of $S_{X}{ }^{b}$.
Proof. Let $x \in P_{X}{ }^{b} C_{b}$, say $x=a^{s} b^{t} c$, where $(s, p)=(t, p)=1, c \in C_{b}$. By the definition of C_{b}, some element $a^{e} b^{l} c$ must lie in S with $(e, p)=(l, p)=1$
and since \bar{S} is rational, there is an element $a^{q} b^{t} c \in S_{X}$. If $q=s$ we have $x \in S$. If $a^{q-s} \in U^{\#}$, we have by Lemma 4.1 that $x=a^{s-q} a^{q} b^{t} c \in S$. If $a^{q-s} \in A-U$ we have $a^{q-s} \in S(u)$ by Lemma 4.7, and

$$
\left(a^{q-s}\right)^{-1}\left(a^{q} b^{t} c\right)=x \notin H_{Z} \cup(U C)
$$

We conclude by Lemma 4.4 that $x \in S$. Thus in any case we have $x \in S$ and $P_{X}{ }^{b} C_{b} \subseteq S_{X}{ }^{b}$. But, by the definition of C_{b}, no elements outside $P_{X}{ }^{b} C_{b}$ can belong to $S_{X}{ }^{b}$.

Now let $y \in P_{Y}{ }^{b} C_{b}$. By what we have just shown, $y^{-1} a \in S_{X}{ }^{b}$ holds, and by Lemma 4.7, $a \in S$ holds. Moreover, $\left(y^{-1} a\right) a^{-1} \notin H_{Z} \cup(U C)$ since $b \neq 1$ and $y \in H_{Y}$. Thus again by Lemma 4.4 we have $y \in S$ and $P_{Y}{ }^{b} C_{b} \subseteq S_{Y}{ }^{b}$.

Now let $z \in P_{z}{ }^{b} C_{b}$. Again we have $z^{-1} a \in S_{X}{ }^{b}$ and for $z=\left(z^{-1} a\right)^{-1} a \notin S$ we have by Lemma 4.4 that the $p-1$ elements $u^{i} z^{-1} a$ lie in $S(a)$ for $i=1, \ldots$, $p-1$. This means that the elements $u^{i} z$ must lie in S and they clearly lie in $P_{z}{ }^{b} C_{b}$ since $b \neq 1$.

Thus with each $z \in P_{z}{ }^{b} C_{b}-S_{z}{ }^{b}$ we associate the $p-1$ elements of $U^{\sharp} z$ which must belong to $S_{Z}{ }^{b}$. It follows that

$$
\left|S_{Z}{ }^{b} \cap P_{Z}{ }^{b} C_{b}\right| \geqslant \frac{p-1}{p}\left|P_{Z}{ }^{b} C_{b}\right| .
$$

Lemma 4.9. If $S_{X}{ }^{b}$ is non-empty, then $C_{b}=C_{1}$.
Proof. Let $c \in C_{1}, d \in C_{b} . a^{-2} c \in S_{X}$ holds if $p \neq 2$ and $a^{-2} c \in S_{Y}-u C$ if $p=2$. Moreover, $a^{-1} b d \in S_{X}{ }^{b}$ holds by Lemma 4.8. Thus since

$$
\left(a^{-2} c\right)^{-1}\left(a^{-1} b d\right)=a b c^{-1} d \in H_{X}
$$

we have by Lemma 4.4 that $a b c^{-1} d \in S$ holds. Thus we have $c^{-1} d \in C_{b}$ for all $c \in C_{1}$ and $C_{1} d \subseteq C_{b}$.

Similarly, for $c, d \in C_{b}$ we have $a^{-2} b c \in S_{X}{ }^{b}$ if $p \neq 2, a^{-3} b c \in S_{X}{ }^{b}$ if $p=2$, and $a^{-1} b d \in S_{X}{ }^{b}$ in either case.

Again by Lemma 4.4 we have, since $\left(a^{-2} b c\right)^{-1} a^{-1} b d=a c^{-1} d \in H_{X}$ and

$$
\left(a^{-3} b c\right)^{-1} a^{-1} b d=a^{2} c^{-1} d \in H_{Y}-u C
$$

if $p=2$, that $a c^{-1} d \in S$ if $p \neq 2$, and $a^{2} c^{-1} d \in S$ if $p=2$.
In either case, we have by Lemma 4.7 that $c^{-1} d \in C_{1}$ and $c \in C_{1} d$; hence $C_{b} \subseteq C_{1} d$. It follows that $C_{b}=C_{1} d$ for all $d \in C_{b}$. We again consider two cases.

Case 1. $p \neq 2$. By Lemmas 4.8 and 4.4 we again have $a^{-2} b^{-2} d^{-1}, a^{-1} b^{-1} d \in S_{X}{ }^{b}$ and $\left(a^{-2} b^{-2} d^{-1}\right)^{-1}\left(a^{-1} b^{-1} d\right)=a b d^{2} \in S_{X}$. We therefore have $d^{2} \in C_{b}=C_{1} d$, $d \in C_{1}$, and $C_{b}=C_{1} d=C_{1}$.

Case 2. $p=2$. For $d \in C_{b}$, we have $d^{-1} \in C_{b}=C_{1} d$, and $d^{2} \in C_{1}$. Since C_{1} is a subgroup of order prime to 2 , it follows that $d \in C_{1}$ and $C_{b}=C_{1} d=C_{1}$.

We now introduce further notation which we use for the remainder of the
paper. We denote by B_{1} the set of $b \in B$ for which $S_{X}{ }^{b}$ is non-empty, and we put $K=A B_{1} C_{1}$.

Lemma 4.10 .
(i) $K_{X}=S_{X}$;

(iii) $\left|K_{Z}{ }^{b} \cap S\right| \geqslant \frac{p-1}{p}\left|K_{Z}{ }^{b}\right|$ for $1 \neq b \in B_{1}$.

Proof. See Lemmas 4.8 and 4.9.
Lemma 4.11. Let $1 \leqslant q \leqslant p^{\alpha}-1, c \in C_{1}$, and if $p=2$, let $p^{\alpha-1} \nmid q$. Then
(i) $S\left(a^{q} c\right) \subseteq K$,
(ii) $\left|S\left(a^{q} c\right)\right|=|K|-2|K-S|$.

Proof. $[\bar{S}]^{2}=\left[\overline{S_{X}}\right]^{2}+2 \overline{S_{X}}\left[\overline{S_{Y}}+\overline{S_{Z}}\right]+\left[\overline{S_{Y}}+\overline{S_{Z}}\right]^{2}$. Clearly the contribution to $|S(a)|$ comes only from the first two terms. Since $k^{-1} a \in K$ holds for $k \in K$, and S_{X} lies entirely inside K, we see that the full contribution to $|S(a)|$ comes from $[\bar{K}]^{2}$; thus $S(a) \subseteq K$. Now it follows from Lemma 4.10 that all elements h of $K-S$ lie outside of K_{X} and satisfy $h^{-1} a \in K_{X} \subseteq S$. This means that $|S(a)|$ is as small as possible since $k \in S$ does not belong to $S(a)$ precisely when $k^{-1} a \notin S$ holds, and as many elements of $K \cap S$ as possible have this property, namely one for every element of $K-S$. We therefore have that $|S(a)|=|K|-2|K-S|$. It is easy to see that the contribution of $[\overline{K-S}]^{2}$ to $\left|S\left(a^{q} c\right)\right|$ is at least $|K|-2|K-S|$ since $k^{-1} a^{q} c$ belongs to K for all $k \in K$. But $|S(a)|=\left|S\left(a^{q} c\right)\right|$. This completes the proof.

Lemma 4.12. Let $1 \neq b \in B_{1}$, such that $P_{Y}{ }^{b}$ is empty. Then

$$
\left|S_{Z}{ }^{b} \cap K\right|>\frac{1}{2}\left|K_{Z}{ }^{b}\right| .
$$

Proof. By Lemma 4.10 we have

$$
\left|S_{Z}{ }^{b} \cap K\right| \geqslant \frac{p-1}{p}\left|K_{Z}{ }^{b}\right| .
$$

We assume that $p=2$, and $\left|S_{Z}{ }^{b} \cap K\right|=\frac{1}{2}\left|K_{Z}{ }^{b}\right|$, since if not, there is nothing to prove. Since $P_{Y}{ }^{b}$ is empty, we must have $|\langle b\rangle|=2^{\alpha-1}$.

By Lemma 4.11 we have for $q=2,6$, and $z \in K_{z}{ }^{b}$ that z and $a^{-q} z$ cannot both lie outside of K since $\left|S\left(a^{q}\right)\right|$ would then be too large. Thus with each $z \in K_{z}{ }^{b}-S$ we have associated two elements, $a^{-2} z$ and $a^{-6} z$, of $K_{z}{ }^{b} \cap S$. It follows that

$$
\left|K_{Z}{ }^{b} \cap S\right| \geqslant \frac{2}{3}\left|K_{Z}{ }^{b}\right|>\frac{1}{2}\left|K_{Z}{ }^{b}\right| .
$$

Lemma 4.13. K is a subgroup of H.
Proof. $K=A B_{1} C_{1}$, where A and C_{1} are subgroups of H. It suffices to show that B_{1} is a subgroup of H. We have $1 \in B_{1}$ and since $S^{b}=S^{b-1}$, it follows that b^{-1} is in B_{1} for $b \in B_{1}$. Now let $1 \neq b_{1}, b_{2} \in B_{1}$. We shall show that $b_{1}^{-1} b_{2} \in B_{1}$
holds. If $P_{Y}{ }^{0_{1}}$ is non-empty, we have $a^{p} b_{1} \in S$ by Lemmas 4.8 and 4.9 and $\left(a^{p} b_{1}\right)^{-1} x \in S$ for $x \in S_{X}$ by Lemmas 4.1 and 4.4. Since $a b_{2} \in S_{X}$ also holds (again by Lemmas 4.8 and 4.9), we have by Lemmas 4.1 and 4.4 that $\left(a^{p} b_{1}\right)^{-1} a b_{2}=a^{1-p} b_{1}^{-1} b_{2}$ lies in S; hence $b_{1}^{-1} b_{2}$ is in B_{1}.

If $P_{Y}{ }^{b_{1}}$ is empty, we have by Lemma 4.12 that at least one pair $\left\{z, z^{-1} u\right\}$ from $K_{Z}{ }^{b_{1}}$ must belong to S. Then $\left\{z^{s}, z^{-s} u^{s}\right\} \subseteq S$ will hold for $(s,|H|)=1$ and for an appropriate such s we get an element $z^{s}=a^{q} b_{1} c \in S\left(u^{s}\right)$, where $q \equiv 0(\bmod p), c \in C_{1}$. By an argument similar to the one just given we get $a b_{2} c \in S_{X}, z^{-s} a b_{2} c=a^{1-q} b_{1}^{-1} b_{2} \in S$, and $b_{1}^{-1} b_{2} \in B_{1}$.

Lemma 4.14. $K^{*} \subseteq S$.
Proof. Assume the contrary. Let $1 \neq k \in K-S$. k must belong to $K_{Y} \cup K_{Z}$ since $K_{X} \subseteq S$, and to some $S_{i}, i \geqslant 2$. Since $\left\langle S_{i}\right\rangle=H$ by Theorem $1, S_{i}$ has an element $x \in H_{X}$. By Lemma 2.1, we have $|S(x)|=|S(k)|$. As before we have

$$
[\bar{S}]^{2}=\left[\overline{K_{X}}\right]^{2}+2 \overline{K_{X}}\left[\overline{S_{Y}}+\overline{S_{Z}}\right]+\left[\overline{S_{Y}}+\overline{S_{Z}}\right]^{2}
$$

Since $x \notin K_{X}$, the first term does not contribute to $|S(x)|$ (because K is a subgroup). Since $x \in H_{X}$, the third term does not contribute. Thus $|S(x)|=2\left|K_{X} \cap S(x)\right|$. Let $h \in K_{X} \cap S(x)$. Then $h^{-1} x \in S-K$ holds since $x \notin K$.

If $a^{q} h \in K_{X} \cap S(x)$ held, we would have $a^{-q} h^{-1} x \in S-K$. Hence $a^{q} h x^{-1} \in$ $S-K$ and $h^{-1} x \in S\left(a^{q}\right)$, which cannot happen by Lemma 4.11 unless $a^{q}=1$ (or $a^{q}=u$ if $p=2$) since then $S\left(a^{q}\right) \subseteq K$ holds. It follows for $h \in K_{x} \cap S(x)$ that $a^{q} h \in K_{X}-S(x)$ for $q=j p^{\alpha-1}$ and $j=1, \ldots, p-1$ if $p \neq 2$, and for $q=2,6$ if $p=2$. Thus only one of p elements of K_{X} can belong to $S(x)$ if $p \neq 2$ and one of three elements if $p=2$, since $a^{2} h_{1}=a^{6} h_{2}$ cannot occur for $h_{1}, h_{2} \in K_{X} \cap S(x)$ by Lemma 4.4 if $\alpha=3$ and by the above argument if $\alpha \neq 3$. In any case we have

$$
|S(x)| \leqslant 2\left|K_{X} \cap S(x)\right| \leqslant 2 . \frac{1}{3}\left|K_{X}\right|<\left|K_{X}\right| .
$$

Now for $h \in K_{X}, h^{-1} k \in K_{X}$ holds since $k \in K_{Y} \cup K_{z}$. Thus $K_{X} \subseteq S(k)$ and $\left|K_{X}\right| \leqslant|S(k)|=|S(x)|$, contradicting the above inequality. Thus our assumption $k \in S_{i}, i \geqslant 2$ is wrong and we conclude that $K^{\#} \subseteq S$.

Lemma 4.15. Let $h \in H^{\#}-S$. Then $|S(h)| \leqslant 2$.
Proof. Let $h \in S_{i}, i \geqslant 2$. As above, let $x \in\left(S_{i}\right)_{X}$. We again have $|S(x)|=|S(h)|$ and $|S(x)|=2\left|K_{X} \cap S(x)\right|$. Let $k_{1}, k_{2} \in K_{X} \cap S(x)$. Then $k_{1}^{-1} x, k_{2}^{-1} x \in S-K$ since $x \notin K$. Thus $\left(k_{1}^{-1} x\right)^{-1} \in S-K$ holds and $k_{1} k_{2}{ }^{-1}$ has non-zero coefficient in $[\overline{S-K}]^{2}$. Clearly $\left[\overline{K^{\#}}\right]^{2}=\left|\overline{K^{\#}}\right| \cdot \overline{1}+\left[\left|\overline{K^{\#}}\right|-1\right] \overline{K^{\#}}$. By Lemma 4.11 we have $|S(a)|=|K|-2$ and if $k_{1} \neq k_{2}$, the coefficient of $k_{1} k_{2}{ }^{-1}$ in $\left[\bar{K}^{\#}\right]^{2}$ is $|K|-2$. Thus since we have a further contribution to $k_{1} k_{2}{ }^{-1}$ from $[\overline{S-K}]^{2}$, we have a contradiction to $|S(a)|=\left|S\left(k_{1} k_{2}^{-1}\right)\right|$ unless $k_{1}=k_{2}$. Thus $\left|K_{X} \cap S(x)\right| \leqslant 1$ and $|S(h)|=|S(x)|=2\left|K_{X} \cap S(x)\right| \leqslant 2$.

Lemma 4.16. Let $h \in S, h^{2} \neq 1$. Then $h^{2} \in S$.

Proof. $|S(h)|=|S(a)| \geqslant|K|-2 \geqslant|A|-2 \geqslant 6$. Thus we may choose $x, y \in S(h)$ with $x \notin\left\{y, y^{-1} h\right\}$. Then

$$
\left\{x^{-1}, y^{-1} h, y^{-1}, x^{-1} h\right\} \subseteq S\left(x^{-1} y^{-1} h\right)
$$

We have $\left|S\left(x^{-1} y^{-1} h\right)\right|>2$ unless $x^{-1}=y^{-1} h$ and $y^{-1}=x^{-1} h$ in which case $x^{-1}=x^{-1} h^{2}$, contradicting $h^{2} \neq 1$. Moreover, $x^{-1} y^{-1} h \neq 1$ since x was assumed different from $y^{-1} h$. Thus we may conclude by Lemma 4.15 that $x^{-1} y^{-1} h \in S$. Since $\left\{x^{-1}, y^{-1}, h^{-1}, x^{-1} y^{-1} h\right\} \subseteq S\left(x^{-1} y^{-1}\right)$ we have by Lemma 4.15 that $x^{-1} y^{-1}=1$ or $x^{-1} y^{-1} \in S$. If $x^{-1} y^{-1} \in S$ we have $x y \in S$ (because \bar{S} is rational) and $\left\{x, h, x y, y^{-1} h\right\} \subseteq S(x h)$. By Lemma 4.15 we conclude that $x h \in S$ unless $x h=1$. If $x^{-1} y^{-1}=1$, we have $x h=y^{-1} h \in S$. In any case we have $x h \in S$ unless $x h=1$. By a similar argument we conclude that $y h \in S$ unless $y h=1$. If $x h$ and $y h$ are both different from 1, we have $\left\{h, x h, x^{-1} h, y h, y^{-1} h\right\} \subseteq S\left(h^{2}\right)$; thus $h^{2} \in S$ by Lemma 4.15. If $x h=1$ we have $h^{2}=x^{-1} h \in S$; and if $y h=1$ we have $h^{2}=y^{-1} h \in S$.

Lemma 4.17. Let $h \in S$. Then $\langle h\rangle^{\Downarrow} \subseteq S$.

Proof. If $|\langle h\rangle|=2$, there is nothing to prove. If $|\langle h\rangle|=3$, see Lemma 4.16. If $|\langle h\rangle|=4$, we have $h^{2} \in S$ by Lemma 4.16 and $h^{3}=h^{-1} \in S$ by the rationality of \bar{S}.

We now assume that $|\langle h\rangle| \geqslant 5$. Then we have $h^{2}, h^{4} \in S$ by Lemma 4.16 , and $h^{3} \in S$ by Lemma 4.15 , since $\left\{h, h^{2}, h^{4}, h^{-1}\right\} \subseteq S\left(h^{3}\right)$.

We now proceed by induction. We assume that $h^{i} \in S$ for $i=1, \ldots, m$, where $4 \leqslant m<|\langle h\rangle|-1$. Then $\left\{h, h^{m}, h^{2}, h^{m-1}\right\} \subseteq S\left(h^{m+1}\right)$ and $h^{m+1} \in S$ by Lemma 4.15.

Lemma 4.18. Let $h \in S$, and let M be a subgroup of H maximal with respect to being contained in $S \cup\{1\}$ and containing h. Then $M^{\#}=S(h) \cup\{h\}$.

Proof. That such an M exists follows from Lemma 4.17. Clearly since $M \subseteq S \cup\{1\}$ is a subgroup and $h \in M$, we have $M^{\#} \subseteq S(h) \cup\{h\}$. Suppose there exists $x \in S(h)-M$. Then $x^{-1} h \in S(h)-M$. By Lemma 4.17 we have $\langle x\rangle^{\#},\left\langle x^{-1} h\right\rangle^{\#} \subseteq S$. We claim that $(\langle x\rangle M)^{\#} \subseteq S$.

Let $j<|\langle x\rangle|, y \in M, x^{j} y \neq 1$. If $x^{j} \in M$, we have $x^{j} y \in M^{\sharp} \subseteq S$. Suppose now that $x^{j} \notin M$. If $y \in\langle x\rangle$ we have $x^{j} y \in\langle x\rangle^{\sharp} \subseteq S$. Thus we may assume that $y \notin\langle x\rangle$. If $y=h^{-1}$, we have $x^{-1} h \in S$; bence $x h^{-1}=x y \in S$. If $y \neq h^{-1}$, we have $h y \in M^{\#} \subseteq S,\left\{x, y, x h^{-1}, h y\right\} \subseteq S(x y)$ and $|\{x, y, h y\}|=3$ since $h \neq 1$ and $x \notin M$. Moreover, $x y \neq 1$ since $x \notin M$. Hence we have $x y \in S$ by Lemma 4.15. Now $\left\{x^{j}, y, x y, x^{j-1}\right\} \subseteq S\left(x^{j} y\right)$ and $\left|\left\{x^{j}, y, x y\right\}\right|=3$ since $x \neq 1$ and $y \notin\langle x\rangle$. We conclude by Lemma 4.15 that $x^{j} y \in S$; thus $(\langle x\rangle M)^{*} \subseteq S$, contradicting the maximality of M. We therefore have $S(h) \subseteq M^{*}$; thus $S(h) \cup\{h\} \subseteq M^{\#} \cup\{h\}=M^{\#}$.

Lemma 4.19. Let $x, h, k \in S$ such that $x \in(S(h) \cup\{h\}) \cap(S(k) \cup\{k\})$. Then $S(h) \cup\{h\}=S(k) \cup\{k\}$.

Proof. By Lemma 4.18 we have $S(h) \cup\{h\}=S(x) \cup\{x\}=S(k) \cup\{k\}$.
Lemma 4.20. K is a maximal subgroup in $S \cup\{1\}$.
Proof. Let M be a maximal subgroup in $S \cup\{1\}$ containing K. Since $a \in K$, we have $|S(a)| \geqslant|M|-2$. By Lemma 4.11 we have $|S(a)| \leqslant|K|-2$. It follows that $K=M$.

Lemma 4.21. Let $K=H_{1}, \ldots, H_{e}$ be a complete set of maximal subgroups in $S \cup\{1\}$. Then $\left|H_{i}\right|=\left|H_{j}\right|>2$ for $i, j=1, \ldots, e$.

Proof. By Lemma 4.18 for $h \in H_{i}, k \in H_{j}$, we have $H_{i}=S(h) \cup\{h\}$ and $H_{j}=S(k) \cup\{k\} . h \notin S(h), k \notin S(k)$ since $1 \notin S$. Thus $\left|H_{i}\right|=|S(h)|+1=$ $|S(k)|+1=\left|H_{j}\right|$ and $\left|H_{1}\right|=|K| \geqslant|A| \geqslant 8$.

Lemma 4.22. Let $K=H_{1}, \ldots, H_{e}$ as above. Then $H=H_{1} \times \ldots \times H_{e}$.
Proof. $\langle S\rangle=H_{1} \ldots H_{e}=H$ by Theorem 1. $H_{i} \cap H_{j}=1$ for $i \neq j$ by Lemma 4.19. $h \in H$ can be written in the form

$$
h=h_{1} \ldots h_{e}, \quad h_{i} \in H_{i}, \quad i=1, \ldots, e .
$$

We say that $h \in H$ has "length" t if the number of $h_{i} \neq 1$ in some such representation of h is t. It suffices to show that no element of length one has length greater than one as well. Suppose the contrary and choose $j>1$ minimal such that h of length one is also of length j. We have $\bar{S}=\overline{H_{1}{ }^{\#}}+\ldots+\overline{H_{e}{ }^{*}}$. Since $\left|H_{i}\right|=\left|H_{j}\right|$ for $i, j=1, \ldots, e$ we have that in

$$
[\bar{S}]^{j}=\sum_{i=1}^{e}\left(\overline{H_{i}{ }^{\#}}\right)^{j}+\sum_{i_{1}<i_{2} \ldots<i_{j}} \overline{H_{i_{1}}{ }^{\#}} \ldots \overline{H_{i_{j}}{ }^{\#}}+\sum\left(\overline{H_{i_{1}}{ }^{\#}}\right)^{2} \overline{H_{i_{2}}} \ldots \overline{H_{i_{s}}}
$$

each element of S has the same coefficient in the first term. Because of the minimality of j, each element of S has the same coefficient in the third term as well (since the elements of S are precisely the elements of length one). In the second term h occurs with non-zero coefficient. Since $[\bar{S}]^{j}$ is a linear combination of the $\overline{S_{i}}, a$ and h have the same coefficient in $[\bar{S}]^{j}$. Thus a must also be of length j, say $a=x_{1} \ldots x_{j}$, where $x_{i} \neq 1$ for $i=1, \ldots, j$ and each x_{i} is from a different H_{s}. Since $S_{X}=K_{X}=\left(H_{1}\right)_{X}, a$ is not in $H_{2} \ldots H_{e}$ since all elements of $H_{2} \ldots H_{e}$ are of the form $a^{q p} b c$. Thus some x_{i}, say x_{j}, is in H_{1}. Then $a x_{j}^{-1}=x_{1} \ldots x_{j-1}$. If $x_{j} \neq a$, we have $a x_{j}^{-1} \in S$ written as an element of length $j-1$, contradicting the minimality of j unless $j=2$. If $j=2$, we have $a x_{j}^{-1}=x_{1}$; but x_{1} and x_{j} come from different H_{s}. If $a=x_{j}$, we have $x_{1} \ldots x_{j-1}=1$ and $j \neq 2$ since $x_{1} \neq 1$. Now $x_{j-1}^{-1}=x_{1} \ldots x_{j-2}$ is a word of length one and $j-2$, contradicting the minimality of j unless $j=3$, in which case $x_{2}^{-1}=x_{1}$, which cannot occur. This completes the proof of Lemma 4.22.

Theorem B. G is doubly transitive unless $H=H_{1} \times \ldots \times H_{e}$ where e >1 and $\left|H_{i}\right|=\left|H_{j}\right|>2$ for $i, j=1, \ldots, e$.

Proof. Let H_{1}, \ldots, H_{e} be as in Lemmas 4.21 and 4.22. If $e>1$, there is nothing to prove. If $e=1$, we have $S=H_{1}{ }^{\#}=H^{\#}$. This means that $r=1$ in the notation of Theorem 2, and Hypothesis 6 of Theorem A is satisfied. Thus G is doubly transitive.

References

1. W. Burnside, Theory of groups of finite order, 2nd ed. (Cambridge, 1911).
2. R. Kochendörffer, Untersuchungen über eine Vermutung von W. Burnside, Schriften math. Sem. Inst. angew. Math. Univ. Berlin, 3 (1937), 155-180.
3. D. Manning, On simply transitive groups with transitive abelian subgroups of the same degree, Trans. Amer. Math. Soc., 40 (1936), 324-342.
4. I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte Preuss. Akad. Wiss., phys.-math. Kl. (1933), 598-623.
5. W. R. Scott, Solvable factorizable groups, Illinois J. Math., 1 (1957), 389-394.
6. H. Wielandt, Zur Theorie der einfach transitiven Permutationsgruppen, Math. Z., 40 (1935), 582-587.
7. -_Zur Theorie der einfach transitiven Permutationsgruppen, II, Math. Z., 52 (1949), 384-393.
8. - Permutation groups, Lectures at the University of Tübingen, 1954-55, prepared by J. Andre, translated from the German by R. Bercov (Cal. Tech., 1962).

Cornell University and
University of Alberta, Edmonton

[^0]: Received August 27, 1963 and revised April, 1964. This work was supported by United States Office of Naval Research contract Nonr (G)00100-62.

