THE DOUBLE TRANSITIVITY OF A CLASS OF PERMUTATION GROUPS

RONALD D. BERCOV

1. Introduction. Certain finite groups H do not occur as a regular subgroup of a uniprimitive (primitive but not doubly transitive) group G. If such a group H occurs as a regular subgroup of a primitive group G, it follows that G is doubly transitive. Such groups H are called B-groups (8) since the first example was given by Burnside (1, p. 343), who showed that a cyclic p-group of order greater than p has this property (and is therefore a B-group in our terminology).

Burnside conjectured that all abelian groups are B-groups. A class of counterexamples to this conjecture due to W. A. Manning was given by Dorothy Manning in 1936 (3). This class of counter-examples has been generalized by Wielandt, who showed that if H is the direct product of two or more groups of the same order greater than two, then H is not a B-group (8, p. 79).

In 1933, Schur (4) developed a new method which he used to show that a cyclic group of composite order is a B-group.

In 1935, Wielandt (6, 8) used the method of Schur to show that if an abelian group H of composite order has a cyclic Sylow subgroup, then it is a B-group.

In 1937, Kochendörffer (2) used the Schur methods to show that if H is the direct product of two cyclic groups of order p^{α} , p^{β} respectively where $\alpha > \beta > 0$, then H is a B-group.

This paper is a generalization of these results. Let H be abelian, P a Sylow p-subgroup of H, and a an element of P of maximal order, p^{α} . Let A be the cyclic group generated by a. Then $H = A \times B \times C$, where $P = A \times B$ and C is of order prime to p. We prove that if $B \neq 1$ is of exponent $p^{\beta} < p^{\alpha}$ (with the additional assumption $\alpha \ge 3$ if p = 2), then either H is a direct product of groups of the same order greater than 2, or else H is a B-group. If B = 1, we have by the theorem of Wielandt that H is a B-group unless C = 1 and $\alpha = 1$. Thus apart from the case p = 2, $\alpha = 2$, $\beta = 1$, the question of whether or not the abelian group H is a B-group is settled unless H is the direct product of two groups of the same exponent.

We might also mention that two classes of non-abelian B-groups are known. Wielandt (7) has shown that dihedral groups are B-groups and Scott (5) has shown that generalized dicyclic groups are B-groups.

2. Notation, definitions, and theorems from the theory of Schur rings. Let G be a primitive permutation group on the letters $\{1, \ldots, n\}$. Let

Received August 27, 1963 and revised April, 1964. This work was supported by United States Office of Naval Research contract Nonr (G)00100-62.

H be a regular abelian subgroup of *G*. We denote the image of the letter *j* under the permutation $g \in G$ by j^g . Since *H* is regular, there is a unique $h \in H$ for which $1^h = j$. We call this element h_j . The correspondence $j \leftrightarrow h_j$ allows us to regard *G* as a permutation group on *H*. To the permutation $g \in G$ (on $\{1, \ldots, n\}$) corresponds the permutation $\binom{h}{h^g}$ (on *H*) where h^g is the element of *H* uniquely determined by the formula

$$1^{hg} = 1^{hg}.$$

We continue to denote the permutation $\binom{h}{hg}$ by g, and the group of such permutations by G.

Let R(H) be the group ring of H over the rational integers. For

$$\eta = \sum_{h \in H} \gamma(h)h \in R(H)$$

and any integer j we put $\eta^{(j)} = \sum_{h \in H} \gamma(h) h^{j}$. Let

$$|\eta| = |\sum_{h \in H} \gamma(h)h| = \sum_{h \in H} \gamma(h).$$

With $K \subseteq H$ we associate the element

$$\overline{K} = \sum_{h \in H} \gamma(h)h \in R(H), \quad \text{where } \gamma(h) = \begin{cases} 1 & \text{if } h \in K, \\ 0 & h \notin K. \end{cases}$$

For $K \subseteq H$, let $|K| = |\overline{K}|$, the number of elements of K. Let $\langle K \rangle$ be the smallest subgroup of H containing K. Let G_1 be the subgroup of G (regarded as a permutation group on H) fixing 1, the identity element of H. Let $\{1\} = T_0, T_1, \ldots, T_k$ be the orbits of G_1 , where $T_i \subseteq H$ for $i = 0, \ldots, k$. Let

$$R(H, G_1) = \left\{ \sum_{i=0}^k \gamma_i \overline{T_i} \right\}$$

be the additive subgroup of R(H) spanned by the \overline{T}_i . Throughout this paper k will denote the number of orbits of G_1 different from $\{1\}$. G is doubly transitive if and only if k = 1.

THEOREM 1 (Schur, 1933).

- (i) $R(H, G_1)$ is a subring of R(H).
- (ii) $\langle T_i \rangle = H$ for $i = 1, \ldots, k$.
- (iii) $\overline{T}_{i}^{(j)} = \overline{T}_{q}$ for appropriate q if (j, |H|) = 1.

DEFINITION 1. $\eta^{(j)}$ is said to be conjugate to $\eta \in R(H)$ if (j, |H|) = 1.

DEFINITION 2. If $\eta = \eta^{(j)}$ for all j with (j, |H|) = 1, then η is said to be rational.

DEFINITION 3. The sum of all distinct conjugates of $\eta \in R(H)$ is called the trace of η and is denoted by tr η .

tr η is clearly rational and lies in $R(H, G_1)$ whenever η does, by Theorem 1.

RONALD D. BERCOV

DEFINITION 4. For $h \in H$, tr $\{h\}$ is called the elementary trace of h and is denoted by tr h.

Clearly if k has non-zero coefficient in tr h, then tr h = tr k. By Theorem 1, tr \overline{T}_i is a sum of distinct \overline{T}_q . Thus tr $\overline{T}_i = \overline{S}_i$, where

 $S_i = \{t^j | t \in T_i, (j, n) = 1\}.$

If necessary by renumbering the T_i , we may assume without loss of generality that S_1, \ldots, S_r are distinct and that for any j > r there is an $i \leq r$ with $S_i = S_j$. Clearly $S_0 = 1$.

THEOREM 2 (Schur, 1933). Let

$$S = \left\{ \sum_{i=0}^{r} \gamma_{i} \overline{S_{i}} | \gamma_{i} \text{ rational integers} \right\}.$$

Then S is a subring of $R(H, G_1)$ all of whose elements are rational.

Our notation so far has been that of (8). We now introduce further notation. For $K, L \subseteq H$, let K - L be the set of elements of K not belonging to L. For $K \subseteq H$ let $K^{\#} = K - \{1\}$. For $h \in H, K \subseteq H$, let

$$K(h) = \{k \in K \mid k^{-1}h \in K\}.$$

Thus K(h) is the set of those elements of K which "hit" other elements of K in such a way as to contribute to the coefficient of h in $[\bar{K}]^2$, and |K(h)| is this coefficient.

Let $H = A \times B \times C$, where $A = \langle a \rangle$ is cyclic of order p^{α} , B is of exponent p^{β} , $0 < \beta < \alpha$, and (|C|, p) = 1. Let $u = a^{p^{\alpha-1}}$ and $U = \langle u \rangle$; thus |U| = p.

We assume without loss of generality that $u \in T_1 \subseteq S_1$, and we put

$$T = T_1, \qquad S = S_1.$$

By Theorem 2, $[\bar{S}]^2$ is a linear combination of the $\overline{S_i}$ (i = 0, ..., r). Thus we have

LEMMA 2.1. |S(h)| = |S(k)| for $h, k \in S_i$ (i = 1, ..., r).

 $h \in H$ has a unique representation of the form $h = a^{sp\lambda}bc$ where (s, p) = 1, $b \in B$, $c \in C$. For $K \subseteq H$ we define K_X , K_Y , K_Z as follows:

 $K_X = \{k \in K | \lambda = 0\}$ is the set of all elements of K of order divisible by p^{α} . $K_Y = \{k \in K | \lambda \neq 0, |\langle b \rangle| < p^{\alpha-\lambda}\}$ is the set of elements of K with p-part having order less than p^{α} but larger than the order of the *B*-component.

 $K_z = \{k \in K || \langle b \rangle| \ge p^{\alpha - \lambda}\}$ is the set of elements of K with p-part having order equal to the order of the B-component.

Thus K is the set union of the three disjoint sets K_X , K_Y , K_Z .

For $b \in B$, $K \subseteq H$, let $K^b = \{k \in K | k = a^{sp^{\lambda}}b^{t}c$, where $(t, p) = 1\}$, be the set of elements of K whose B component is a power of b with exponent prime to p. We have $(K_X)^b = (K^b)_X$ and denote this set by K_X^b . For $b \in B$, let C_b be the set of all elements of C which occur as the p'-part of some element of S_X^b .

We now show that by appropriate choice of a we may assume that C_1 is non-empty.

LEMMA 2.2. If necessary by changing a (the generator of A) we have C_1 nonempty.

Proof. By Theorem 1(ii), $\langle T \rangle = H$; hence $\langle S \rangle = H$. Thus S has an element of order divisible by p^{α} , say $a^{s}bc$. Now $H = \langle a^{s}b \rangle \times B \times C$ and since exp $B < \alpha$ holds, we have $(a^{s}b)^{p^{\alpha-1}} = u^{s}$, which is in S since $u \in S$ and \overline{S} is rational.

Henceforth we assume that C_1 is non-empty. We are now in a position to state the two theorems of this paper.

THEOREM A. Assume that

1. G is a primitive group of degree n;

2. H is a regular abelian subgroup of G;

3. p is a prime dividing n;

4. P is a Sylow p-subgroup of H;

5. $P = A \times B$, where $A = \langle a \rangle$ is cyclic of order p^{α} and B is of exponent $p^{\beta}, 0 \neq \beta < \alpha$;

6. $\{1\} = T_0, T_1, \ldots, T_k$ are the orbits of G_1 and $\overline{S}_i = \operatorname{tr} \overline{T}_i = \overline{H}^{\#}$ for $i = 1, \ldots, k$.

Then G is doubly transitive (i.e. k = 1).

THEOREM B. Let Hypotheses 1–5 of Theorem A hold. In addition if p = 2, let $\alpha \ge 3$. Then if G is not doubly transitive, there exist $e \ge 2$ subgroups H_i of G such that $H = H_1 \times \ldots \times H_e$ and

$$|H_i| = |H_j| > 2$$
 for $i, j = 1, ..., e$.

Remark. Schur (4) proved what I have called Theorem A for all abelian groups H which are not of prime power order. Thus Theorem A of this paper is new only in the case C = 1.

We first prove Theorem A and then devote the greater part of the paper to showing that Hypothesis 6 of Theorem A follows from the hypotheses of Theorem B unless H has the special direct product structure indicated.

3. Proof of theorem A. We begin by proving a lemma which is of importance also in the proof of Theorem B.

LEMMA 3.1. Let Hypotheses 1–5 of the above statement of Theorem A hold. Let $h \notin (H_X \cup H_Y) - UC$. Let $1 \leq j \leq p - 1$. Then there exists $q \equiv 1 \pmod{p}$ with (q, |H|) = 1 such that

$$h^q = u^j h.$$

Proof. Let $h = a^{sp^{\lambda}}bc$, where (s, p) = 1, $b \in B$, $c \in C$. Let |C| = m and let s', m' satisfy $s's \equiv 1 \pmod{p^{\alpha}}$, and $m'm \equiv 1 \pmod{p^{\alpha}}$. Then it is easily seen that $q = 1 + mm's'jp^{\alpha-\lambda-1}$ has the desired properties.

For the remainder of Section 3 we assume that Hypotheses 1–6 in the above statement of Theorem A hold.

LEMMA 3.2. \overline{T}_q is conjugate to \overline{T} for $q = 1, \ldots, k$.

Proof. We have assumed tr $\overline{T}_q = \overline{H}^{\sharp}$ for $q = 1, \ldots, k$. Thus $T_q \cap U^{\sharp}$ is non-empty. Let $u^j \in T_q \cap U^{\sharp}$ and let $l \equiv j(p)$ with (l, |H|) = 1. By Theorem 1, $\overline{T}^{(l)}$ is a \overline{T}_i . Now since u^j belongs to both T_i and T_q it follows that these orbits are the same and $\overline{T}_q = \overline{T}^{(l)}$.

LEMMA 3.3. Let $l = |T \cap U^{\sharp}|$, n = |H|. Then (i) k = (p - 1)/l, (ii) $|T_q| = (n - 1)/k$ for q = 1, ..., k, (iii) $|(T_q)_X| = \frac{p - 1}{p} \frac{n}{k}$ for q = 1, ..., k.

Proof. Since each conjugate of \overline{T} has l elements of U^{\sharp} and $|U^{\sharp}| = p - 1$, it follows that \overline{T} has (p-1)/l conjugates; thus k = (p-1)/l. Since \overline{T}_q is conjugate to \overline{T} , $|T_q| = |T|$. Moreover,

$$\left| \bigcup_{i=1}^{q} T_{q} \right| = n - 1$$

since $T_0 = 1$ and the T_q are disjoint. Thus each T_q has order (n - 1)/k. Since $\overline{T_q}$ is conjugate to \overline{T} , T_q and T have the same number of elements of H_x and T_0 has no such elements. Moreover, $|H_x| = ((p - 1)/p)|H|$. Thus we have

$$|(T_q)_X| = \frac{1}{k} \frac{p-1}{p} n.$$

LEMMA 3.4. The coefficient of u^j in $\overline{T}\overline{T}^{(-1)}$ is $\ge |T_X|$ for $j = 1, \ldots, p-1$.

Proof. By Lemma 3.1 for $x \in T_x$, there is a $q \equiv 1 \pmod{p}$ with (q, n) = 1 such that $u^{-j}x$ has non-zero coefficient in $\overline{T}^{(q)}$. By Theorem 1, $\overline{T}^{(q)} = \overline{T_i}$ for some *i*. But $u^q = u$ since $q \equiv 1 \pmod{p}$. Thus *u* belongs to both *T* and *T_i*, and $T = T_i$. We conclude that $u^{-j}x \in T$. Thus $x(u^jx^{-1})$ contributes to the coefficient of u^j in $\overline{T}\overline{T}^{(-1)}$ for all $x \in T_x$, so this coefficient must be $\geq |T_x|$.

LEMMA 3.5. The coefficient of $h \in H$ in $\overline{T}\overline{T}^{(-1)}$ is $\geq |T_x|$.

Proof. By Theorem 1, $\overline{T}^{(-1)} \in R(H, G_1)$ holds and

$$\overline{T} \,\overline{T}^{(-1)} = \sum_{i=0}^{k} \gamma_i \,\overline{T_i}.$$

Since each T_i has an element of U^{\sharp} and each element of U^{\sharp} has coefficient $\geq |T_X|$, we have $\gamma_i \geq |T_X|$ for i = 1, ..., k. Clearly $\gamma_0 = |T| \geq |T_X|$, and $h \in H$ belongs to some T_i .

Theorem A. k = 1.

Proof. By Lemma 3.5 we have that

$$|\bar{T}\bar{T}^{(-1)}| = |T|^2 \ge |T_X||H|.$$

By Lemma 3.3 we have

$$|T| = (n-1)/k$$

and

$$|T_{\mathbf{X}}| = \frac{p-1}{p} \frac{n}{k}.$$

Thus we have

$$\left(\frac{n-1}{k}\right)^2 \ge \frac{p-1}{p}\frac{n}{k} n > \frac{p-1}{p}\frac{(n-1)^2}{k}$$

and

$$k < \frac{p}{p-1} \leqslant 2.$$

Since k is a positive integer, it follows that k = 1 and Theorem A is proved.

4. Proof of Theorem B. Throughout Section 4 we assume the hypotheses of Theorem B. We begin with two important lemmas.

LEMMA 4.1. Let $R \subseteq H$ such that \overline{R} is rational. Then

$$(R_X \cup R_Y) - u^j C \subseteq R(u^j)$$
 for $j = 1, \ldots, p-1$.

Proof. Let $h \in (R_X \cup R_Y) - u^j C$. By Lemma 3.1 if $h \notin UC$, there exists q prime to |H| such that $h^q = u^{-j}h$. For $h = u^i c$, $i \neq j$ (and $0 < i \leq p - 1$), $c \in C$, such a q obviously exists. Now $h^{-q} = h^{-1}u^j \in R$ holds by the rationality of \overline{R} . Thus we have $h \in R(u^j)$.

LEMMA 4.2. Let $x \in H_x$ and let $R \subseteq H$ such that \overline{R} is rational. Let $1 \leq j \leq p - 1$. Then if h belongs to $R(x) - R(u^j)$, the element $u^j h^{-1}x$ belongs to $R(u^j) - R(x)$.

Proof. Let $h, h^{-1}x \in R$. If $h \notin R(u^j)$ we have by Lemma 4.1 that $h \in R_Y \cup R_Z$. $h^{-1}x$ therefore lies in R_X . We may now conclude by Lemma 3.1 that $u^j h^{-1}x \in R_X$ holds, and Lemma 4.1 now tells us that $u^j h^{-1}x \in R(u^j)$ holds. We now assume that $u^j h^{-1}x \in R(x)$. This means that $(u^j h^{-1}x)^{-1}x = u^{-j}h \in R$ and by the rationality of \overline{R} we would have $u^j h^{-1} \in R$. This contradicts $h \notin R(u^j)$. Thus we have $u^j h^{-1}x \in R(u^j) - R(x)$.

LEMMA 4.3. Let $x \in H_x$ and let $R \subseteq H$ such that \overline{R} is rational. Let $1 \leq j \leq p-1$ and $|R(x)| = |R(u^j)|$. Let $k \in R(u^j) - R(x)$. Then

- (i) $k \in H_X$,
- (ii) $u^{-j}k \in R(x)$,
- (iii) $k^{-1}x \in H_z \cup (u^{-j}C)$.

RONALD D. BERCOV

Proof. By Lemma 4.2, $h \to u^j h^{-1}x$ is a 1-1 map of $R(x) - R(u^j)$ into $R(u^j) - R(x)$. Since $|R(x)| = |R(u^j)|$, this map must be onto $R(u^j) - R(x)$. Thus there exists $h \in R(x) - R(u^j)$ such that

$$k = u^{j} h^{-1} x.$$

Because of Lemma 4.1 we may conclude from $h \notin R(u^j)$ that $h \notin H_x$. Thus $k = u^j h^{-1}x \in H_x$ holds. Moreover, $u^{-j}k = h^{-1}x \in R(x)$ holds since $(h^{-1}x)^{-1}x = h \in R$. By Lemma 4.1, $h \in R_z \cup (u^j C)$ holds since $h \notin R(u^j)$. Therefore $k^{-1}x = u^{-j}h$ belongs to H_z unless $h \in C$, in which case we have $k^{-1}x \in u^{-j}C$.

LEMMA 4.4. Let $x \in S_x$, $1 \leq j \leq p - 1$, and $k \in S(u^j)$. Then $k^{-1}x \in S$ holds whenever any one of the following four conditions are satisfied:

- (i) $k \notin H_X$,
- (ii) $u^{-i}k \notin S(x)$ for some *i* such that $1 \leq i \leq p-1$,
- (iii) $k^{-1}x \notin H_z \cup (uC)$,
- (iv) $k^{-1}x \notin H_z$ and $p \neq 2$.

Proof. \overline{S} is rational and $|S(x)| = |S(u^i)|$ for $i = 1, \ldots, p-1$ by Lemma 2.1. If $k^{-1}x \notin S$ we have $k \in S(u^j) - S(x)$. Thus $k \in H_x$ by Lemma 4.3 and $k \in S(u^i) - S(x)$ by Lemma 4.1 for $i = 1, \ldots, p-1$. Thus we have by Lemma 4.3 that

- (i) $k \in H_X$,
- (ii) $u^{-i}k \in S(x), i = 1, ..., p 1$,
- (iii) $k^{-1}x \in H_z \cup (u^{-i}C), i = 1, \dots, p 1.$

If p is odd we cannot have $k^{-1}x \in u^{-i}C$ for all i = 1, ..., p - 1 and we conclude that $k^{-1}x \in H_z$.

Remark. Lemma 4.4 allows us to conclude that certain elements $k^{-1}x$ lie in S. This will enable us to determine S and in the case $S \neq H^{\sharp}$ we will be able to get information about the structure of H from S.

LEMMA 4.5. Let $c \in C_1$, the set of elements $d \in C$ for which some element $a^q d$ belongs to S, where (q, p) = 1. Then

(i) $S_X^{1} = A_X C_1$, (ii) $S_Y^{1} = A_Y C_1 c$ if $p \neq 2$, $S_Y^{1} - uC = (A_Y - \{u\})C_1 c$ if p = 2.

Proof. Since $\overline{A_x} = tr(a)$ and for $d \in C_1$, tr ad = tr a tr d, it is immediate from the definition of C_1 that $S_x^1 = A_x C_1$.

For $d \in C_1$, (s, p) = 1, $0 < \lambda \leq \alpha - 1$ we have $k = a^{1-sp^{\lambda}} d \in S(u^j)$ by Lemma 4.1, and $x = ac \in S_x$. Moreover,

$$k^{-1}x = (a^{1-sp\lambda}d)^{-1}ac = a^{sp\lambda}d^{-1}c$$

If $p \neq 2$ or $\lambda \neq \alpha - 1$, Lemma 4.4 implies $a^{sp\lambda}d^{-1}c \in S$. If $p = 2, \lambda = \alpha - 1$,

we have $a^{sp^{\lambda}} d^{-1} c \in uC$. But $C_1 = \{d^{-1} | d \in C_1\}$ since \overline{S} is rational. Thus we have

$$S_{Y^{1}} \supseteq A_{Y} C_{1} c \qquad \text{if } p \neq 2$$

 $S_{Y^{1}} \supseteq (A_{Y} - u)C_{1}c$

and

Now let $yd \in S_Y^1 - UC$, $y \in A$, $d \in C$. By Lemmas 4.1 and 4.4, $y^{-1}ad^{-1}c \in S$ holds. This is clearly an element of $A_X C$. Hence from the definition of C_1 we conclude that $d^{-1}c$, and hence dc^{-1} , belongs to C_1 and d belongs to C_1c . Thus $S_Y^1 - UC \subseteq (A_Y - U)C_1c$. If p = 2, this completes the demonstration that

in any case.

$$S_{Y^{1}} - UC = (A_{Y} - u)C_{1}c.$$

If $p \neq 2$, let $yd \in U^{\sharp}C \cap S$, say $y = u^i$, $d \in C$. Then if $u^j \neq u^i$, $u^j \in U^{\sharp}$, we have $u^{i-j}d \in S$ since \tilde{S} is rational. Thus we have $u^{j-i}d^{-1} \in S$ and $u^id \in S(u^j)$. By Lemma 4.4 we have that $(u^id)^{-1}ac \in S$. We conclude, as before, since this is an element of A_xC , that $d^{-1}c$ and dc^{-1} are in C_1 and d is in C_1c . Thus we have $U^{\sharp}C \cap S \subseteq U^{\sharp}C_1c$. This completes the demonstration, in the case $p \neq 2$, that $S_{Y^1} = A_Y C_1c$.

LEMMA 4.6. C_1 is a subgroup of C.

Proof. C_1 is non-empty by Lemma 2.2. We consider two cases.

Case 1. $p \neq 2$. Let $c, d \in C_1$. We have $a^2c, ad \in S_X^1$, and $(ad)^{-1}a^2c = ad^{-1}c \notin H_z$. We conclude by Lemmas 4.4 and 4.5 that $d^{-1}c \in C_1$.

Case 2. p = 2. The additional hypothesis $\alpha \ge 3$ allows us to conclude in this case that $a^2 \notin U$, and Lemma 4.5(ii) tells us that $a^2C_1 c \subseteq S_{Y^1} - uC = (A_Y - u)C_1 d$ for $c, d \in C_1$. We conclude that $C_1 c = C_1 d = C_1^2$, $C_1 d^2 = C_1^3$ for $d \in C_1$, and $|C_1| = |C_1^3|$. But $C_1 \subseteq C_1^3$ since $d^{-1} \in C_1$ holds for $d \in C_1$; thus $C_1 = C_1^3$ and $C_1^2 = (C_1^2)^2$. C_1^2 is therefore a subgroup of C containing $|C_1|$ elements. Since C is a p-complement and we are considering the case p = 2, we conclude from $|C_1| = |C_1^2|$ and the rationality of \overline{S} that $C_1^2 = \{d^2|d \in C_1\} = C_1$.

LEMMA 4.7. $S^1 - C = A^{\#}C_1$ if $p \neq 2$. $S^1 - UC = (A^{\#} - u)C_1$ if p = 2.

Proof. See Lemmas 4.5 and 4.6.

LEMMA 4.8. Let $1 \neq b \in B$ such that S_X^b is non-empty. Then (i) $S_X^b = P_X^b C_b$,

- (ii) $S_Y{}^b \supseteq P_Y{}^b C_b$,
- (iii) $|S_z^{b} \cap P_z^{b} C_b| \ge \frac{p-1}{p} |P_z^{b} C_b|,$

where C_b is the set of elements of C which occur as p'-part of some element of S_X^b .

Proof. Let $x \in P_X^b C_b$, say $x = a^s b^t c$, where (s, p) = (t, p) = 1, $c \in C_b$. By the definition of C_b , some element $a^e b^t c$ must lie in S with (e, p) = (l, p) = 1

and since \bar{S} is rational, there is an element $a^q b^t c \in S_X$. If q = s we have $x \in S$. If $a^{q-s} \in U^{\sharp}$, we have by Lemma 4.1 that $x = a^{s-q}a^q b^t c \in S$. If $a^{q-s} \in A - U$ we have $a^{q-s} \in S(u)$ by Lemma 4.7, and

$$(a^{q-s})^{-1}(a^q b^t c) = x \in H_Z \cup (UC).$$

We conclude by Lemma 4.4 that $x \in S$. Thus in any case we have $x \in S$ and $P_x^b C_b \subseteq S_x^b$. But, by the definition of C_b , no elements outside $P_x^b C_b$ can belong to S_x^b .

Now let $y \in P_Y{}^b C_b$. By what we have just shown, $y^{-1}a \in S_X{}^b$ holds, and by Lemma 4.7, $a \in S$ holds. Moreover, $(y^{-1}a)a^{-1} \notin H_Z \cup (UC)$ since $b \neq 1$ and $y \in H_Y$. Thus again by Lemma 4.4 we have $y \in S$ and $P_Y{}^b C_b \subseteq S_Y{}^b$.

Now let $z \in P_z^b C_b$. Again we have $z^{-1} a \in S_x^b$ and for $z = (z^{-1}a)^{-1}a \notin S$ we have by Lemma 4.4 that the p-1 elements $u^i z^{-1}a$ lie in S(a) for $i = 1, \ldots, p-1$. This means that the elements $u^i z$ must lie in S and they clearly lie in $P_z^b C_b$ since $b \neq 1$.

Thus with each $z \in P_{z}{}^{b}C_{b} - S_{z}{}^{b}$ we associate the p-1 elements of $U^{\#}z$ which must belong to $S_{z}{}^{b}$. It follows that

$$|S_z^{b} \cap P_z^{b} C_b| \ge \frac{p-1}{p} |P_z^{b} C_b|.$$

LEMMA 4.9. If S_x^b is non-empty, then $C_b = C_1$.

Proof. Let $c \in C_1$, $d \in C_b$. $a^{-2} c \in S_X$ holds if $p \neq 2$ and $a^{-2} c \in S_Y - uC$ if p = 2. Moreover, $a^{-1}bd \in S_X^b$ holds by Lemma 4.8. Thus since

$$(a^{-2}c)^{-1}(a^{-1}bd) = abc^{-1}d \in H_X,$$

we have by Lemma 4.4 that $abc^{-1}d \in S$ holds. Thus we have $c^{-1}d \in C_b$ for all $c \in C_1$ and $C_1 d \subseteq C_b$.

Similarly, for $c, d \in C_b$ we have $a^{-2}bc \in S_x^b$ if $p \neq 2$, $a^{-3}bc \in S_x^b$ if p = 2, and $a^{-1}bd \in S_x^b$ in either case.

Again by Lemma 4.4 we have, since $(a^{-2}bc)^{-1}a^{-1}bd = ac^{-1}d \in H_X$ and

$$(a^{-3}bc)^{-1}a^{-1}bd = a^2c^{-1}d \in H_Y - uC$$

if p = 2, that $ac^{-1}d \in S$ if $p \neq 2$, and $a^2c^{-1}d \in S$ if p = 2.

In either case, we have by Lemma 4.7 that $c^{-1}d \in C_1$ and $c \in C_1d$; hence $C_b \subseteq C_1d$. It follows that $C_b = C_1d$ for all $d \in C_b$. We again consider two cases.

Case 1. $p \neq 2$. By Lemmas 4.8 and 4.4 we again have $a^{-2}b^{-2}d^{-1}$, $a^{-1}b^{-1}d \in S_X^{b}$ and $(a^{-2}b^{-2}d^{-1})^{-1}(a^{-1}b^{-1}d) = abd^2 \in S_X$. We therefore have $d^2 \in C_b = C_1 d$, $d \in C_1$, and $C_b = C_1 d = C_1$.

Case 2. p = 2. For $d \in C_b$, we have $d^{-1} \in C_b = C_1 d$, and $d^2 \in C_1$. Since C_1 is a subgroup of order prime to 2, it follows that $d \in C_1$ and $C_b = C_1 d = C_1$.

We now introduce further notation which we use for the remainder of the

paper. We denote by B_1 the set of $b \in B$ for which S_x^b is non-empty, and we put $K = AB_1 C_1$.

LEMMA 4.10.
(i)
$$K_x = S_x$$
;
(ii) $\begin{array}{l} K_Y \subseteq S_Y & \text{if } p \neq 2, \\ K_Y - uC \subseteq S_Y & \text{if } p = 2; \end{array}$
(iii) $|K_z^b \cap S| \ge \frac{p-1}{p} |K_z^b| \text{ for } 1 \neq b \in B_1.$

Proof. See Lemmas 4.8 and 4.9.

LEMMA 4.11. Let $1 \leq q \leq p^{\alpha} - 1$, $c \in C_1$, and if p = 2, let $p^{\alpha-1} \nmid q$. Then (i) $S(a^q c) \subseteq K$,

(ii)
$$|S(a^{q}c)| = |K| - 2|K - S|$$
.

Proof. $[\tilde{S}]^2 = [\overline{S_X}]^2 + 2\overline{S_X}[\overline{S_Y} + \overline{S_Z}] + [\overline{S_Y} + \overline{S_Z}]^2$. Clearly the contribution to |S(a)| comes only from the first two terms. Since $k^{-1}a \in K$ holds for $k \in K$, and S_X lies entirely inside K, we see that the full contribution to |S(a)| comes from $[\tilde{K}]^2$; thus $S(a) \subseteq K$. Now it follows from Lemma 4.10 that all elements h of K - S lie outside of K_X and satisfy $h^{-1}a \in K_X \subseteq S$. This means that |S(a)| is as small as possible since $k \in S$ does not belong to S(a) precisely when $k^{-1}a \notin S$ holds, and as many elements of $K \cap S$ as possible have this property, namely one for every element of K - S. We therefore have that |S(a)| = |K| - 2|K - S|. It is easy to see that the contribution of $[\overline{K} - \overline{S}]^2$ to $|S(a^qc)|$ is at least |K| - 2|K - S| since $k^{-1}a^q c$ belongs to K for all $k \in K$. But $|S(a)| = |S(a^q c)|$. This completes the proof.

LEMMA 4.12. Let $1 \neq b \in B_1$, such that P_Y^b is empty. Then

 $|S_Z^b \cap K| > \frac{1}{2}|K_Z^b|.$

Proof. By Lemma 4.10 we have

$$|S_{z}^{b} \cap K| \geqslant \frac{p-1}{p} |K_{z}^{b}|.$$

We assume that p = 2, and $|S_z^b \cap K| = \frac{1}{2}|K_z^b|$, since if not, there is nothing to prove. Since P_x^b is empty, we must have $|\langle b \rangle| = 2^{\alpha-1}$.

By Lemma 4.11 we have for q = 2, 6, and $z \in K_z^b$ that z and $a^{-q}z$ cannot both lie outside of K since $|S(a^q)|$ would then be too large. Thus with each $z \in K_z^b - S$ we have associated two elements, $a^{-2}z$ and $a^{-6}z$, of $K_z^b \cap S$. It follows that

$$|K_{z^{b}} \cap S| \ge \frac{2}{3}|K_{z^{b}}| > \frac{1}{2}|K_{z^{b}}|.$$

LEMMA 4.13. K is a subgroup of H.

Proof. $K = AB_1 C_1$, where A and C_1 are subgroups of H. It suffices to show that B_1 is a subgroup of H. We have $1 \in B_1$ and since $S^b = S^{b-1}$, it follows that b^{-1} is in B_1 for $b \in B_1$. Now let $1 \neq b_1, b_2 \in B_1$. We shall show that $b_1^{-1} b_2 \in B_1$

holds. If $P_Y^{b_1}$ is non-empty, we have $a^p b_1 \in S$ by Lemmas 4.8 and 4.9 and $(a^p b_1)^{-1} x \in S$ for $x \in S_X$ by Lemmas 4.1 and 4.4. Since $ab_2 \in S_X$ also holds (again by Lemmas 4.8 and 4.9), we have by Lemmas 4.1 and 4.4 that $(a^p b_1)^{-1} ab_2 = a^{1-p} b_1^{-1} b_2$ lies in S; hence $b_1^{-1} b_2$ is in B_1 .

If $P_Y^{b_1}$ is empty, we have by Lemma 4.12 that at least one pair $\{z, z^{-1}u\}$ from $K_Z^{b_1}$ must belong to S. Then $\{z^s, z^{-s}u^s\} \subseteq S$ will hold for (s, |H|) = 1and for an appropriate such s we get an element $z^s = a^q b_1 c \in S(u^s)$, where $q \equiv 0 \pmod{p}$, $c \in C_1$. By an argument similar to the one just given we get $ab_2 c \in S_X$, $z^{-s}ab_2c = a^{1-q}b_1^{-1}b_2 \in S$, and $b_1^{-1}b_2 \in B_1$.

Lemma 4.14. $K^{\#} \subseteq S$.

Proof. Assume the contrary. Let $1 \neq k \in K - S$. k must belong to $K_Y \cup K_Z$ since $K_X \subseteq S$, and to some S_i , $i \geq 2$. Since $\langle S_i \rangle = H$ by Theorem 1, S_i has an element $x \in H_X$. By Lemma 2.1, we have |S(x)| = |S(k)|. As before we have

$$[\overline{S}]^2 = [\overline{K_X}]^2 + 2\overline{K_X}[\overline{S_Y} + \overline{S_Z}] + [\overline{S_Y} + \overline{S_Z}]^2.$$

Since $x \notin K_x$, the first term does not contribute to |S(x)| (because K is a subgroup). Since $x \in H_x$, the third term does not contribute. Thus $|S(x)| = 2|K_x \cap S(x)|$. Let $h \in K_x \cap S(x)$. Then $h^{-1}x \in S - K$ holds since $x \notin K$.

If $a^q h \in K_x \cap S(x)$ held, we would have $a^{-q}h^{-1}x \in S - K$. Hence $a^q hx^{-1} \in S - K$ and $h^{-1}x \in S(a^q)$, which cannot happen by Lemma 4.11 unless $a^q = 1$ (or $a^q = u$ if p = 2) since then $S(a^q) \subseteq K$ holds. It follows for $h \in K_x \cap S(x)$ that $a^q h \in K_x - S(x)$ for $q = jp^{\alpha-1}$ and $j = 1, \ldots, p - 1$ if $p \neq 2$, and for q = 2, 6 if p = 2. Thus only one of p elements of K_x can belong to S(x) if $p \neq 2$ and one of three elements if p = 2, since $a^2h_1 = a^6h_2$ cannot occur for $h_1, h_2 \in K_x \cap S(x)$ by Lemma 4.4 if $\alpha = 3$ and by the above argument if $\alpha \neq 3$. In any case we have

$$|S(x)| \leq 2|K_X \cap S(x)| \leq 2.\frac{1}{3}|K_X| < |K_X|.$$

Now for $h \in K_X$, $h^{-1}k \in K_X$ holds since $k \in K_Y \cup K_Z$. Thus $K_X \subseteq S(k)$ and $|K_X| \leq |S(k)| = |S(x)|$, contradicting the above inequality. Thus our assumption $k \in S_i$, $i \geq 2$ is wrong and we conclude that $K^{\#} \subseteq S$.

LEMMA 4.15. Let
$$h \in H^{\#} - S$$
. Then $|S(h)| \leq 2$.

Proof. Let $h \in S_i$, $i \ge 2$. As above, let $x \in (S_i)_X$. We again have |S(x)| = |S(h)| and $|S(x)| = 2|K_X \cap S(x)|$. Let $k_1, k_2 \in K_X \cap S(x)$. Then $k_1^{-1}x, k_2^{-1}x \in S - K$ since $x \notin K$. Thus $(k_1^{-1}x)^{-1} \in S - K$ holds and $k_1 k_2^{-1}$ has non-zero coefficient in $[\overline{S-K}]^2$. Clearly $[\overline{K^{\#}}]^2 = |\overline{K^{\#}}| \cdot \overline{1} + [|\overline{K^{\#}}| - 1]\overline{K^{\#}}$. By Lemma 4.11 we have |S(a)| = |K| - 2 and if $k_1 \neq k_2$, the coefficient of $k_1 k_2^{-1}$ in $[\overline{K^{\#}}]^2$ is |K| - 2. Thus since we have a further contribution to $k_1 k_2^{-1}$ from $[\overline{S-K}]^2$, we have a contradiction to $|S(a)| = |S(k_1 k_2^{-1})|$ unless $k_1 = k_2$. Thus $|K_X \cap S(x)| \le 1$ and $|S(h)| = |S(x)| = 2|K_X \cap S(x)| \le 2$.

LEMMA 4.16. Let $h \in S$, $h^2 \neq 1$. Then $h^2 \in S$.

490

Proof. $|S(h)| = |S(a)| \ge |K| - 2 \ge |A| - 2 \ge 6$. Thus we may choose $x, y \in S(h)$ with $x \notin \{y, y^{-1}h\}$. Then

$$\{x^{-1}, y^{-1}h, y^{-1}, x^{-1}h\} \subseteq S(x^{-1}y^{-1}h).$$

We have $|S(x^{-1}y^{-1}h)| > 2$ unless $x^{-1} = y^{-1}h$ and $y^{-1} = x^{-1}h$ in which case $x^{-1} = x^{-1}h^2$, contradicting $h^2 \neq 1$. Moreover, $x^{-1}y^{-1}h \neq 1$ since x was assumed different from $y^{-1}h$. Thus we may conclude by Lemma 4.15 that $x^{-1}y^{-1}h \in S$. Since $\{x^{-1}, y^{-1}, h^{-1}, x^{-1}y^{-1}h\} \subseteq S(x^{-1}y^{-1})$ we have by Lemma 4.15 that $x^{-1}y^{-1}h \in S$. Since $\{x^{-1}, y^{-1}, h^{-1}, x^{-1}y^{-1}h\} \subseteq S(x^{-1}y^{-1})$ we have by Lemma 4.15 that $x^{-1}y^{-1} = 1$ or $x^{-1}y^{-1} \in S$. If $x^{-1}y^{-1} \in S$ we have $xy \in S$ (because \overline{S} is rational) and $\{x, h, xy, y^{-1}h\} \subseteq S(xh)$. By Lemma 4.15 we conclude that $xh \in S$ unless xh = 1. If $x^{-1}y^{-1} = 1$, we have $xh = y^{-1}h \in S$. In any case we have $xh \in S$ unless xh = 1. By a similar argument we conclude that $yh \in S$ unless yh = 1. If xh and yh are both different from 1, we have $\{h, xh, x^{-1}h, yh, y^{-1}h\} \subseteq S(h^2)$; thus $h^2 \in S$ by Lemma 4.15. If xh = 1 we have $h^2 = x^{-1}h \in S$; and if yh = 1 we have $h^2 = y^{-1}h \in S$.

LEMMA 4.17. Let $h \in S$. Then $\langle h \rangle^{\#} \subseteq S$.

Proof. If $|\langle h \rangle| = 2$, there is nothing to prove. If $|\langle h \rangle| = 3$, see Lemma 4.16. If $|\langle h \rangle| = 4$, we have $h^2 \in S$ by Lemma 4.16 and $h^3 = h^{-1} \in S$ by the rationality of \overline{S} .

We now assume that $|\langle h \rangle| \ge 5$. Then we have h^2 , $h^4 \in S$ by Lemma 4.16, and $h^3 \in S$ by Lemma 4.15, since $\{h, h^2, h^4, h^{-1}\} \subseteq S(h^3)$.

We now proceed by induction. We assume that $h^i \in S$ for i = 1, ..., m, where $4 \leq m < |\langle h \rangle| - 1$. Then $\{h, h^m, h^2, h^{m-1}\} \subseteq S(h^{m+1})$ and $h^{m+1} \in S$ by Lemma 4.15.

LEMMA 4.18. Let $h \in S$, and let M be a subgroup of H maximal with respect to being contained in $S \cup \{1\}$ and containing h. Then $M^{\#} = S(h) \cup \{h\}$.

Proof. That such an M exists follows from Lemma 4.17. Clearly since $M \subseteq S \cup \{1\}$ is a subgroup and $h \in M$, we have $M^{\#} \subseteq S(h) \cup \{h\}$. Suppose there exists $x \in S(h) - M$. Then $x^{-1}h \in S(h) - M$. By Lemma 4.17 we have $\langle x \rangle^{\#}, \langle x^{-1}h \rangle^{\#} \subseteq S$. We claim that $(\langle x \rangle M)^{\#} \subseteq S$.

Let $j < |\langle x \rangle|$, $y \in M$, $x^j y \neq 1$. If $x^j \in M$, we have $x^j y \in M^{\sharp} \subseteq S$. Suppose now that $x^j \notin M$. If $y \in \langle x \rangle$ we have $x^j y \in \langle x \rangle^{\sharp} \subseteq S$. Thus we may assume that $y \notin \langle x \rangle$. If $y = h^{-1}$, we have $x^{-1}h \in S$; bence $xh^{-1} = xy \in S$. If $y \neq h^{-1}$, we have $hy \in M^{\sharp} \subseteq S$, $\{x, y, xh^{-1}, hy\} \subseteq S(xy)$ and $|\{x, y, hy\}| = 3$ since $h \neq 1$ and $x \notin M$. Moreover, $xy \neq 1$ since $x \notin M$. Hence we have $xy \in S$ by Lemma 4.15. Now $\{x^j, y, xy, x^{j-1}\} \subseteq S(x^j y)$ and $|\{x^j, y, xy\}| = 3$ since $x \neq 1$ and $y \notin \langle x \rangle$. We conclude by Lemma 4.15 that $x^j y \in S$; thus $(\langle x \rangle M)^{\sharp} \subseteq S$, contradicting the maximality of M. We therefore have $S(h) \subseteq M^{\sharp}$; thus $S(h) \cup \{h\} \subseteq M^{\sharp} \cup \{h\} = M^{\sharp}$.

LEMMA 4.19. Let $x, h, k \in S$ such that $x \in (S(h) \cup \{h\}) \cap (S(k) \cup \{k\})$. Then $S(h) \cup \{h\} = S(k) \cup \{k\}$. *Proof.* By Lemma 4.18 we have $S(h) \cup \{h\} = S(x) \cup \{x\} = S(k) \cup \{k\}$.

LEMMA 4.20. K is a maximal subgroup in $S \cup \{1\}$.

Proof. Let M be a maximal subgroup in $S \cup \{1\}$ containing K. Since $a \in K$, we have $|S(a)| \ge |M| - 2$. By Lemma 4.11 we have $|S(a)| \le |K| - 2$. It follows that K = M.

LEMMA 4.21. Let $K = H_1, \ldots, H_e$ be a complete set of maximal subgroups in $S \cup \{1\}$. Then $|H_i| = |H_j| > 2$ for $i, j = 1, \ldots, e$.

Proof. By Lemma 4.18 for $h \in H_i$, $k \in H_j$, we have $H_i = S(h) \cup \{h\}$ and $H_j = S(k) \cup \{k\}$. $h \notin S(h)$, $k \notin S(k)$ since $1 \notin S$. Thus $|H_i| = |S(h)| + 1 = |S(k)| + 1 = |H_j|$ and $|H_1| = |K| \ge |A| \ge 8$.

LEMMA 4.22. Let $K = H_1, \ldots, H_e$ as above. Then $H = H_1 \times \ldots \times H_e$.

Proof. $\langle S \rangle = H_1 \dots H_e = H$ by Theorem 1. $H_i \cap H_j = 1$ for $i \neq j$ by Lemma 4.19. $h \in H$ can be written in the form

$$h = h_1 \dots h_e, \quad h_i \in H_i, \quad i = 1, \dots, e.$$

We say that $h \in H$ has "length" t if the number of $h_i \neq 1$ in some such representation of h is t. It suffices to show that no element of length one has length greater than one as well. Suppose the contrary and choose j > 1 minimal such that h of length one is also of length j. We have $\tilde{S} = \overline{H_1}^{t} + \ldots + \overline{H_e}^{t}$. Since $|H_i| = |H_j|$ for $i, j = 1, \ldots, e$ we have that in

$$[\overline{S}]^{j} = \sum_{i=1}^{e} (\overline{H_{i^{\dagger}}})^{j} + \sum_{i_{1} < i_{2} \dots < i_{j}} \overline{H_{i_{1}}}^{\sharp} \dots \overline{H_{i_{j}}}^{\sharp} + \sum (\overline{H_{i_{1}}}^{\sharp})^{2} \overline{H_{i_{2}}} \dots \overline{H_{i_{s}}}$$

each element of S has the same coefficient in the first term. Because of the minimality of j, each element of S has the same coefficient in the third term as well (since the elements of S are precisely the elements of length one). In the second term h occurs with non-zero coefficient. Since $[\bar{S}]^j$ is a linear combination of the \bar{S}_i , a and h have the same coefficient in $[\bar{S}]^j$. Thus a must also be of length j, say $a = x_1 \dots x_j$, where $x_i \neq 1$ for $i = 1, \dots, j$ and each x_i is from a different H_s . Since $S_X = K_X = (H_1)_X$, a is not in $H_2 \dots H_e$ since all elements of $H_2 \dots H_e$ are of the form a^{apbc} . Thus some x_i , say x_j , is in H_1 . Then $ax_j^{-1} = x_1 \dots x_{j-1}$. If $x_j \neq a$, we have $ax_j^{-1} \in S$ written as an element of length j - 1, contradicting the minimality of j unless j = 2. If j = 2, we have $ax_j^{-1} = x_1$; but x_1 and x_j come from different H_s . If $a = x_j$, we have $x_1 \dots x_{j-1} = 1$ and $j \neq 2$ since $x_1 \neq 1$. Now $x_{j-1}^{-1} = x_1 \dots x_{j-2}$ is a word of length one and j - 2, contradicting the minimality of j unless j = 3, in which cannot occur. This completes the proof of Lemma 4.22.

THEOREM B. G is doubly transitive unless $H = H_1 \times \ldots \times H_e$ where e > 1and $|H_i| = |H_j| > 2$ for $i, j = 1, \ldots, e$. *Proof.* Let H_1, \ldots, H_e be as in Lemmas 4.21 and 4.22. If e > 1, there is nothing to prove. If e = 1, we have $S = H_1^{\#} = H^{\#}$. This means that r = 1 in the notation of Theorem 2, and Hypothesis 6 of Theorem A is satisfied. Thus G is doubly transitive.

References

- 1. W. Burnside, Theory of groups of finite order, 2nd ed. (Cambridge, 1911).
- R. Kochendörffer, Untersuchungen über eine Vermutung von W. Burnside, Schriften math. Sem. Inst. angew. Math. Univ. Berlin, 3 (1937), 155-180.
- 3. D. Manning, On simply transitive groups with transitive abelian subgroups of the same degree, Trans. Amer. Math. Soc., 40 (1936), 324-342.
- 4. I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte Preuss. Akad. Wiss., phys.-math. Kl. (1933), 598-623.
- 5. W. R. Scott, Solvable factorizable groups, Illinois J. Math., 1 (1957), 389-394.
- 6. H. Wielandt, Zur Theorie der einfach transitiven Permutationsgruppen, Math. Z., 40 (1935), 582-587.
- 7. Zur Theorie der einfach transitiven Permutationsgruppen, II, Math. Z., 52 (1949), 384-393.
- Permutation groups, Lectures at the University of Tübingen, 1954-55, prepared by J. Andre, translated from the German by R. Bercov (Cal. Tech., 1962).

Cornell University and University of Alberta, Edmonton