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1. Introduction. Certain finite groups H do not occur as a regular sub
group of a uniprimitive (primitive but not doubly transitive) group G. If such 
a group H occurs as a regular subgroup of a primitive group G, it follows that 
G is doubly transitive. Such groups H are called B-groups (8) since the first 
example was given by Burnside (1, p. 343), who showed that a cyclic ^-group 
of order greater than p has this property (and is therefore a B-group in our 
terminology). 

Burnside conjectured that all abelian groups are B-groups. A class of counter
examples to this conjecture due to W. A. Manning was given by Dorothy 
Manning in 1936 (3). This class of counter-examples has been generalized by 
Wielandt, who showed that if H is the direct product of two or more groups 
of the same order greater than two, then H is not a B-group (8, p. 79). 

In 1933, Schur (4) developed a new method which he used to show that a 
cyclic group of composite order is a B-group. 

In 1935, Wielandt (6, 8) used the method of Schur to show that if an abelian 
group H of composite order has a cyclic Sylow subgroup, then it is a B-group. 

In 1937, Kochendôrffer (2) used the Schur methods to show that if H is 
the direct product of two cyclic groups of order pa, p& respectively where 
a > 13 > 0, then H is a B-group. 

This paper is a generalization of these results. Let H be abelian, P a Sylow 
p-subgroup of H, and a an element of P of maximal order, pa. Let A be the 
cyclic group generated by a. Then H = A X B X C, where P = A X B and C 
is of order prime to p. We prove that if B ?* 1 is of exponent pfi < pa (with 
the additional assumption a > 3 if p = 2 ) , then either H is a direct product 
of groups of the same order greater than 2, or else i f is a B-group. If B = 1, 
we have by the theorem of Wielandt that H is a B-group unless C = 1 and 
a = 1. Thus apart from the case p = 2, a = 2, /3 = ly the question of whether 
or not the abelian group H is a B-group is settled unless H is the direct product 
of two groups of the same exponent. 

We might also mention that two classes of non-abelian B-groups are known. 
Wielandt (7) has shown that dihedral groups are B-groups and Scott (5) has 
shown that generalized dicyclic groups are B-groups. 

2. Notation, definitions, and theorems from the theory of Schur 
rings. Let G be a primitive permutation group on the letters {1,. . . ,n}. Let 
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H be a regular abelian subgroup of G. We denote the image of the letter j 
under the permutation g £ G byjg. Since H is regular, there is a unique h Ç H 
for which lh = j . We call this element hj. The correspondence j <-> hj allows us 
to regard G as a permutation group on H. To the permutation g £ G (on 
{1,. . . , n}) corresponds the permutation (h

hg) (on H) where h° is the element of 
H uniquely determined by the formula 

W7e continue to denote the permutation (*g) by g, and the group of such 
permutations by G. 

Let R(H) be the group ring of H over the rational integers. For 

v = ZneHy(h)heR(H) 

and any integer j we put rja) = ^ e f f 7 ( i ) K Let 

M = \T,heHy(h)h\ = T,heHj(h). 

With K C if we associate the element 

X = g 7(A)A € 2î(ff), where 7(A) = { j if J ^ 

For K Q H, let |i£| = |2£|, the number of elements of K. Let (X) be the smallest 
subgroup of H containing K. Let G\ be the subgroup of G (regarded as a per
mutation group on H) fixing 1, the identity element of H. Let 
{1} = To, Tu . . . , Tk be the orbits of Gi, where Tt C i / for i = 0, . . . , k. 
Let 

*(iï,Gi) = { E 7«ri} 

be the additive subgroup of ^ (̂ )̂ spanned by the Tt. Throughout this paper 
k will denote the number of orbits of Gi different from {1}. G is doubly transitive 
if and only if k = 1. 

THEOREM 1 (Schur, 1933). 
(i) R(H, Gi) is a subring of R(H). 

(ii) (Tt) = H for i = 1, . . . , k. 

(in) TP = Tqfor appropriate a if (j, \H\) = 1. 

DEFINITION 1. r)U) is said to be conjugate to t\ £ R(H) if (j, \H\) = 1. 

DEFINITION 2. If rj = rjU) for all j with (j, \H\) = 1, then rj is said to be 
rational. 

DEFINITION 3. The sum of all distinct conjugates of rj Ç R(H) is called the 
trace of rj and is denoted by tr rj. 

tr rj is clearly rational and lies in R(H, Gi) whenever 77 does, by Theorem 1. 
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DEFINITION 4. For h G H, tr {h} is called the elementary trace of h and is 
denoted by tr h. 

Clearly if k has non-zero coefficient in tr h, then tr h = tr k. 
By Theorem 1, tr Tt is a sum of distinct Tg. Thus tr Tt = Sif where 

5 , = {tj\te Tu (j,n) = 1}. 

If necessary by renumbering the Tu we may assume without loss of 
generality that Si, . . . , Sr are distinct and that for any j > r there is an 
i < r with Si = Sj. Clearly So = 1. 

THEOREM 2 (Schur, 1933). Let 

i r — . \ 
S = ) ^2 7t Si\yt rational integers ( . 

\ 2=0 J 

Then S is a subring of R(H, Gi) all of whose elements are rational. 

Our notation so far has been that of (8). We now introduce further notation. 
For K, L C H, let K — L be the set of elements of K not belonging to L. 

For K C H let K* = K - {1}. For h £ H, K Q H, let 

I W = {& G X | Jfe-1* G K}. 

Thus i£(&) is the set of those elements of K which "hit" other elements of K 
in such a way as to contribute to the coefficient of h in [K]2, and \K(h)\ is 
this coefficient. 

Let H = A X B X C, where A = (a) is cyclic of order pa, B is of exponent 
pe, 0 < P < a, and (|C|, £) = 1. Let w = a ^ 1 and U = (u)\ thus \U\ = p. 

We assume without loss of generality that u G ^ C Si, and we put 

T = 7\, 5 = 5 L 

By Theorem 2, [$]2 is a linear combination of the Si (i = 0, . . . , r). Thus we 
have 

LEMMA 2.1. \S(h)\ = \S(k)\ for h, k G S{ (i = 1, . . . , r). 

h (z H has a unique representation of the form h = asp be where (s, p) = 1, 
b £ B, c £ C. For K Q H we define i£x , i£F , i £ z as follows: 

Kx = {& G K\\ = 0} is the set of all elements of i£ of order divisible by pa. 
KY = {k G 2£|X ^ 0, |(ô)| < £a~x} is the set of elements of K with />-part 

having order less than £a but larger than the order of the 5-component. 
Kz = {& G ^||(&)i > ^a_x} is the set of elements of K with £-part having 

order equal to the order of the ^-component. 
Thus K is the set union of the three disjoint sets Kx, KY, K z> 
For b G B, K Q H, let Kb = {k G i£|& = a^b'c, where ( / , £ ) = 1}, be the 

set of elements of K whose B component is a power of b with exponent prime 
to p. We have (Kx)

b = (Kb)x and denote this set by Kx
b. For b G B, let C6 

be the set of all elements of C which occur as the £>'-part of some element of Sx
b. 
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We now show that by appropriate choice of a we may assume that C\ is 
non-empty. 

LEMMA 2.2. / / necessary by changing a {the generator of A) we have C\ non
empty. 

Proof. By Theorem 1(h), (T) = H; hence (S) = H. Thus 5* has an element 
of order divisible by pa

y say asbc. Now H = (asb) X B X C and since exp B < a 
holds, we have {asb)va~l = us, which is in S since u £ S and S is rational. 

Henceforth we assume that C± is non-empty. We are now in a position to 
state the two theorems of this paper., 

THEOREM A. Assume that 

1. G is a primitive group of degree n; 

2. H is a regular abelian subgroup of G; 

3. p is a prime dividing n; 

4. P is a Sylow p-subgroup of H; 

5. P = A X B, where A = (a) is cyclic of order pa and B is of exponent 
pP, 0 9* 0 < a; 

6. )!} = To, 7\, . . . , Tk are the orbits of Gi and St = tr Tt = H* for 
i = 1, . . . , k. 

Then G is doubly transitive (i.e. k = 1). 

THEOREM B. Let Hypotheses 1-5 of Theorem A hold. In addition if p = 2, 
let a > 3. Then if G is not doubly transitive, there exist e > 2 subgroups Hi of G 
such that H = Hi X . . . X He and 

\Ht\ = \Hj\ > 2 fori J = 1, . . . , e. 

Remark. Schur (4) proved what I have called Theorem A for all abelian 
groups H which are not of prime power order. Thus Theorem A of this paper 
is new only in the case C = 1. 

W7e first prove Theorem A and then devote the greater part of the paper to 
showing that Hypothesis 6 of Theorem A follows from the hypotheses of 
Theorem B unless H has the special direct product structure indicated. 

3. Proof of theorem A. We begin by proving a lemma which is of import
ance also in the proof of Theorem B. 

LEMMA 3.1. Let Hypotheses 1-5 of the above statement of Theorem A hold. 
Let h $_ (Hx U HY) — UC. Let 1 < j < p — 1. Then there exists q = 1 (mod p) 
with (q, H\) = 1 such that 

h9 = ujh. 

Proof. Let h = asp be, where (s, p) = 1, b G B, c G C. Let \C\ = m and let 
sf, m' satisfy s's = 1 (mod pa), and m'm = 1 (mod pa). Then it is easily seen 
that q = 1 + mm's'jpa~x~l has the desired properties. 
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For the remainder of Section 3 we assume that Hypotheses 1-6 in the above 
statement of Theorem A hold. 

LEMMA 3.2. TQ is conjugate to f for q = 1, . . . , k. 

Proof. We have assumed tr Tq = 77# for q = 1, . . . , k. Thus Tq C\ U* is 
non-empty. Let uj £ TqC\U* and let / = j(p) with (/, |77|) = 1. By Theorem 
1, f^l) is a Tf. Now since uj belongs to both Tt and Tq it follows that these 
orbits are the same and Tq = f^l). 

LEMMA 3.3. Let I = \T H U% n = |77|. Then 

(i) k = (p- 1)//, 

(ii) \Tq\ = (n- l)/kforq = 1, . . . , £, 

(iii) \(Tq)x\=^porq=l1...1k. 

Proof. Since each conjugate of f has / elements of U* and \U*\ = p — 1, 
it follows that f has (^ — 1)// conjugates; thus k = (p — 1)//. Since 7^ is 
conjugate to T, | r ç | = |T|. Moreover, 

U TQ w — 1 

since To = 1 and the 7^ are disjoint. Thus each Tq has order (w — l)/k. 
Since 7 \ is conjugate to T, Tq and T have the same number of elements of Hx 

and To has no such elements. Moreover, \HX\ = ((£ — l)/p)\H\. Thus we have 

LEMMA 3.4. 77*e coefficient of uj in ff{-l) is > | T X | for j = 1, . . . , p — 1. 

Proof. By Lemma 3.1 for x G Tx, there is a g = 1 (mod p) with (q, n) — 1 
such that w~% has non-zero coefficient in TiQ). By Theorem 1, f{q) = 7\ for 
some i. But uq = u since g = 1 (mod £). Thus u belongs to both T and Tu 

and 7" = Tt. We conclude that w~J'x Ç T. Thus x^V" - 1) contributes to the 
coefficient of uj in TT{~1) for all x £ 7^Y, so this coefficient must be >|7\Y(. 

LEMMA 3.5. 77ze coefficient of h £ 77 m ff{~l) is > |T X | . 

Prflo/. By Theorem 1, f (~1} G i?(i7, d ) holds and 

Since each 7\ has an element of U* and each element of U* has coefficient 
> | r x | , we have 7* > |TX | for i = 1, . . . , &. Clearly 70 = \T\ > [ r x | , and 
h Ç 77 belongs to some TV 

THEOREM A. k = 1. 
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Proof. By Lemma 3.5 we have that 

|2T<-»| = \T\* > \TX\\H\. 

By Lemma 3.3 we have 

| r | = ( * - 1)/* 

and 

Thus we have 

( n - l \ \ p - l n p - l ( n - l ) 2 

\ k J > p kn> p k 
and 

p - 1 

Since k is a positive integer, it follows that & = 1 and Theorem A is proved. 

4. Proof of Theorem B. Throughout Section 4 we assume the hypotheses 
of Theorem B. We begin with two important lemmas. 

LEMMA 4.1. Let R C H such that R is rational. Then 

(Rx VJ RY) - ujC Ç R(uj) forj = l , . . . , p - l . 

Proof. Let h G (RX^J RY) - ujC. By Lemma 3.1 if h G UC, there exists 
q prime to \H\ such that hQ = u~jh. For h = t^c, i ^ j (and 0 < i < £ — 1), 
c f C, such a g obviously exists. Now A~ff = h~luj G i? holds by the rationality 
of R. Thus we have h G R(uj). 

LEMMA 4.2. Le/ x G i lx ^wd fe/ R Ç^ H such that R is rational. Let 
1 < J < P — 1- ^A^w if & belongs to R(x) — R(uj), the element uùh~xx belongs 
to R(uj) - R(x). 

Proof. Let h,h~lx £ R. If h & R(uj) we have by Lemma 4.1 that 
/* G Ry^J Rz- h~lx therefore lies in Rx. We may now conclude by Lemma 3.1 
that ujhrlx G i? x holds, and Lemma 4.1 now tells us that ujh~lx G R(uj) 
holds. We now assume that ujh~lx G R(x). This means that (ujh~lx)~lx = 
u~jh G i? and by the rationality of R we would have u*hrx G R. This contra
dicts h i R(u3). Thus we have ujh~xx G i?(^0 — R{x). 

LEMMA 4.3. Let x G Hx and let R Ç. H such that R is rational. Let 
1 <j < P - land \R(x)\ = \R(u% Let k G R(uj) - R(x). Then 

(i) * 6 Hx, 
(ii) w-̂ jfe G i?(x), 

(iii) k-'x £HZ\J (ur'Q. 
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Proof. By Lemma 4.2, h —> ujh~lx is a 1-1 map of R(x) — R(uj) into 
R(uj) — R(x). Since \R(x)\ = |i?(w')l> this map must be onto R(uj) — R(x). 
Thus there exists h £ R(x) — R(uj) such that 

k — ujh~lx. 

Because of Lemma 4.1 we may conclude from h g R(uj) that h $ Hx. Thus 
k = ujh~lx G # x holds. Moreover, w~y& = hrlx G i?(x) holds since (^-1x)_1x = 
h e R. By Lemma 4.1, h £ RZKJ (ujC) holds since A $ R{uj). Therefore 
k~lx = u~jh belongs to Hz unless h G C, in which case we have k~lx G z£_iC. 

LEMMA 4.4. Let x G 5X , 1 < j < p — 1, awd & G 5(^0- ^ ^ w £ -1# € S holds 
whenever any one of the following four conditions are satisfied: 

(i) * <2 Hx, 
(ii) u~ik G S(x) for some i such that 1 < i < p — 1, 

(iii) jfe-1* € HZ\J (uC)y 

(iv) jfe"1^ g Hz and p 9* 2. 

Proof. S is rational and |5(x)| = 1-5(̂ 01 for z = 1, . . . , £ — 1 by Lemma 2.1. 
If k~lx G S we have & G 5(^0 — S(x). Thus & G Hx by Lemma 4.3 and 
k G S(V) — 5(x) by Lemma 4.1 for i = 1, . . . , £ — 1. Thus we have by 
Lemma 4.3 that 

(i) * G ffx, 
(ii) u~ik G 5(x), i = 1, . . . , £ — 1, 

(iii) &-1* G tf z ^ (w-*C), i = 1, . . . , p - 1. 
If p is odd we cannot have k~lx G u~iC for all i = 1, . . . , p — 1 and we 
conclude that k~lx G Hz. 

Remark. Lemma 4.4 allows us to conclude that certain elements k~lx lie in 5. 
This will enable us to determine S and in the case S 9e H* we will be able to 
get information about the structure of H from S. 

LEMMA 4.5. Let c G Ci, the set of elements d G C for which some element aQd 
belongs to 5, where (g, p) = 1. Then 

(i) Sxi = Ax Cu 

SY
l =AYCic if p *2, 

Sy1 - uC = (AY- {u})CiC ifp=2. 

Proof. Since Ax = tr(a) and for d G Ci, trad = tr a tr d, it is immediate 
from the definition of C\ that Sx

l = Ax Ci. 
For d G Ci, (5, £) = 1, 0 < X < a - 1 we have * = a 1 " ^ d G 5(«0 by 

Lemma 4.1, and x = ac £ Sx. Moreover, 

jfe-i* = ( a 1 - ^ ) " 1 ^ = a**d-lc. 

If /> ^ 2 or X 9* a - 1, Lemma 4.4 implies a^V" 1 c G 5. If p = 2, X = a - 1, 
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we have aspX dr1 c G uC. But G = {d~l\d G Ci} since S is rational. Thus we 
have 

SY1 2 A Y G c lip 5*2 

and SY1 2 (A Y — u) G c in any case. 

Now let yd G SY
l - UC, y G A,d G C. By Lemmas 4.1 and 4.4, y^ad^c G 5 

holds. This is clearly an element of ylx C. Hence from the definition of G we 
conclude that d~lc, and hence dc~l, belongs to G and d belongs to C\C. Thus 
SY1 — UC C (^4F — U)CiC. li p = 2, this completes the demonstration that 

SFi _ UC = ( 4 y - w)Cic. 

If £ 5* 2, let yd G £/#C H 5, say y = u\ d G C. Then if w' ^ «*, w> G Z7#, we 
have w w d G S since /S is rational. Thus we have uj~ld~l G S and w*d G S(uj). 
By Lemma 4.4 we have that (uld)~lac G 5. We conclude, as before, since this 
is an element of AXC, that d~lc and dc~l are in G and d is in G c. Thus we 
have U*C C\ S C U*C\C. This completes the demonstration, in the case p T* 2, 
that Sy1 = 4̂ r G c. 

LEMMA 4.6. G is a subgroup of C, 

Proof. G is non-empty by Lemma 2.2. We consider two cases. 

Case 1. p 7e 2. Let c, d £ G. We have a2c, ad G -Sx1, and (ad)~la2c = 
ad -1c g Hz. We conclude by Lemmas 4.4 and 4.5 that d~lc G G-

Case 2. p = 2. The additional hypothesis a > 3 allows us to conclude in 
this case that a2 G U, and Lemma 4.5 (ii) tells us that a 2 G c C 5V — uC = 
(AY — u)C\d for c, d G Ci. We conclude that G c = G d = G2 , G d2 = G 3 

for d G Ci, and |G | = |G3 | . But G C G 3 since d - 1 G Ci holds for d G Ci; 
thus Ci = G 3 and Ci2 = (G2)2. Ci2 is therefore a subgroup of C containing 
IGI elements. Since C is a ^-complement and we are considering the case 
p = 2, we conclude from |G | = |G2 | and the rationality of S that G 2 = 
{d*\d G G} = G. 

LEMMA 4.7. S1 - C = A*d if P * 2. S1 - J7C = (A* - u)Cx if p = 2. 

Proof. See Lemmas 4.5 and 4.6. 

LEMMA 4.8. Let 1 ?* b G B such that Sx
h is non-empty. Then 

(i) Sx* = Px>Cb, 

(ii) SY
b 3 i V G , 

(hi) \SZ* H P / G | > — ^ |Pz* G| , 

where G w /&e se£ of elements of C which occur as p'-part of some element of Sx
b. 

Proof. Let x G Px
b G, say x = a*6'c, where (5, p) = (/, £) = 1, c G G. By 

the definition of C6, some element aeblc must lie in 5 with (e, p) = (/, p) = 1 
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and since S is rational, there is an element aqblc G Sx. If ^ = 5 w e have x G S. 
If aq~s G £/#, we have by Lemma 4.1 that x = a8~qaqblc G S. If a*"5 £ A - U 
we have aç_s Ç S(u) by Lemma 4.7, and 

{aq-s)-l{aqblc) =x & HZ\J (£/C). 

We conclude by Lemma 4.4 that x G S. Thus in any case we have x G 5 and 
P x

& C& C Sx
b. But, by the definition of C6, no elements outside P x

& C6 can 
belong to Sx

b. 
Now let y G PY

b Cb. By what we have just shown, y~la G Sx
b holds, and by 

Lemma 4.7, a G 5 holds. Moreover, (^~1a)a_1 g i J z W (JJC) since £ ^ 1 and 
y G i2V. Thus again by Lemma 4.4 we have y G .S and PY

b Cb C S r
&. 

Now let z £ P z
b Cb. Again we have z~l a G Sx* and for z = (z~la)~la G 5 

we have by Lemma 4.4 that the p — 1 elements ulz~la lie in S (a) for i = 1, . . . , 
p — 1. This means that the elements w% must lie in 5 and they clearly lie in 
Pz

b Cb since b 5* 1. 
Thus with each z G P zbCb — 5 Z

6 we associate the p — 1 elements of £/#s 
which must belong to Sz

b- It follows that 

LEMMA 4.9. If Sx
b is non-empty, then Cb = C\. 

Proof. Let c G Ci, d G C&. a - 2 c f 5 j holds if p 5̂  2 and a - 2 c G SY — uC if 
p = 2. Moreover, arlbd G *Sx6 holds by Lemma 4.8. Thus since 

(ar*c)-l(arlbd) = afc^d G # x , 

we have by Lemma 4.4 that abc~ld G 5 holds. Thus we have c~ld G Cb for all 
c G Ci and Cxd CI Cb. 

Similarly, for c, d G C& we have a~2bc G Sx& if p ^ 2, a -3fc G ^x6 if P = 2, 
and a-1Z>d G -Sx& in either case. 

Again by Lemma 4.4 we have, since (a~2bc)~la~lbd = ac~ld G Hx and 

{arzbc)-la-lbd = aV"1** e HY - uC 

iip =2, that ac"1^ G 5 if £ ^ 2, and a2^1^ G 5 if p = 2. 
In either case, we have by Lemma 4.7 that c~ld G Ci and c G C\d\ hence 

Cb Ç Ci d. It follows that Cb = C\d for all d G Cô. We again consider two 
cases. 

Case l.p 9e 2. By Lemmas 4.8 and 4.4 we again have a~2b~2d~l, a~lb~ld G Sx
b 

and (a-2*-^-1)-1^"1*"1^) = aM2 G S*. We therefore have d2 G Cb = dd, 
d G Ci, and Cb = Ci d = Ci. 

Case 2. p = 2. For d G Cô, we have tf7-1 G C6 = C\ d, and d2 G Ci. Since Ci is 
a subgroup of order prime to 2, it follows that d G Ci and C6 = Ci d = Ci. 

We now introduce further notation which we use for the remainder of the 
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paper. We denote by Bx the set of b G B for which Sx
b is non-empty, and we 

put K = ABX d. 

LEMMA 4.10. 

(i) Kx = Sx; 
r x KyQSy ifP 5*2, 
W KY- uCQSy ifp = 2; 

(iii) \Kz
b nS\> ^ - i \Kz

b\for l^beB1. 
p 

Proof. See Lemmas 4.8 and 4.9. 

LEMMA 4.11. Let 1 < q < pa — 1, c G Ci, and if p = 2 , fej /J*-1 \ q. Then 

(i) S(a*c) C X, 

(ii) |S(a'c)l = |JT| - 2|X - S | . 

Proo/. [S]2 = [Sx]2 + 2S~X[SY + SZ] + [SY + S~Z]2. Clearly the contribution 
to \S(a)\ comes only from the first two terms. Since k~la G K holds for k G K, 
and 5x lies entirely inside K, we see that the full contribution to 15(a) | comes 
from [K]2; thus S (a) Ç i£. Now it follows from Lemma 4.10 that all elements 
h of K — S lie outside of Kx and satisfy h~la G Kx C 5. This means that 
|5(a)| is as small as possible since k £ S does not belong to S (a) precisely when 
k~la G S holds, and as many elements of K C\ S as possible have this property, 
namely one for every element of K — S. We therefore have that 
\S(a)\ = \K\ — 2\K - S\. It is easy to see that the contribution of [K — S]2 to 
\S(aQc)\ is at least \K\ - 2\K - S\ since &"1 a9 c belongs to K for all k e K. 
But \S(a)\ = \S(aq c)\. This completes the proof. 

LEMMA 4.12. Let 1 ^ b G Bi, such that PY
b is empty. Then 

\sz*nK\ >h\Kz»\. 
Proof. By Lemma 4.10 we have 

|s/n£|>^=-V/|. 
We assume that p = 2, and |SZ

& P\ i£| = ||i£z& |, since if not, there is nothing 
to prove. Since PY

b is empty, we must have \(b)\ = 2a~1. 
By Lemma 4.11 we have for q = 2, 6, and z G Kz

b that z and a~?s cannot 
both lie outside of K since |S(aff)| would then be too large. Thus with each 
z G Kz

b — S we have associated two elements, a~2z and a~6z, of Kz
h C\S. 

It follows that 
| i£z

&ns| > f|i£/| >\\KZ*\. 

LEMMA 4.13. K is a subgroup of H. 

Proof. K — ABi Ci, where A and C\ are subgroups of H. It suffices to show 
that B1 is a subgroup of H. We have 1 G J3i and since 5& = S6"1, it follows that 
b~l is in 5 i for b G J5i. Now let 1 >* fti, J2 G £ i . We shall show that br1 b2 G £ i 
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holds. If PY
n is non-empty, we have avb\ G 5 by Lemmas 4.8 and 4.9 and 

(avbi)~l x G S for x G Sx by Lemmas 4.1 and 4.4. Since ab2 G Sx also holds 
(again by Lemmas 4.8 and 4.9), we have by Lemmas 4.1 and 4.4 that 
(avb\)~lab2 = al~vbrlb2 lies in S; hence bf1b2 is in B\. 

If PY
bl is empty, we have by Lemma 4.12 that at least one pair {z, z~Hi] 

from Kz
bl must belong to S. Then {zs, z~s us} C 5 will hold for (s,!#|) = 1 

and for an appropriate such 5 we get an element zs = aqb\ c G S(us), where 
q = 0 (mod p), c G Ci. By an argument similar to the one just given we get 
ab2 c G Sx, z~sab2c = a1~qbf~1b2 G S, and ô i - 1 ^ G B\. 

LEMMA 4.14. X# c S. 

Proof. Assume the contrary. Let l^k^K — S.k must belong to KY^J Kz 

since Kx £ 5, and to some Su i > 2. Since (5*) = i7 by Theorem 1, Si has an 
element x G i / x . By Lemma 2.1, we have |S(x)| = |<S(&)|. As before we have 

[Sf = [Xx]2 + ÏKxîSy + 5^] + [ ^ + S^]2. 

Since x G i£x, the first term does not contribute to \S{x)\ (because K is a 
subgroup). Since x G HXl the third term does not contribute. Thus 
\S(x)\ = 2\KX H S(x)\. Let h £ Kx C\ S(x). Then ^ x f S - I holds since 
x £ K. 

UaQh £ Kxn S(x) held, we would have arqhrlx € S - K. Hence aq hx~l G 
S — K and A_1x G S(aq), which cannot happen by Lemma 4.11 unless a'1 = 1 
(or aq = uiip = 2) since then S (a9) Ç X holds. It follows for A G Kx C\ Six) 
that aqh £ Kx - S(x) for g = jpa~l and j = 1, . . . , p - 1 if p ^ 2, and for 
g = 2, 6 if £ = 2. Thus only one of p elements of Kx can belong to S(x) if 
p 7e 2 and one of three elements if p = 2, since a2Ai = a6A2 cannot occur for 
Ai, fe G i^x ^ S(#) by Lemma 4.4 if a = 3 and by the above argument if 
a ^ 3. In any case we have 

|S(x)| < 2\KxnS(x)\ < 2.11^1 < \KX\. 

Now for A G Xx, A"1* G i^x holds since k £ KY\J K z. Thus Kx C £(&) and 
|i£x| < 15(^)1 = |<S(x)|, contradicting the above inequality. Thus our assump
tion k G Su i > 2 is wrong and we conclude that i£# C 5. 

LEMMA 4.15. Le/ h £ H* - S. Then \S(h)\ < 2. 

Proof. Let h £ Sif i > 2. As above, let x G (S*)*. We again have 
|S(x)| = |S(A)| and |S(x)| = 2\Kxr\S(x)\. Let jfelf &2 G X x H S ( x ) . Then 
&1-1 x, k2~

l x £ S — K since x G K. Thus (&1-1 x ) - 1 £ S — K holds and &L ̂ 2
_1 

has non-zero coefficient in [S - K]2. Clearly [K*]* = |X# | -T+ [|Z#| - 1]Z#. 
By Lemma 4.11 we have \S(a)\ = \K\ — 2 and if k\ ?* k2, the coefficient of 
k\ k2~

l in [i£#]2 is \K\ — 2. Thus since we have a further contribution to 
ki k2~

l from [S — i£]2, we have a contradiction to |5(a)| = \S(ki k2~
l)\ unless 

*i = £2. Thus | i £ x n S ( x ) | < 1 and |S(A)| = |5(x)| = 2\Kxr\S(x)\ < 2. 

LEMMA 4.16. Let A G 5, A2 ^ 1. rAerc A2 G 5. 
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Proof. |SO)I = \S{a)\ > \K\ - 2 > \A\ - 2 > 6. Thus we may choose 
x, y G S (A) with x ? {)/, 3'_1A}. Then 

{x-1, y^A, y~l, x~lh) Ç S^-^-^A). 

We have \S{x~ly~lh)\ > 2 unless x_1 = ;y_1A and 3>_1 = x~lh in which case 
x_1 = x~lh2, contradicting A2 9e 1. Moreover, x~1y~1h 9e 1 since x was assumed 
different from y~1h. Thus we may conclude by Lemma 4.15 that x~1y~1h G S. 
Since {x~\ y~l, h~l, x_1y~lh} Ç ^ x - 1 ) - 1 ) we have by Lemma 4.15 that 
x-iy-i = 1 or x~ly~l G S. If x - 1 ^ - 1 G 5 we have xy G S (because >S is rational) 
and {x, A, xy, y~lh] Ç S(xA). By Lemma 4.15 we conclude that xh £ S unless 
xh = 1. If x"1^ - 1 = 1, we have xA = y~lh G S. In any case we have xh G S 
unless xh = 1. By a similar argument we conclude that yh £ S unless yh = 1. 
If xA and yh are both different from 1, we have {A, xA, x~lh, yh,y~lh] Ç S (h2) ; 
thus h2 G 5 by Lemma 4.15. If xA = 1 we have A2 = x~lh G 5; and if yh = 1 
we have h2 = y~lh G S. 

LEMMA 4.17. Let h G S. rAerc (A}# ç S. 

Proof. If |(A)| = 2, there is nothing to prove. If \(h)\ = 3, see Lemma 4.16. 
U\(h)\ = 4, we have h2 G S by Lemma 4.16 and A3 = h~l G 5 by the rationality 
ofS. 

We now assume that \{h)\ > 5. Then we have A2, A4 G S by Lemma 4.16, and 
A3 G S by Lemma 4.15, since {A, A2, A4, A"1} Ç SO3). 

We now proceed by induction. We assume that A* G S for i = 1, . . . , m, 
where 4 < w < |(A)| - 1. Then {A, Aw, A2, A™"1} ç S(A™+1) and Aw+1 Ç S by 
Lemma 4.15. 

LEMMA 4.18. Let h G S, awd te/ Af /3# a subgroup of H maximal with respect to 
being contained in S VJ {1} and containing h. Then M* = S {h) \J {h}. 

Proof. That such an M exists follows from Lemma 4.17. Clearly since 
M C S U {1} is a subgroup and h G M, we have M* Ç S (A) \J {h}. Suppose 
there exists x G S (A) — ilf. Then x~lh G S (A) — M. By Lemma 4.17 we have 
<x)#, {x~lh)* Ç S. We claim that «x)ilf)# Ç S. 

Let j < |<x)|, 3/ G M, x ^ ^ 1. If xj G M, we have xj y G M# Ç S. Suppose 
now that xJ G M. If y G (x) we have xjy G (x)# Ç S. Thus we may assume 
that y G (x). If y = hr1, we have x~lh G S; hence xh~x = xy G S. If y 9^ h~l, 
we have hy G M* Q S, {x, y, xh~\ hy} Q S(xy) and |{x, 3/, /ry}| = 3 since 
^ ^ 1 and x & M. Moreover, xy 9e- 1 since x & M. Hence we have xy G S by 
Lemma 4.15. Now {x3, y, xy, xj~1} Ç S(xjy) and \{xj, y, xy}\ = 3 since x ^ 1 
and y G (x). We conclude by Lemma 4.15 that xjy G S; thus ((x)M)# Ç S, 
contradicting the maximality of M. We therefore have S (h) CI lf#; thus 
5(A) U {A} Ç M # U {A} = Mt 

LEMMA 4.19. Let x,h,k G S sz/cA /Aa* x G (S(A) U {A}) Pi (5(A) U {A}). 
Then S(h) W {A} = S(A) U {A}. 
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Proof. By Lemma 4.18 we have S{h) U {h} = S(x) U {x} = S(k) U {k}. 

LEMMA 4.20. K is a maximal subgroup in SU {1}. 

Proof. Let M be a maximal subgroup in 5 U { 1 | containing K. Since 
a £ K,we have |5(a)| > |Af| - 2. By Lemma 4.11 we have \S(a)\ < \K\ - 2. 
It follows that K = M. 

LEMMA 4.21. Let K = Hi, . . . , He be a complete set of maximal subgroups in 
SU {1}. Then \Ht\ = \HS\ > 2 for i J = l,...,e. 

Proof. By Lemma 4.18 for h £ Hu k € Hjt we have Ht = 5(A) U \h\ and 
if, = S(k) U {k}. h € S(h), k (2 S(jfe) since 1 £ 5. Thus |#*| = \S(h)\ + 1 = 
\S(k)\ + 1 = \Hj\ and | ^ | = \K\ > \A\ > 8. 

LEMMA 4.22. Z ^ X = iJi, . . . , He as above. Then H = Hx X . . . X He. 

Proof. (S) = ZTi. . . He = H by Theorem 1. HiC\Hj = 1 for i ^ j by 
Lemma 4.19. h £ H can be written in the form 

h = hi. . . he, ht Ç i7z-, i = 1, . . . , e. 

We say that h £ H has "length" £ if the number of ht ^ 1 in some such 
representation of h is /. I t suffices to show that no element of length one has 
length greater than one as well. Suppose the contrary and choosey > 1 minimal 
such that h of length one is also of length j . We have S = H^ + . . . + H/. 
Since \Ht\ = \Hj\ for i, j = 1, . . . , e we have that in 

ï = l ii<i2---<ij 

each element of S has the same coefficient in the first term. Because of the 
minimality of j , each element of S has the same coefficient in the third term as 
well (since the elements of S are precisely the elements of length one). In the 
second term h occurs with non-zero coefficient. Since [S]j is a linear combination 
of the Siy a and h have the same coefficient in [S]j. Thus a must also be of length 
j , say a = Xi. . . Xj, where xt 9e 1 for i = 1, . . . ,j and each xt is from a 
different Hs. Since Sx = Kx = (H^x, a is not in H2 . . . He since all elements 
of H2. . . He are of the form aqvbc. Thus some xu say Xj, is in Hi. Then 
axj~l = Xi . . . x ;_i. If Xj 9e a, we have axf1 Ç 5 written as an element of 
length j — 1, contradicting the minimality of j unless j = 2. If j = 2, we have 
axf1 = Xi; but Xi and Xj come from different Hs. Iî a = xjt we have 
xi . . . Xj-i = 1 and j ^ 2 since Xi ^ 1. Now xjj^ = xi . . . x3--2 is a word of 
length one and j — 2, contradicting the minimality of j unless j = 3, in which 
case X2-1 = Xi, which cannot occur. This completes the proof of Lemma 4.22. 

THEOREM B. G is doubly transitive unless H = Hi X . . . X He where e > 1 
and \Hi\ = \Hj\ > 2 for i, j = 1, . . . , e. 
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Proof. Let Hh . . . , He be as in Lemmas 4.21 and 4.22. If e > 1, there is 
nothing to prove. If e = 1, we have 5 = Hi = H*. This means that r = 1 in 
the notation of Theorem 2, and Hypothesis 6 of Theorem A is satisfied. Thus 
G is doubly transitive. 
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