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Abstract

A class of discrepancy principles for the choice of parameters for the simplified regular-
ization of ill-posed problems is proposed. This procedure does not require knowledge of
the unknown solution, and if the smoothness of the unknown solution is known then the
convergence rate obtained is optimal. The results of this paper include the Arcangeli's
method considered by Groetsch and Guacaneme (1987) for which the convergence rate was
not known and also of a result of Guacaneme (1988) for which there is a gap in the proof.

1. Introduction

Many inverse problems of mathematical physics and problems of remote sensing lead
to the solution of a Fredholm integral equation of the first kind,

b

k(s, t)x(t)dt = y(s), a <s < b,

where the kernel k(.,.) is a nondegenerate square integrable function and y(.) is a
known 'data' function. This problem is, in general, ill-posed in the sense that even
if a unique solution exists, the solution need not depend continuously on the data y.
Using operator notation the above equation takes the form

Tx = y (1)

with operator T : L2[a, b] —*• L2[a, b] defined by

(7\x)0) = / k(s, t)x(t)dt, a <s <b.
Ja
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The operator T is compact, and since the kernel k(.,.) is nondegenerate its range
R(T) is not closed in L2[a, b] which results in the ill-posedness of (1) (see [4]).

A well known method for the regularization of (1) is the Tikhonov regularization
where the solution xa of

(T*T+aI)xa = T*y, a > 0 (2)

is taken as an approximation of JC. This procedure is considered extensively in the
literature. (See Groetsch [4] and the references therein.) We note that T*T is a
positive semi definite operator so that (2) is well posed in the usual sense, that is, for
each a > 0, (2) is uniquely solvable and the solution depends continuously on the
data y.

If the kernel k{.,.) is symmetric, that is, k(s, t) = k(t, s) then the operator T itself is
a positive semi-definite operator and in that case a simplified regularization procedure
can be used instead of the Tikhonov regularization. This procedure, introduced by
Schock [11], has computational advantages over the Tikhonov regularization. We
shall consider this in the general frame work of operators on a Hilbert space.

Let A be a positive semi definite operator on a Hilbert space H with non closed
range R{A) and g e R(A). Consider the operator equation

Aw = g. (3)

The non closedness of the range R(A) leads to the ill posedness of (3). (See Gro-
etsch [4].) We note that taking A = TT*, g = y and x = T*w the equation (1) takes
the form (3). Also the normal form of (1), namely T*Tx = T*y, is of the form (3)
with A = T*T and g = T*y. We consider the simplified regularization of (3), where
the solution wa of the well-posed problem

(A + aI)wa = g, a > 0 (4)

is taken as an approximation. It is shown in [11] that wa —> w as or —>• 0 and (wa)
has better convergence properties than the approximation obtained by the Tikhonov
regularization of (1). Here w is the unique element in the orthogonal complement of
the null space of A such that Aw = g. It is also known (Schock [9]) that if w e R(A"),
0 < v < l.then

. (5)

In practical situations one may not have the data g exactly, instead one may have
gs such that gs —> g as S —> 0. In that case we replace the right-hand side of (4)
by gs and consider the corresponding solution w*a, that is, ws

a is the unique solution
determined by

(A+aI)ws
a=gs. (6)
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The point now is to choose the regularization parameter a = a (8) depending on
the error level 8 such that a (8) -» 0 and io*(5) —> w as 8 —> 0. We assume that
llg - gs\\ < 8. It is known (Schock [9]) that if w € R(AV), 0 < v < 1, and
a(8) = c8i/(v+l), then

and this rate is optimal. In a posteriori choice strategies, the parameter a is determined
during the course of computation of w&

a. Such methods are considered by many authors
for the Tikhonov regularization and its general forms. (See, for example, Engl [1],
Engl and Neubauer [3], Engl and Gfrerer [2], Schock [10], Nair [8],and the refer-
ences therein). For the simplified regularization of (3), Groetsch and Guacaneme [5]
considered an analogue of Arcangeli's method, namely,

\\Aws
a-g

s\\=8/V^, (V)

and proved that if a = a (8) is chosen according to (7) and A is, in addition, a compact
operator, then w*a —> w as 8 —*• 0. But no attempt has been made to obtain estimates
for the error \\w — u>£ ||. It is the purpose of this paper to prove the convergence and
also to obtain error estimate under a general class of discrepancy principles,

\\Aws
a-g

s\\=^, p>0,q>0,

which is valid for 0 < p < q+\. If the smoothness of the solution w is known, namely,
w € R(otv), 0 < v < 1, then by taking p = (q + l)/(v + 1) our result provides the
optimal rate O(8v/(v+1}). As a particular case, the discrepancy principle (7) gives the
rate O(8i/3), and the best rate O(51/2) is obtained when v = 1 by taking p = (q + l)/2.

The result for the case v = I has also been considered by Guacaneme [6] which
came to the notice of the authors after they communicated the first draft of the paper.
In fact, the proof of the main result of Guacaneme ([6, Theorem 2.3]) is not complete
as he uses the estimate O(8l~p/(g+l)) for 8/oc which is not immediate from the estimate
a = O(8p/iq+i)) ([6, Lemma 2.1]).

2. The Main Results

For the determination of the regularization parameter a = a(8) for the simplified
regularization of (3) with inexact data gs such that \\g — gs\\ < 8, we consider the
discrepancy principle

* * 8p

\\Aws
a-g

s\\ = —, p>0, q>0, (8)

where ws
a is the solution of (6). We assume that O ^ ^ e R(A). For given q > 0, let

&
a-g

&\\\ a>0.
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LEMMA 1. The function <p(a) is continuous and strictly increasing for a > 0, and
satisfies lim^o <f>(ce) = 0 and lim^oo <t>{a) = oo.

PROOF. We observe that

It is seen that

and

4>'(a) =ah>+x [2q{{A + aiy2g',gs) + 2((A +aiy*Ags, gs)}
> 0

for a > 0. Thus <p(a) is continuous for a > 0, <p(a) —>• 0 as a —> 0, 0(a) —̂  oo as
a -»• oo and 0 (a) is strictly increasing for a > 0.

LEMMA 2. For eac/z 8 > 0, ffcere eww a unique a = a(8) satisfying (8). Further
a (5) -> OasS -> 0.

PROOF. By Lemma 1 and the intermediate value theorem, it follows that there exists
a unique or = a (8) satisfying (8). The result a (5) —> 0 as 8 —> 0 follows using the
arguments as in Schock ([10, Lemma 1]).

THEOREM 3. If a = a(8) is chosen according to (8), then a(8) = O(8p/i<l+i)). If, in
addition, p < q + 1, then &/a(8) = O(8m), m = (q + 1 - p)/(q + 1), and ws

a -+ w
as 8 -+ 0.

PROOF. First we note that

< WAw'j
_ \\A(Aws

a-g*
a

8"
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Therefore,
,+ 1 ^8"{\\A\\+a)

01 ~ \\8S\\ '
so that

a = O(8p/(q+l)).

We note that

^ = \\Aws
a - gs\\ = \\awsj < a(\\ws

a - wa\\ + \\wa\\). (9)

But wa - ws
a = (A + al)~\g - gs) so that

IIWo - « > * | | < - • (10)
a

Also ||iua|| = \\(A +aI)~iAw\\ < \\w\\. Therefore we obtain

8" (8
a , - . - 'IMI-

Now using the estimate a = O(8p/{q+])), we get

S

a

and since p < q + 1

- = O(8m), (11)
a

where m = (q + 1 — p)/(q + 1). To prove the convergence we first note that
\\w-wsj < \\w-wa\\ + \\wa-w

sj. LetRa =a(A+aI)~l. Then w - wa - Raw,
so that using (10) and (11) it is enough to prove that Ra(syw —> 0 as 8 —> 0. But
ll#«ll < 1 for every a > 0 and for any u € R(A), \\Rau\\ = \\RaAv\\ < a\\v\\ for
u = Av, so that Rau —>• 0 as a -> 0 for every M in R(A). Therefore by using the fact
that R(A) is a dense subspace of the orthogonal complement of the null space of A
and \\Ra\\ < 1, it follows that Ra(i)W —> 0 as 8 -» 0. This completes the proof of the
theorem.

THEOREM 4. Let w e /?(/*"), G < v < 1, ? > 0, p <q + \ and a = a(8) be chosen
according to (8). Then

(i) \\w-w'j =
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where s = min{pv/(q + 1), 1 — p/(q + 1)}. For a fixed v the best rate is obtained
when p = (q + l)/(v + 1) which gives a = O(51/(w+1)) and

PROOF. From (5) and (10) we have

II w - w'j < ||w - «;o|| + ||u>o - u>o|| = O(av) + O(8/a),

so that the result in (j) follows from Theorem 3. If p = {q + l)/{v + 1) then
pv/(q + 1) = (q + 1 - p)/{q + 1) so that <9(a") = O(8/a) = O(8v/(v+1\ proving

COROLLARY 5.1fw e R(AV), 0 < v < 1 and a = a(8) is chosen according to (7),
then

\\w-w5J = O(8k),

where k = min{2v/3, 1/3}.

REMARK. From Theorem 4 it follows that the best rate 0(<51/2) is achieved for w e
R(A) by taking p = (q + l)/2, in particular for p = 1 = q.

In the case of the general ill-posed problem (1), if A = TT*, g = y, gs = ys and
JC* = T*ws

a, then x&
a is the Tikhonov regularized solution of (3) with / in place of y,

and the discrepancy principle (8) is the same as the one considered by Schock [10] and
subsequently by Guacaneme [7] and Nair [8], namely \\Txs

a — ys\[ = 8p/aq. But the
estimate in Theorem 4 does not help directly to deduce the results in [10], [7] and [8].

If we use a different definition of the noise level, namely, ||_y — ys\\ < 8/c with
||y*|| < c, then the discrepancy principle \\T*Txs

a - T*y*\\ = 8p/aq considered by
Engl [1] and Engl and Neubauer [3] is of the form (8) with A = T*T, g = T*y,
g5 = T*ys and ws

a = xs
a. The estimate a = O(8"nq+l)) of Theorem 3 can be used to

obtain the optimal estimate of [1] and [3] as follows :
We observe that

wa-w'a = (A + a/)"1 (g - g5) = {T*T + a)"1 r (y - / )

so that ||tuo - w'a || = 0{8/Ja) and hence from (9),

8"

= O(8p/(q+{))

for p < 2(q + 1), and hence

— = 8x-pl^ (-Y = O(8l-p/2(q+l))
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Therefore if p < 2(q + 1) and 0 < v < 1, then we have

where h = min{/?v/(<7 +1), 1 - p/2(q +1)}, so that the optimal estimate O(82v/l2v+l))
is achieved for p = 2(q + l)/(2v + 1).

In general the simplified regularization is recommended when the operator T under
consideration is positive semi-definite, because in this case the methods in [1], [10]
etc, involve more computation as for such operators we have TT* = T2 = T*T.
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