geometry of the algebraic theory are discussed by Bôcher and Salmon, in many text-books on Projective Geometry like Veblen and Young, and in a Cambridge Tract by Bromwich.

The chief difference between the examples of the present note and the theory of the books mentioned, lies in the use of Cartesian co-ordinates in place of the more usual homogeneous co-ordinates. While the latter system is preferable in projective and advanced general work, Cartesian co-ordinates should surely not be entirely neglected, and indeed they have certain advantages for the present purpose. Their use is more elementary, and likely to be more familiar to the students for whose instruction the above examples are suggested. Also ideas of length and perpendicularity, and the geometrical interpretation of the orthogonal transformation are simpler in rectangular Cartesian co-ordinates than in any other. It will be found that all the examples discussed above are based on these ideas.

James Hyslop.

Conditions obtained by Multiplication of Determinants.

The condition that $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ should represent two straight lines can be obtained very easily by considering the product

$$
\left.\left|\begin{array}{lll}
l, & l^{\prime}, & 0 \\
m, & m^{\prime}, & 0 \\
n, & n^{\prime}, & 0
\end{array}\right| \begin{array}{lll}
l^{\prime}, & l, & 0 \\
m^{\prime}, & m, & 0 \\
n^{\prime}, & n, & 0
\end{array} \right\rvert\,
$$

which is equal to

$$
\left|\begin{array}{lll}
2 l l^{\prime} & l m^{\prime}+l^{\prime} m, & n l^{\prime}+n^{\prime} l \\
l m^{\prime}+l^{\prime} m, & 2 m m^{\prime} & , \\
n l^{\prime}+n^{\prime} l, & m n^{\prime}+m^{\prime} n, & 2 n n^{\prime}
\end{array}\right|
$$

and is identically zero.
For if $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is equivalent to

$$
(l x+m y+n)\left(l^{\prime} x+m^{\prime} y+n^{\prime}\right)=0
$$

then $\frac{l l^{\prime}}{a}=\frac{m m^{\prime}}{b}=\frac{m n^{\prime}}{c}=\frac{m n^{\prime}+m^{\prime} n}{2} \bar{f}=\frac{n l^{\prime}+n^{\prime} l}{2 g}=\frac{l m^{\prime}+l^{\prime} m}{2 h}$,
and hence

$$
\left|\begin{array}{lll}
a, & h, & g \\
h, & b, & f \\
g, & f, & c
\end{array}\right|=0 .
$$

A former ștudent, Mr H. M. Taylor, Clare College, Cambridge, sends me the following neat application of the same idea to the case of finding the condition that $a x^{4}+4 b x^{3} y+6 c x^{2} y^{2}+4 d x y^{3}+e y^{4}=0$ should represent the rays of a harmonic pencil. If the pairs of conjugate rays are

$$
\begin{aligned}
& l x^{2}+2 m x y+n y^{2}=0 \\
& l^{\prime} x^{2}+2 m^{\prime} x y+n^{\prime} y^{2}=0
\end{aligned}
$$

we have, for a $H . P ., \quad n l^{\prime}+n^{\prime} l=2 \mathbf{m m}^{\prime}$.

$$
\begin{align*}
\therefore & \frac{l l^{\prime}}{a}=\frac{n n^{\prime}}{e} \tag{1}\\
& =\frac{m n^{\prime}+m^{\prime} n}{2 d}=\frac{l m^{\prime}+l^{\prime} m}{2 b}=\frac{n l^{\prime}+n^{\prime} l+4 m m^{\prime}}{6 c} \\
& =\frac{n l^{\prime}+n^{\prime} l}{2 c}=\frac{m m^{\prime}}{c}, \quad \ldots \text { by }(1) . \\
\therefore & \left|\begin{array}{ccc}
a, & b, & c \\
b, & c, & d \\
c, & d, & e
\end{array}\right|=0 .
\end{align*}
$$

The same idea is employed in the course of the following method of proving that if $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y$ transforms into $\lambda_{1} \xi^{2}+\lambda_{2} \eta^{2}+\lambda_{3} \xi^{2}$ by a rotation of rectangular axes, then $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the roots of the discriminating cubic. If $\lambda_{1} \xi^{2}+\lambda_{2} \eta^{2}+\lambda_{3} \zeta^{2}$ is transformed, it becomes, with the usual notation,
$\lambda_{1}\left(l_{1} x+m_{1} y+n_{1} z\right)^{2}+\lambda_{2}\left(l_{2} x+m_{2} y+n_{2} z\right)^{2}+\lambda_{3}\left(l_{3} x+m_{3} y+n_{3} z\right)^{2} ;$

$$
\begin{array}{lll}
\therefore \quad & a=\lambda_{1} l_{1}{ }^{2}+\lambda_{2} l_{2}{ }^{2}+\lambda_{3} l_{3}{ }^{2}, & f=\lambda_{1} m_{1} n_{1}+\lambda_{2} m_{2} n_{2}+\lambda_{3} m_{3} n_{3}, \\
& b=\lambda_{1} m_{1}{ }^{2}+\lambda_{2} m_{2}{ }^{2}+\lambda_{3} m_{3}{ }^{2}, & g=\lambda_{1} n_{1} l_{1}+\lambda_{2} n_{2} l_{2}+\lambda_{3} n_{3} l_{3}, \\
& c=\lambda_{1} n_{1}{ }^{2}+\lambda_{2} n_{2}{ }^{2}+\lambda_{3} n_{3}{ }^{2}, & h=\lambda_{1} l_{1} m_{1}+\lambda_{2} l_{2} m_{2}+\lambda_{3} l_{3} m_{3},
\end{array}
$$

whence $a+b+c=\lambda_{1}+\lambda_{2}+\lambda_{3}$.
Again $b c-f^{2}=\Sigma \lambda_{2} \lambda_{3}\left(m_{2} n_{3}-m_{3} n_{2}\right)^{2}$

$$
=\Sigma \lambda_{2} \lambda_{3} l_{1}{ }^{2}
$$

and similarly $e a-g^{2}=\Sigma \lambda_{2} \lambda_{3} m_{1}{ }^{2}, a b-h^{2}=\Sigma \lambda_{2} \lambda_{3} n_{1}{ }^{2}$.
$\therefore \quad b c+c a+a b-f^{2}-g^{2}-h^{2}=\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}+\lambda_{1} \lambda_{2}$.

Further

$$
\left|\begin{array}{l}
l_{1}, l_{2}, l_{3} \\
m_{1}, m_{2}, m_{3} \\
n_{1}, n_{2}, n_{3}
\end{array}\right|\left|\begin{array}{lll}
\lambda_{1} l_{1}, & \lambda_{2} l_{2}, & \lambda_{3} l_{3} \\
\lambda_{1} m_{1}, & \lambda_{2} m_{2}, & \lambda_{3} m_{3} \\
\lambda_{1} n_{1}, & \lambda_{2} n_{2}, & \lambda_{3} n_{3}
\end{array}\right|=\left|\begin{array}{ll}
\Sigma \lambda_{1} l_{1}{ }^{2}, & \Sigma \lambda_{1} l_{1} m_{1}, \\
\Sigma \lambda_{1} n_{1} l_{1} \\
\Sigma l_{1} m_{1}, & \Sigma \lambda_{1} m_{1}{ }^{2}, \Sigma \lambda_{1} l_{1}, \Sigma \lambda_{1} m_{1} n_{1}, \Sigma \Sigma \lambda_{1} n_{1}{ }^{2}
\end{array}\right| .
$$

$\therefore \quad \lambda_{1} \lambda_{2} \lambda_{3}=\left|\begin{array}{lll}a, & h, & g \\ h, & b, & f \\ g, & f, & c\end{array}\right|$.
Using the values of a, b, \ldots above, it is easy to show that

$$
\frac{a l_{1}+h m_{1}+g n_{1}}{l_{1}}=\frac{h l_{1}+b m_{1}+f n_{1}}{m_{1}}=\frac{g l_{1}+f m_{1}+c n_{1}}{n_{1}}=\lambda_{1}
$$

and so to obtain the result, but the direct method is of some interest.

> R. J. T. Bell.

A Geometrical Proof for Hero's Formula.

The following proof is designed to link up" Hero's formula geometrically with the formulae for the trigonometrical functions of $\frac{1}{2} A$ in a triangle.

From the bisector of angle A let $A D$ be cut off equal to the mean proportional between $A B$ and $A C$, and let N be the projection of D on $A B$. The formulae $A N=\sqrt{s(s-a)}, N D=\sqrt{(s-b)(s-c)}$ are easily established geometrically, and are assumed here. Thus triangle $A N D$ gives directly the formulae for $\sin \frac{1}{2} A, \cos \frac{1}{2} A, \tan \frac{1}{2} A$. Hero's formula is thus represented by $A N . N D$. It is required to prove therefore that twice the area of triangle $A N D$ is equal to the area of triangle $A B C$.

Join $B D, D C$ and draw the pedal triangles $L M N, P Q R$ of the triangles $A B D, A D C$, which are similar since $A B: A D=A D: A C$. These triangles are then divided by their pedal triangles into similar component pairs, and the three triangles round a pedal triangle

