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Abstract
The aim of this study was to elucidate the relationship between the urinary metabolic fingerprint and the effects of cocoa and cocoa fibre on
body weight, hormone metabolism, intestinal immunity and microbiota composition. To this effect, Wistar rats were fed, for 3 weeks, a diet
containing 10% cocoa (C10) or two other diets with same the proportion of fibres: one based on cocoa fibre (CF) and another containing
inulin as a reference (REF) diet. The rats’ 24 h urine samples were analysed by an untargeted 1H NMR spectroscopy-based metabonomic
approach. Concentrations of faecal IgA and plasma metabolic hormones were also quantified. The C10 diet decreased the intestinal IgA,
plasma glucagon-like peptide-1 and glucagon concentrations and increased ghrelin levels compared with those in the REF group. Clear
differences were observed between the metabolic profiles from the C10 group and those from the CF group. Urine metabolites derived from
cocoa correlated with the cocoa effects on body weight, immunity and the gut microbiota. Overall, cocoa intake alters the host and bacterial
metabolism concerning energy and amino acid pathways, leading to a metabolic signature that can be used as a marker for consumption. This
metabolic profile correlates with body weight, metabolic hormones, intestinal immunity and microbiota composition.
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Cocoa is considered a great source of bioactive compounds
such as polyphenols and dietary fibre (DF), which have been
attributed consistent positive health effects(1–5). Cocoa contains
monomeric flavonoids, such as the flavanols (−)-catechin,
(+)-catechin and (−)-epicatechin, and mainly its oligomers and
polymers known as procyanidins. These polymeric compounds
are able to pass intact through the small intestine and reach the
colon(6), where they are metabolised by the intestinal micro-
biota. This conversion is crucial for their absorption and also for
the generation of new compounds with greater bioactivity than
their precursors(6–8). Thus, there is a growing body of evidence
on the reciprocal relationship between bacteria and poly-
phenols that may help understand the documented benefits of
polyphenols consumption(9). In fact, it has been extensively

reported that both dietary polyphenols, including those from
cocoa, and the corresponding microbially-derived phenolic
metabolites modulate the gut microbiota composition in in vitro,
in vivo and clinical studies(8,10–13).

A similar ability to modulate the gut microbiota composition
has been attributed to DF, which has been described to mod-
ulate SCFA production(14–18). Recently, cocoa fibre-enriched
intake in rats has been associated with the modulation of gut
microbiota and SCFA production(17). The DF fraction in cocoa is
mainly rich in cellulose, followed by highly fermented pectic
substances and hemicellulose, which is less fermentable than
the former(19). After microbial transformation, the cocoa meta-
bolites either from flavonoids or cocoa fibre (i.e. SCFA) are
absorbed into the bloodstream(20,21). The microbial metabolites
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from flavanols are mainly metabolised by liver phase-II
enzymes to conjugated derivatives that are subsequently elimi-
nated in urine(7).
Previous preclinical studies carried out in our laboratory

have evidenced that cocoa, cocoa flavanols and cocoa fibre
modify some aspects of the intestinal and systemic immune
response(2,13,17,22). On the other hand, a diet based on whole
cocoa, but not based exclusively on its flavonoids or fibre, is able
to reduce body weight gain(13,17,23). Given that this effect on
weight is not associated with a lower chow intake, it is necessary
to further understand the mechanism involved in such an
effect. In this sense, an untargeted metabonomic approach is
particularly useful, as it aims to determine the broadest range of
metabolites present in a biological sample without a priori
information. Thus, due to its exploratory nature, this hypothesis-
generating approach provides an unbiased screening of the
metabolites and can detect alterations in biological pathways to
provide an insight into their molecular mechanisms. Therefore,
the objective of this study was to correlate the urinary metabolic
variation associated with cocoa intake identified by 1H NMR
spectroscopy with the effects of cocoa on body weight, hormone
metabolism, intestinal immunity and microbiota composition.
Moreover, very limited data are available on the metabolic profile
after cocoa fibre intake and even less on the contribution of
cocoa fibre to the above-described effects ascribed to cocoa;
thus, it was also included as an aim of this study.

Methods

Animals and diets

Female Wistar rats (3-week-old) were obtained from Janvier
(Saint-Berthevin, France) and housed in pairs under conditions
of controlled temperature and humidity in a 12 h light–12 h dark
cycle. The rats were randomly distributed into three dietary
groups: 10% cocoa (C10), cocoa fibre (CF) and reference (REF)
groups (n 10 in each). The C10 group received chow containing
10% cocoa that provided a final diet concentration of 0·4%
polyphenols, 0·85% soluble fibre and 2·55% insoluble fibre; the
CF group received a diet with the same cocoa soluble and
insoluble fibre proportions as the C10 group but with a very low
amount of polyphenols (<0·02%); and the REF group received
the same amount of fibre as the C10 group, with the soluble
portion (0·85%) as inulin in order to distinguish the particular
effect of cocoa fibre, as has been previously reported(24).
Natural Forastero cocoa and cocoa fibre powders (provided by
Idilia Foods S.L., formerly Nutrexpa S.L.) with 4·02 and 0·35% of
polyphenols, respectively, were used to elaborate the C10 and
CF diets. Inulin from chicory roots (Fibruline® Instant; Innova-
Food 2005, S.L.) was used as a reference soluble fibre. The
three experimental diets were elaborated on the basis of the
AIN-93M formula by subtracting the amount of carbohydrates,
proteins, lipids and insoluble fibre provided by the corres-
ponding supplement. The three resulting diets were iso-
energetic and had the same proportion of macronutrients
(carbohydrates, proteins and lipids) and fibre as has been
previously stated(24). Animals were given free access to water
and food. The diets lasted for 3 weeks.

Body weight and food intake were monitored throughout the
study. Experiments were performed according to the Guide for
the Care and Use of Laboratory Animals, and experimental
procedures were approved by the Ethical Committee for Animal
Experimentation of the University of Barcelona (ref. 358/12).

Sample collection and processing

The 24 h urine samples were collected, by means of metabolic
cages, at 15 d after beginning the nutritional intervention.
Centrifuged urine samples were kept at − 80°C until analysis.
Moreover, blood samples were collected after 3 weeks and
plasma was kept at −80°C before metabolic hormones deter-
mination. Faecal samples were also collected at the 3rd week of
diet, and the homogenates were obtained as previously
described(17) and frozen at −20°C until analysis.

Sample preparation for 1H NMR analysis

Urine samples were defrosted and prepared for 1H NMR
spectroscopy by combining 400 µl of sample with 200 µl
of PBS (pH 7·4; 100% D2O) containing 1mM of 3-trimethylsilyl-
1-[2,2,3,3-2H4] propionate (TSP) as an external standard and
2mM sodium azide as a bacteriocide. Samples were vortexed
and particles were removed by centrifugation (13 000 g for
10min) before transferring 550 µl into a 5mm NMR tube.
Standard one-dimensional 1H NMR spectra of the urine samples
were acquired on a 500MHz Bruker NMR spectrometer using
a standard nuclear Overhauser effect spectroscopy (NOESY)
experiment incorporating a presaturation pulse to attenuate the
water signal. This experiment consisted of recycle delay (RD)-
90°–t1-90°–mixing time (tm)-90°–acquire free induction decay.
The water signal was suppressed by irradiation during the RD of
2 s, with a tm of 10 µs. The acquisition time was set to 2·91 s and
the 90° pulse length was 15·87 µs. For each sample, eight
dummy scans were followed by 128 scans and collected in 64K
data points using a spectral width of 16 parts per million (ppm).
Before data analysis, NMR spectra were phased, corrected for
baseline distortions and calibrated using the reference standard
TSP. 1H NMR spectra (δ 0·2–10·0) were digitised into con-
secutive integrated spectral regions (approximately 20 000) of
equal width (0·00055 ppm) using MATLAB (MathWorks). The
regions containing signals from urea (δ 5·5–6·0) and residual
water (δ 4·7–5·2) were removed to minimise baseline effects
arising from imperfect water suppression. Chemical shift vari-
ation was minimised across the data set by applying a recursive
segment-wise peak alignment algorithm to each spectrum. Each
spectrum was normalised to unit area to account for variation in
sample concentration.

Quantification of metabolic hormones in plasma

Plasma concentrations of ghrelin, glucagon, glucagon-like
peptide-1 (GLP-1) and leptin were determined in plasma
using the Bio-Plex Pro™ Diabetes Assay (Bio-Rad) according to
the manufacturer’s instructions. Analysis was carried out
with the Bio-Plex® MAGPIX™ Multiplex Reader and Bio-Plex
Data Pro™ software (Bio-Rad) as in previous studies(25).
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The limits of quantification can be found in the online
Supplementary Material.

Faecal IgA quantification

The concentration of IgA in faeces was quantified by ELISA
following the manufacturer’s instructions (Bethyl Laboratories,
Inc.). Absorbance was measured in a microplate photometer
(LabSystems Multiskan) and data were interpolated using
ASCENT version 2.6 software (Thermo Fisher Scientific) into
standard curves.

Statistical analysis

The number of animals used in each group for detecting a
statistically significant difference among groups assuming that
there is no dropout rate and type I error of 0·05 (two-sided) was
calculated by the Appraising Project Office’s program from the
Universidad Miguel Hernández de Elche (Alicante) taking into
account both the metabolic hormones, particularly the leptin
and ghrelin concentrations, and the faecal IgA. Moreover, we
have adjusted the sample size to the minimum needed by
following the University Ethical Committee guidelines and
trying to apply the three R’s rule for experimenting in animals.
Statistical analysis for body weight, chow intake, faecal IgA

and metabolic hormones was performed using the software
package IBM SPSS Statistics 22.0 (SPSS Inc.). Levene’s and
Kolmogorov–Smirnov tests were applied to assess variance
equality and normal distribution, respectively. Conventional
one-way ANOVA was performed when normal distribution and
equality of variance existed. Tukey’s test was applied when
specific cocoa intake had a significant effect on the dependent
variable. Non-parametric Mann–Whitney U and Wilcoxon’s tests
were used in order to assess significance for independent
and related samples, respectively. Significant differences were
established at P< 0·05.
Multivariate modelling was performed in MATLAB using

in-house scripts. This included principal components
analysis using pareto-scaled data and orthogonal projection to
latent structures-discriminant analysis (OPLS-DA) using a
unit variance scaling approach. Pairwise OPLS-DA models
were constructed to aid model interpretation and identify
discriminatory metabolites between the study groups. Here,
1H NMR spectroscopic profiles served as the descriptor matrix
(X) and the experimental groups (REF, C10, CF) were used
pairwise as the response variable (Y). Orthogonal signal cor-
rection filters were used to remove variation in the descriptor
matrix unrelated to the response variable to assist model
interpretation. Loading coefficient plots were generated by
back-scaling transformation where covariance is plotted
between the Y-response matrix and the signal intensity of the
metabolites in the NMR data (X). These plots are coloured
based on the correlation coefficient (r2) between each
metabolite and the Y-response variable, with red indicating
strong significance and blue indicating weak significance. The
predictive performance (Q2Y) of the model was calculated
using a 7-fold cross-validation approach and model validity
was established by permutation testing (1000 permutations).

Clustering analysis. Unsupervised hierarchical clustering ana-
lysis (HCA) was performed to identify general patterns of
metabonomic variation between samples. To do so, we used
the normalised levels of metabolites identified to contribute to
class separation through the OPLS-DA models. For comparative
analysis across different metabolites, data were standardised as
z-scores across samples for each metabolite before clustering,
so that the mean was 0 and the SD was 1. This standardised
matrix was subsequently used in unsupervised HCA for samples
and metabolites using Euclidean distance and average linkage,
by means of the pdist and linkage functions in the MATLAB
bioinformatics toolbox. Heatmaps and dendrograms following
HCA were generated with MATLAB imagesc and dendrogram
functions, respectively. In the heatmaps, a red-blue colour scale
is used such that shades of red and blue represent higher and
lower values, respectively, compared with the mean. Different
diet groups are colour-coded and shown under the dendrogram
for each sample.

Correlation analysis. To explore the functional correlation
between the changes on body weight, metabolism and intest-
inal immunity, metabonome perturbations and gut microbiome
evaluated in a previous study by fluorescence in situ hybridi-
sation coupled with flow cytometry, Spearman’s correlation
analyses were performed on all the samples grouped together.
The Benjamini–Hochberg method was used to adjust P values
for multiple testing considering a 5% false discovery rate.

Results

Body weight and food intake

Body weight and food intake were monitored weekly
throughout the study (Fig. 1). Initially, no differences in
body weight were observed between groups (REF: mean
43·7 (SEM 1·1) g; C10: mean 45·4 (SEM 1·4) g; CF: mean 44·8
(SEM 1·1) g). However, from day 7, a lower body weight gain
was observed in C10 animals compared with that in the other
groups (P< 0·05) (Fig. 1(a)). This effect was not related to lower
food intake, which was similar throughout the study among all
experimental groups (Fig. 1(b)), being approximately 15 g of
chow per 100 g of animal the 1st week of diet and approxi-
mately 12 g of chow per 100 g after the 3 weeks of intervention.
No changes in body weight gain were found as a result of CF
diet intake.

Metabolic hormones

The metabolic hormones quantified in plasma after the 3-week
dietary intervention for all groups are summarised in Table 1.
Both the C10 and CF diets increased the concentration of
ghrelin compared with the REF group (P< 0·05). This increase
was higher in the C10 group compared with that in the CF
group (P< 0·05). Both diets also resulted in a lower plasma
GLP-1 concentration in comparison with that in the REF group
(P< 0·05). Moreover, the C10 diet reduced the glucagon con-
centration compared with the REF and CF diets (P< 0·05).
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Leptin concentration was not affected after the C10 diet, but it
was up-regulated as a result of the CF diet intake compared
with that in the rest of the groups (P< 0·05) (Table 1).

Faecal IgA

The C10 diet intake resulted in a decrease in the secretory IgA
concentration compared with that in the other groups (P< 0·05)
(Fig. 2). The CF diet did not produce any change in the secreted
IgA concentration, which was similar to that quantified in the
REF group.

Urinary metabolic profile

An OPLS-DA model with strong predictive ability (Q2Y= 0·93;
P= 0·001) was returned comparing the metabolic profiles from
rats receiving the C10 diet and the REF diet (Fig. 3(a) and 4).
Rats fed the C10 diet excreted cocoa-derived metabolites such
as N-methylnicotinic acid (NMNA) and nicotine mono-
nucleotide (NMN), as well as methylxanthine metabolites,
that is, theobromine, xanthine, 1-methylxanthine (1-MX),
3-methylxanthine (3-MX), 7-methylxanthine (7-MX), imidazole,
dimethyluric acid (DMU). In addition, urine samples from
the C10 group contained microbial-derived metabolites
such as hippurate and 2-hydroxyisobutyrate (2-HIB), and
4-hydroxypropionic acid (4-HPA), phenylacetylglycine (PAG)
and indole-3-acetic acid (IAA), which could be derived from the
cocoa polyphenols (epicatechin and procyanidins), amino acids
(tyrosine, phenylalanine and trypthophan) or monoamines

(tyramine, tryptamine and 2-phenylethylamine) contained in
cocoa. Moreover, rats receiving the C10 diet also excreted
greater amounts of taurine compared with those receiving the
REF diet. Conversely, animals receiving the C10 diet excreted
lower amounts of metabolites related to energy metabolism
(acetone, citrate, 2-oxoglutarate (2-OG), N-methylnicotinamide
(NMND)), choline metabolism (dimethylamine (DMA), dime-
thylglycine (DMG), choline) and the metabolism of dietary
components (sucrose, glucose, tartrate) compared with those
receiving the REF diet. Other metabolites excreted in lower
amounts by the C10 group were those related to endogenous
amino acid metabolism (α-keto-isocaproate (αKIC), α-keto-
β-methyl-n-valerate (αKMV), β-hydroxy-β-methylbutyrate (HMB),
3-hydroxyisobutyrate, glycine) and metabolites arising from the
gut microbial–host co-metabolism of amino acids (3-indoxyl-
sulfate (3-IS), 4-cresyl sulfate (4-CS) and 4-cresyl glucuronide
(4-CG)). Sebacate, 4-guanidinobutanoate, creatinine, allantoin
and pseudouridine were also present in lower amounts in the
urine samples of C10-fed animals compared with those in the
REF group.

With regard to the CF diet, clear metabolic variation was
observed in the urine samples of rats fed this diet compared
with the samples of those fed the REF diet (Fig. 3(b) and 4;
OPLS-DA model Q2Y= 0·65; P= 0·001). Cocoa-derived meta-
bolites such as NMNA, NMN, theobromine, xanthine, 1-MX,
3-MX, 7-MX and DMU were found in the urine samples of rats
receiving the CF diet but not in that of those receiving the REF
diet. Moreover, rats following the CF diet excreted higher
2-HIB, IAA, citrate, acetone, NMND, sucrose, glucose, acetate

Table 1. Metabolic hormones in plasma after 3 weeks of nutritional intervention
(Mean values with their standard errors; n 7)

REF C10 CF

Mean SEM Mean SEM Mean SEM

Ghrelin (ng/ml) 30·57 3·9 98·63*‡ 18·7 43·59* 4·3
GLP-1 (pg/ml) 29·4 16·4 7·4* 3·1 4·2* 0·2
Glucagon (pg/ml) 180·1 25·3 100·4*‡ 3·1 166·2 26·9
Leptin (pg/ml) 647·7 135·5 335·4 127·5 968·7*† 177·6

REF, reference diet; C10, 10% cocoa diet; CF, cocoa fibre diet; GLP-1, glucagon-like peptide-1.
* P<0·05 v. REF diet, † P<0·05 v. C10 diet, ‡ P<0·05 v. CF diet.
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and tartrate than those following the REF diet, which are related
to microbial, energetic or dietary metabolism. Lower amounts of
4-HPA, hippurate, 3-IS, PAG, αKI, DMG, sebacate, 4-guanidi-
nobutanoate, ethanol, creatinine, allantoin and pseudouridine
were also measured in the urine samples of the CF group
compared with those in the REF group.
Finally, the OPLS-DA model contrasting the urinary metabolic

phenotypes from rats receiving the C10 diet and those fed the
CF diet (Fig. 3(c) and 4; Q2Y= 0·89; P= 0·001) also showed
some clear differences. As expected, rats consuming the

C10 diet excreted higher levels of cocoa- (NMNA, NMN),
catechin- and methylxanthine- (theobromine, xanthine, 1-MX
and 3-MX, imidazole, DMU) derivatives compared with that
of the rats fed the CF diet. The C10 diet-fed animals also
excreted higher amounts of 4-HPA, hippurate, PAG, IAA and
taurine. However, compared with the CF group, the C10
diet-fed animals eliminated lower amounts of 3-IS, acetone,
citrate, 2-OG, NMND, αKMV, HMB, DMA, choline, sucrose,
glucose, sebacate, 4-guanidinobutanoate, allantoin, pseudo-
uridine and fumarate.
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rat (n 8 for the reference (REF) and the 10% cocoa (C10) groups; n 5 for the cocoa fibre (CF) group), and each row corresponds to a specific metabolite. Metabolites
identified to contribute to the separation between diets through the orthogonal projection to latent structures-discriminant analysis models were used for sample
clustering. Metabolite z-score transformation was performed on the levels of each metabolite across samples, with blue denoting a lower and red denoting a higher
level compared with the mean. Metabolites and samples are clustered using correlation distance and average linkage and colour-coded by diet or pathway,
respectively. HCA grouped the urinary metabolic profiles from the C10-fed animals together and distinct from the other studied animals. Profiles from animals receiving
the CF diet clustered together and were separated from the REF diet. 4-HPA, 4-Hydroxypropionic acid; PAG, phenylacetylglycine; 3-MX, 3-methylxanthine; DMU,
dimethyluric acid; 1-MX, 1-methylxanthine; 7-MX, 7-methylxanthine; NMN, nicotine mononucleotide; NMNA, N-methylnicotinic acid; 2-HIB, 2-hydroxyisobutyrate;
DMA, dimethylamine; 4-GB, 4-guanidinobutanoic acid; NAG, N-acetylglycoprotein; DMG, dimethylglycine; 3-IS, 3-indoxyl-sulfate; HMB, β-hydroxy-β-methylbutyrate;
2-OG, 2-oxoglutarate; αKMV, α-keto-β-methyl-n-valerate; NMND, N-methylnicotinamide; 3-HIB, 3-hydroxyisobutyrate; αKIC, α-keto-isocaproate. , REF; , CF;

, C10; , amino acid metabolism; , gut microbial metabolism; , cocoa derived; , energy metabolism; , choline metabolism; , miscellaneous; , dietary.
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Correlations between urine metabolites and studied
variables

The correlation analysis of the urine metabolic fingerprint with
the effects of cocoa on metabolic hormones (ghrelin, GLP-1,
glucagon, leptin), body weight, intestinal immunity (by means
of intestinal IgA levels) and microbiota composition (reported
previously(17,26)) was also studied (Fig. 5). Globally, whereas
most of the studied variables were inversely correlated with
whole-cocoa metabolites, only the ghrelin concentration was
positively correlated with the amount of these metabolites. In
fact, the strongest correlations were found between ghrelin and
NMNA, 1-MX, xanthine and theobromine. Plasma glucagon
concentration correlated inversely with these metabolites
derived from cocoa, whereas it had a positive correlation with
choline and other metabolites. Body weight was inversely
correlated with cocoa metabolites and positively correlated with
those from the amino acid metabolism. Similarly, faecal IgA
concentration showed an inverse correlation with cocoa-
derived metabolites, whereas it was positively correlated with
choline metabolites and allantoin. Urinary metabolites were
also correlated with gut microbial groups previously identified
to change following both the C10 and CF intake(17). An inverse
correlation was found between the Streptococcus genus and the
excretion of epicatechin (cocoa derived) and 4-HPA (gut
microbial metabolism). In addition, a strong positive correlation
was observed between the Firmicutes:Bacteroidetes ratio and
choline-related metabolites, but an inverse correlation with
metabolites derived from cocoa.

Other correlations between studied variables

The correlation analysis between the effects of cocoa on the
metabolic hormones, body weight, intestinal immunity and
microbiota composition and functionality(17) has also been
studied (Fig. 6). When samples from all the groups were con-
sidered together, body weight correlated positively with both
plasma concentrations of glucagon and leptin, but negatively
correlated with plasma ghrelin concentration. In addition,
body weight showed a positive correlation with the faecal IgA
content and the Streptococcus genus proportion, among others.
The metabolic hormones showed significant associations

with the microbiota composition and functionality (Fig. 6).
Particularly, glucagon concentration was positively correlated
with the faecal counts of Bifidobacterium spp., whereas the
ghrelin concentration correlated inversely with Bifidobacterium
spp. proportion and the caecal butyric acid concen-
tration. Finally, faecal IgA was positively associated with the
faecal Streptococcus spp. counts and inversely with ghrelin
concentration.

Discussion

We have previously reported that a C10 diet in rats results
in a lower body weight increase, attenuates intestinal IgA
secretion and modifies gut microbiota composition(13,17,26–29).
In the present study, we demonstrate that cocoa intake alters
the metabolic hormones and results in a distinct urinary

metabolic pattern. Moreover, correlations between urinary
metabolites and those variables in which cocoa has an effect
(i.e. body weight, metabolic hormones and intestinal immunity)
were established, as well as between these modified variables.
In addition, we have also correlated all these variables with the
cocoa effects on microbiota composition and functionality from
a previous study(17). Interestingly, the effects of either whole
cocoa or cocoa fibre on the metabolic hormones and urinary
metabolic profiles were different, which reflects the role of non-
fibre cocoa compounds as well as the interaction between fibre
and non-fibre cocoa compounds in these effects. To strengthen
this conclusion, further studies testing the contribution of
cocoa polyphenols to the aforementioned effects related to
the urinary metabolic profile and metabolic hormones should
be carried out.

As expected, the urinary metabolic profiles of the C10 group
animals showed the highest excretion of cocoa-derived meta-
bolites, which is in line with previous controlled cocoa dietary
intervention studies(30–32). These metabolites include both
the flavonoid and methylxanthine derivatives, some of them
produced by the gut microbiota. This reinforces the fact that
some of these cocoa compounds reach the colon intact, where
they are metabolised by intestinal bacteria(6,8). However,
these metabolites were found in a lower amount in the urine
samples of animals fed the cocoa fibre, confirming the lower
concentrations of polyphenols and methylxanthines in the
fibre powder used in the present study.

Rats fed a C10 diet excreted lower amounts of αKMV and
αKIC, both derived from the endogenous catabolism of the
branched-chain amino acids (BCAA). In comparison with the
CF diet, the amount of glucose, sucrose and tricarboxylic acid
(TCA) cycle intermediates (citrate, 2-OG and fumarate) was
lower in the C10 group, indicating that the TCA cycle was
down-regulated after cocoa intake. These changes, together
with the lower urinary excretion of acetone, suggest an
alteration in energy metabolism through the modulation of
ketogenesis, BCAA metabolism and the TCA cycle. This shift in
energy strategy, together with the lower expression of genes
involved in lipid metabolism(33), may contribute to the reduc-
tion of body weight in C10-fed rats, reported here and in pre-
vious studies(23,26,28). Changes in NAD+ pathway metabolism
further support an alteration in energy metabolism. Thus, NAD+

is required in TCA cycle and oxidative phosphorylation in the
mitochondria to produce energy(34). It can be synthesised from
NMN and nicotinic acid, which were excreted in higher
amounts by the C10 rats. On the other hand, the NAD+-
consuming enzymes all generate nicotinamide as a by-product,
which can then be recycled to generate NMN by nicotinamide
phosphoribosyltransferase. However, it can also be methylated
by nicontiamide N-methyltransferase (NNMT) to NMND,
which was excreted in lower amounts by rats following a C10
diet. Recently, it was suggested that inhibition of NNMT
protected against diet-induced obesity by increasing energy
expenditure(35). Therefore, the lower urinary excretion of
NMND could also explain the lower body weight increase
observed in the present study in C10 rats.

In addition, increased levels of NMND in urine samples were
correlated with peroxisome proliferators(36), which participate
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in the generation of reactive oxygen species (ROS)(37). Changes
in NAD+ metabolism have been associated with oxidative stress
in aging and neurodegeneration(34). Hence, the lower excretion

of NMND after the C10 diet may reflect a reduction in oxidative
stress. Consistent with this, rats maintained on a C10 diet
excreted lower amounts of pseudouridine, which is the
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oxidised form of urinary nucleosides. Elevated levels of pseu-
douridine have been previously identified as indicators of liver
damage induced by inflammation related to oxidative stress(38).
In addition, the gut microbiota produces potentially toxic sub-
stances derived from protein metabolism(39), such as the uremic
toxins 4-CS and 3-IS derived from tyrosine and tryptophan,
respectively. Both uremic toxins have been shown to lead to
changes in NAD metabolism, by increasing NADPH-oxidase
activity, and to increase ROS production(40,41). Hence, the
lower urinary excretion of 4-CS, 4-CG and 3-IS by C10 rats
strengthens the possible reduction in oxidative stress after
cocoa consumption.
Microbial cocoa metabolism led to a higher excretion of

4-HPA, IAA, hippurate and PAG in the C10 group compared
with that in both the CF and REF groups, which could arise from
the differences in cocoa compounds between the diets. Cocoa
is rich in monoamines, such as tyramine, tryptamine and
2-phenylethylamine, which can be degraded by gut bacteria to
4-HPA, IAA and PAG, respectively. These three metabolites can
also be derived from the amino acid catabolism of tyrosine,
tryptophan and phenylalanine by the gut microbiota, respec-
tively. The gut microbiota can also degrade cocoa polyphenols
to quinic acid and benzoic acid, which are then oxidised to
hippurate and other phenol-related metabolites such as 4-HPA
and PAG. Interestingly, NMND, 3-IS and pseudouridine were
excreted in lower amounts after the C10 diet compared with
that after the CF diet. This suggests a shift in the composition
and functionality of the gut microbiota towards a more
favourable and less oxidative profile. This further suggests that

rather than its fibre content it is the other cocoa compounds that
contribute to the beneficial effects of cocoa. An inverse corre-
lation was observed between cocoa metabolites and body
weight, the highest correlation being with imidazole, one of the
smallest metabolites derived from methylxanthines. This clearly
suggests that theobromine, a methylxanthine present in cocoa
in a high concentration, and its metabolites contribute to the
effects of cocoa on body weight. An inverse association was
also found between body weight and the presence of meta-
bolites derived from microbial metabolism, especially with PAG
and 4-HPA. Regardless of other reported mechanisms(42–44), the
contribution of microbiota composition and its activity should
be considered in the regulatory effect of cocoa on body weight.
In fact, it has been shown that intake of the C10 diet decreased
the abundance of the Staphylococcus and Streptococcus genera
(from the Firmicutes phylum) and increased the Bacteroides
spp. (Bacteroidetes phylum) reducing the Firmicutes:Bacte-
roidetes ratio(17,26). This decreased ratio has been associated
with lower body weight(45). Consistently, an inverse correlation
was also found between the counts of Streptococcus spp. and
the excreted amounts of 4-HPA and epicatechin in urine.

The relationship between urinary metabolites and intestinal
immunity has been established. Whereas the CF diet did not
affect the IgA content, the C10 diet, in accordance with findings
from previous studies(2,13,27), resulted in a significantly lower
faecal IgA concentration. In this sense, inverse correlations
between the faecal IgA concentration and the amounts of cocoa
epicatechin and methylxanthine derivatives and those from
microbial metabolism were obtained. Overall, these results
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suggest that cocoa metabolism may lead to the formation of
bioactive products that interact with the mechanisms involved
in IgA secretion and/or its synthesis. Indeed, not only are the
metabolites generated by the microbiota important but also the
composition of the microbiota. Besides urinary metabolites and
faecal IgA, metabolic hormones were determined after cocoa
and the CF intakes. In line with previous studies(25), the GLP-1
and glucagon, peptide hormones involved in the glucose
metabolism, were reduced by the C10 diet, but only the former
was also modified after the CF intake. However, only glucagon
concentration correlated inversely with the cocoa metabolites.
Regarding hormones involved in regulating food intake, leptin
helps control the appetite and maintain a stable body weight(46),
whereas ghrelin stimulates appetite, increases fat body mass
deposition and weight gain and influences glucose and lipid
metabolism(47). Although the C10 diet increased ghrelin
concentration without changing leptin levels, it did not lead
to changes in food intake. Therefore, it is unlikely that these
regulating appetite hormones contribute to cocoa influence on
body weight. In fact, ghrelin concentration was inversely
associated with body weight. A two-way relationship between
leptin and ghrelin and the gut microbiota has been sug-
gested(46,48). Leptin stimulates mucin production in the intes-
tine, which could affect the composition of the microbiota(49).
It has also been suggested that the microbiota may modulate
these hormones through the physiological regulation of the
levels and type of autoantibodies produced against them(50). In
this sense, and in line with previous studies(46), we found that the
proportions of Bifidobacterium and Streptococcus genera corre-
lated positively with leptin and negatively with ghrelin. Moreover,
it has been described that two of the main SCFA (butyrate and
propionate) regulate gut hormone release(51). In this regard, our
study demonstrates that the ghrelin concentration was inversely
correlated with the butyric acid concentration in caecum content.
Therefore, although hormone effects on microbiota cannot be
discarded, the cocoa modulatory effect on the microbiota com-
position and functionality might be partially responsible for the
changes observed in both hormone concentrations.
In summary, through a metabonomic approach, we have

described the urinary metabolites derived from cocoa and
cocoa fibre intake that can be used as consumption markers in
health conditions. Moreover, the lower excretion of certain host
and microbial metabolites reflected a shift in the host energy
and amino acid metabolism due to cocoa compounds, but not
due to the CF diet. Metabolic associations were identified with
body weight, intestinal IgA, the metabolic hormone profile and
microbiota composition, extending our understanding of the
mechanisms through which cocoa may impact on health. Such
effects were not restricted solely to cocoa fibre, and the con-
tribution of other cocoa compounds has been demonstrated.
Further studies should be carried out to evaluate the precise
contribution of cocoa methylxanthines and also to study these
associations in the context of weight-altering stimulus.
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