CORRIGENDUM

COMPARING CARCASS END-POINT AND PROFIT MAXIMIZATION DECISION RULES USING DYNAMIC NONLINEAR GROWTH FUNCTIONS — CORRIGENDUM

JOSHUA G. MAPLES

Ph.D. graduate student, Oklahoma State University, Stillwater, Oklahoma

KALYN T. COATNEY*

Assistant research professor, Department of Agricultural Economics, Mississippi State University, Mississippi State, Mississippi

JOHN M. RILEY

Associate extension professor, Department of Agricultural Economics, Mississippi State University, Mississippi State, Mississippi

BRANDI B. KARISCH

Assistant extension/research professor, Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi State, Mississippi

JANE A. PARISH

Research/extension professor, North Mississippi Research and Extension Center Prairie Research Unit, Prairie, Mississippi

RHONDA C. VANN

Research professor, Brown Loam Branch Experiment Station, Mississippi State University, Raymond, Mississippi

doi: 10.1017/aae.2014.8, Published by Cambridge University Press, 26 January 2015.

In the Journal of Agricultural and Applied Economics Volume 47 (Number 1), Equations 7 and 10 were published with errors. The corrected equations are reprinted below:

$$y_i(t|\mathbf{\Omega}_i) = e^{-k_i t} (y_{0i} - m_i (1 - e^{k_i t})).$$
 (7)

$$\hat{\pi}_{ip}(t) = p_{ip}e^{-\hat{k}_i t}(y_{0i} - \widehat{m}_i(1 - e^{\hat{k}_i t})) - w_i t - F_i,$$
(10)

Reference

Maples, J.G., K.T. Coatney, J.M. Riley, B.B. Karisch, J.A. Parish, and R.C. Vann, "Comparing Carcass End-Point and Profit Maximization Decision Rules Using Dynamic Nonlinear Growth Functions." *Journal of Agricultural and Applied Economics* 47(2015):1–25.