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Abstract

Let K be a commutative ring with unity, R an associative K-algebra of characteristic different from
2 with unity element and no nonzero nil right ideal, and f (x1, . . . , xn) a multilinear polynomial over
K. Assume that, for all x ∈ R and for all r1, . . . , rn ∈ R there exist integers m = m(x, r1, . . . , rn) ≥ 1
and k = k(x, r1, . . . , rn) ≥ 1 such that [xm, f (r1, . . . , rn)]k = 0. We prove that: (1) if char(R) = 0 then
f (x1, . . . , xn) is central-valued on R; and (2) if char(R) = p > 2 and f (x1, . . . , xn) is not a polynomial
identity in p × p matrices of characteristic p, then R satisfies sn+2(x1, . . . , xn+2) and for any r1, . . . , rn ∈ R
there exists t = t(r1, . . . , rn) ≥ 1 such that f pt

(r1, . . . , rn) ∈ Z(R), the center of R.

2010 Mathematics subject classification: primary 16N60; secondary 16R20.
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1. Introduction

Throughout this paper, R always denotes an associative ring with unity and center
Z(R). The kth commutator of x, y ∈ R, denoted by [x, y]k is defined inductively
as follows: for k = 1, [x, y]1 = [x, y] = xy − yx, and for k > 1, [x, y]k = [[x, y]k−1, y].
In [1] Bergen proved that if R is a ring with no nonzero nil right ideal and
f (x1, . . . , xn) is a multilinear polynomial of degree n which is not an identity
for the p × p matrices in characteristic p, and for any r1, . . . , rn; s1, . . . , sn ∈ R
there exist m = m(r1, . . . , rn; s1, . . . , sn) ≥ 1 and t = t(r1, . . . , rn; s1, . . . , sn) ≥ 1 such
that [ f (r1, . . . , rn)m, f (s1, . . . , sn)t] = 0, then R satisfies the standard identity
sn+2(x1, . . . , xn+2) and the values of f (x1, . . . , xn) are power central. In particular
he showed that, if for any r1, r2, s1, s2 ∈ R, there exist m = m(r1, r2, s1, s2) ≥ 1 and
t = t(r1, r2, s1, s2) ≥ 1 such that [[r1, r2]m, [s1, s2]t] = 0, then R satisfies the standard
identity s4(x1, . . . , x4).

Later, Chuang and Lin [5, Theorem 3] proved that if R is a ring with no nonzero
nil right ideals and for any x, y ∈ R there exist m = m(x, y) ≥ 1 and t = t(x, y) ≥ 1 and
k = k(x, y) ≥ 1 such that [xm, yt]k = 0 then R is commutative.
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The aim of this note is to continue this line of investigation, combining in some
sense the previous cited results and considering the kth commutators involving the
evaluations of a multilinear polynomial. Our main result will be the following theorem.

T 1.1. Let K be a commutative ring with unity, R an associative K-algebra of
characteristic different from 2 with unity element and no nonzero nil right ideal, and
f (x1, . . . , xn) a multilinear polynomial over K. Assume that, for all x ∈ R and for all
r1, . . . , rn ∈ R there exist integers m = m(x, r1, . . . , rn) ≥ 1 and k = k(x, r1, . . . , rn) ≥ 1
such that [xm, f (r1, . . . , rn)]k = 0. We prove the following results:

(1) if char(R) = 0 then f (x1, . . . , xn) is central-valued on R;
(2) if char(R) = p > 2 and f (x1, . . . , xn) is not a polynomial identity in p × p

matrices of characteristic p, then R satisfies sn+2(x1, . . . , xn+2) and for any
r1, . . . , rn ∈ R there exists t = t(r1, . . . , rn) ≥ 1 such that f pt

(r1, . . . , rn) ∈ Z(R),
the center of R.

We would like to remark that in the case char(R) = p , 0, the assumption that
f (x1, . . . , xn) is not an identity in p × p matrices of characteristic p is inherited from
the fundamental work by Herstein et al. [8] where the structure of power central
polynomials on division rings is determined under this hypothesis. We also note that
a ring with no nonzero nil right ideal has no representation as a subdirect product of
prime rings with the same property (unlike rings with no nonzero two-sided ideals).
In order to circumvent this difficulty we will frequently make use of some methods
contained in [1].

Firstly we fix some well-known facts.

F 1.2. Let x, y ∈ R. Then [x, y]n =
∑n

i=0
(n

i
)
(−1)iyixyn−i (here we put [x, y]0 = x).

F 1.3. Let x, y, z ∈ R. If [x, y]n = 0 for some n ≥ 1 then [x, ym]n = 0 for any m ≥ 1
and [x, y]q = 0 for any q ≥ n.

F 1.4. Let x, y, z ∈ R. If [x, ym]n = 0 and [z, yt]n = 0 then [x, ymt]n = [z, ymt]n = 0.

We will also make use of the following results.

F 1.5. Let R be a ring with no nonzero nil right ideal, and let f (x1, . . . , xn)
be a multilinear polynomial in n noncommuting variables. Assume that, for all
r1, . . . , rn; u1, . . . , un ∈ R there exist integers m = m(r1, . . . , rn; u1 . . . , un) ≥ 1 and
k = k(r1, . . . , rn; u1, . . . , un) ≥ 1 such that

[ f (r1, . . . , rn)m, f (u1, . . . , un)k] = 0.

If char(R) = p , 0 and f (x1, . . . , xn) is not a polynomial identity in p × p matrices
of characteristic p, then R satisfies sn+2(x1, . . . , xn+2) and for any r1, . . . , rn ∈ R there
exists t = t(r1, . . . , rn) ≥ 1 such that f pt

(r1, . . . , rn) ∈ Z(R) [1, Theorem 9].

F 1.6. Let R be a K-algebra with no nonzero nil right ideal, and let f (x1, . . . , xn)
be a multilinear polynomial over K.
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(1) If f (x1, . . . , xn) is nil in R, then f (x1, . . . , xn) is a polynomial identity for R [3,
Theorem 1].

(2) If I is a right ideal of R such that f (x1, . . . , xn) is nil in I, then f (x1, . . . , xn)xn+1

is a polynomial identity for I (it is a consequence of [3, Main Theorem]).

F 1.7. Throughout this paper we denote

HR( f ) = {x ∈ R | ∀r1, . . . , rn ∈ R ∃k = k(x, r1, . . . , rn)

such that [x, f (r1, . . . , rn)]k = 0},

where f (x1, . . . , xn) is a multilinear polynomial in n noncommuting variables. In
particular, in the case where R is a ring with no nonzero nil right ideal, and char(R) = 0,
then the following hold.

(1) If R is primitive and R is not a division ring, then either HR( f ) = Z(R) or
f (x1, . . . , xn) is central valued in R [6, Lemma 2.4].

(2) If R is a domain such that R = HR( f ), then f (x1, . . . , xn) is central valued in R
[6, Lemma 2.8].

2. The results

We begin with the following easy reduction.

L 2.1. Let char(R) = p > 2. If f (x1, . . . , xn) is not a polynomial identity in
p × p matrices of characteristic p, then R satisfies sn+2(x1, . . . , xn+2) and for any
r1, . . . , rn ∈ R there exists t = t(r1, . . . , rn) ≥ 1 such that f pt

(r1, . . . , rn) ∈ Z(R).

P. Given x, r1, . . . , rn ∈ R, there exist suitable m, k positive integers such that
[xm, f (r1, . . . , rn)]k = 0. Hence, for t ≥ 1 such that pt ≥ k,

0 = [xm, f (r1, . . . , rn)]pt = [xm, f (r1, . . . , rn)pt
],

and the conclusion follows from Fact 1.5. �

In all that follows we will always assume that char(R) = 0, and moreover that R
has the unity element. Let RZ be the localization of R at Z. By the multilinearity of
f (x1, . . . , xn), our hypotheses on R carry over to RZ. Therefore we may assume that R
is a Q-algebra.

L 2.2. Let R be a domain. Then f (x1, . . . , xn) is central valued on R.

P. Pick x ∈ R and u = f (r1, . . . , rn), with r1, . . . , rn ∈ R. Notice that the set

Ru = {r ∈ R | ∃k = k(r, u) ≥ 1 such that [r, u]k = 0}

is a subring of R. Moreover we observe that for any x ∈ R, there exists m = m(x, u) ≥ 1
such that xm ∈ Ru, that is R is radical over Ru. By [2, Theorem 2], we have R = Ru.
Therefore by the arbitrariness of r1, . . . , rn ∈ R, it follows that for all x ∈ R and for all
r1, . . . , rn ∈ R there exists suitable k ≥ 1 such that [x, f (r1, . . . , rn)]k = 0. Hence by
Fact 1.7 we have that f (x1, . . . , xn) is central valued on R. �
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L 2.3. If R is primitive, then f (x1, . . . , xn) is central valued on R.

P. If R is a division ring, then we conclude by Lemma 2.2. However we know
that R is a ring dense of D-linear transformations over V , where D is a division ring
and V is a faithful irreducible right R-module with endomorphisms ring D; moreover
we may assume dimDV ≥ 2. Firstly we consider the case where dimDV = t is finite.
Thus R contains some nontrivial idempotent element e = e2 (e , 0, 1). Of course,
since e(1 − e) = 0 then e is a zero-divisor, so e < Z(R). By our main hypothesis, for
all r1, . . . , rn ∈ R there exist m = m(e, r1, . . . , rn) ≥ 1 and k = k(e, r1, . . . , rn) ≥ 1 such
that [em, f (r1, . . . , rn)]k = 0, that is [e, f (r1, . . . , rn)]k = 0. Hence, by the definition
contained in Fact 1.7, e ∈ HR( f ). Moreover, again by Fact 1.7, we have that either
f (x1, . . . , xn) is central valued on R, or HR( f ) = Z(R). In this last case we have the
contradiction e ∈ Z(R).

Assume now that dimDV =∞. In [4] it is proved that the range of the polynomial
f (x1, . . . , xn) is dense in HomD(V, V). So, given D-independent elements u, v ∈
V , there exist x, r1, . . . , rn ∈ R such that ux = u, vx = 0, u f (r1, . . . , rn) = v and
v f (r1, . . . , rn) = v. Then, for k ≥ 1,

0 = u[xm, f (r1, . . . , rn)]k = u f (r1, . . . , rn)k = v,

which is a contradiction. �

L 2.4. Let R be semiprime. If R satisfies some polynomial identity, then
f (x1, . . . , xn) is central valued on R.

P. Suppose first that R is prime. Since R is a PI-ring, then Z(R) , {0} and
the ring of central quotients of R, denoted by Q = RZ−1 = {rα−1 : r ∈ R, α ∈ Z(R) −
{0}}, is a central simple algebra finite dimensional over its center. Thus Q is
primitive and satisfies the following condition: for all x ∈ Q and for all r1, . . . , rn ∈ Q
there exist integers m = m(x, r1, . . . , rn) ≥ 1 and k = k(x, r1, . . . , rn) ≥ 1 such that
[xm, f (r1, . . . , rn)]k = 0. Hence by Lemma 2.3, Q satisfies the polynomial identity
[ f (x1, . . . , xn), xn+1], as well as R.

If R is a semiprime ring, then R is a subdirect sum of prime rings Ri. By the
previous argument each Ri satisfies [ f (x1, . . . , xn), xn+1], which implies that R satisfies
[ f (x1, . . . , xn), xn+1]. �

L 2.5. If R is semisimple then f (x1, . . . , xn) is central valued on R.

P. Since the Jacobson’s radical J(R) is zero, then R is a subdirect product
of primitive rings Rγ = R/Pγ, where any Pγ is a prime ideal of R. By
Lemmas 2.2 and 2.3, it follows that f (x1, . . . , xn) is central valued in every Rγ.
Therefore for all r1, . . . , rn+1 ∈ R we have that [ f (r1, . . . , rn), rn+1] ∈ Pγ, for any γ.
Thus [ f (r1, . . . , rn), rn+1] ∈ ∩Pγ = (0), that is R satisfies [ f (x1, . . . , xn), xn+1] and
f (x1, . . . , xn) is central valued on R. �

R 2.6. In all that follows we may assume J(R) , (0).
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L 2.7. Let P be a prime ideal of R and assume that there exists 0 , a ∈ R, such
that a2 = 0 and such that a < P. Then R/P has no nonzero nil right ideal.

P. Let r1, . . . , rn ∈ R. Then there exist m1 = m1(a, r1, . . . , rn) ≥ 1, k1 =

k1(a, r1, . . . , rn) ≥ 1, m2 = m2(a, r1, . . . , rn) ≥ 1 and k2 = k2(a, r1, . . . , rn) ≥ 1 such
that both

0 = [ f (r1a, . . . , rna)m1 , f (ar1, . . . , arn)]k1 = f (ar1, . . . , arn)k1 · f (r1a, . . . , rna)m1

(2.1)
and

0 = [(a f (r1a, . . . , rna) + f (r1a, . . . , rna))m2 , f (ar1, . . . , arn)]k2

= f (ar1, . . . , arn)k2 · (a f (r1a, . . . , rna)m2 + f (r1a, . . . , rna)m2 ).
(2.2)

In particular for k = max{k1, k2} and m = max{m1, m2}, and from (2.1) and (2.2)

0 = f (ar1, . . . , arn)k · (a f (r1a, . . . , rna)m + f (r1a, . . . , rna)m)

= f (ar1, . . . , arn)k · a f (r1a, . . . , rna)m = f (ar1, . . . , arn)k+ma

, and therefore f (ar1, . . . , arn)k+m+1 = 0. By Fact 1.6, the right ideal % = aR satisfies
the identity f (x1, . . . , xn)xn+1. Since a < P then %′ = %/P is also a nonzero right ideal
of R/P which satisfies a polynomial identity. Suppose that R/P has a nonzero nil right
ideal N. Since R/P is a prime ring, then there exists b ∈ %′ such that bN is a nonzero nil
right ideal. Moreover bN ⊆ %′ satisfies a polynomial identity, and this is a contradiction
in a prime ring. Therefore R/P has no nonzero nil right ideal, for all P ∈ A. �

2.1. A reduced result. Here we prove a result which will be useful in the sequel.
Firstly we state the following one, which is contained in [7, Lemma 1].

L 2.8. Let R be a prime ring and let % be a nonzero right ideal of R such that the
left annihilator l(%) = {x ∈ R : x% = (0)} is zero. If % satisfies a polynomial identity then
R also satisfies some polynomial identity.

L 2.9. Let R be a prime ring and suppose that for any r1, . . . , rn ∈ R there exists
m = m(r1, . . . , rn) ≥ 1 such that f (r1, . . . , rn)m is either zero or regular. If R is not a
domain, then R satisfies some polynomial identity.

P. Firstly we note that if for any r1, . . . , rn ∈ R there exists m = m(r1, . . . , rn) ≥ 1
such that f (r1, . . . , rn)m = 0, then by Fact 1.6, f (x1, . . . , xn) is a polynomial identity
for R and the lemmas are proved. Assume that R is not a domain. Hence there

exists 0 , a ∈ R such that a2 = 0. Let % = aR and notice that the left annihilator l(%)
is not zero. Thus % does not contain any regular element and so for any r1, . . . , rn ∈ %,
there exists m = m(r1, . . . , rn) ≥ 1 such that f (r1, . . . , rn)m = 0. In particular this also
holds in R1 = %/l(%) ∩ %, which is a prime ring with no nonzero nil right ideal. Again
by Fact 1.6, f (x1, . . . , xn) is a polynomial identity for R1, that is f (s1, . . . , sn) ⊆ l(%),
for all s1, . . . , sn ∈ %. Therefore % satisfies the polynomial identity f (x1, . . . , xn)xn+1.

By Zorn’s lemma there exists a nonzero right ideal M of R which is maximal with
respect to the property that it satisfies f (x1, . . . , xn)xn+1.
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Now let r ∈ R and t1, . . . , tn+1 ∈ M. Since tir ∈ M (for all i), we have that
f (rt1, . . . , rtn)rtn+1 = r f (t1r, . . . , tnr)tn+1 = 0. This means that the right ideal rM
satisfies f (x1, . . . , xn)xn+1. Hence by [9, Theorem 6], M + rM also satisfies some
polynomial identity.

If l(M + rM) = (0), then Lemma 2.9 is proved.
Suppose now that l(M + rM) , (0). Then by the previous argument we have that

M + rM satisfies f (x1, . . . , xn)xn+1. Moreover by the maximality of M, it follows that
M + rM ⊆ M, that is rM ⊆ M. This holds for all r ∈ R, implying that M is a two-
sided ideal of R, which satisfies a polynomial identity. Therefore R also satisfies a
polynomial identity. �

2.2. Proof of main theorem. In light of previous lemmas, we can now continue with
the proof of our main results.

P 2.10. If R is a prime ring (without nil one-sided ideals), then f (x1, . . . , xn)
is central valued on R.

P. By Lemmas 2.2 and 2.5 we may consider the case where R is not a domain
and J(R) , (0). In addition, since R and J(R) satisfy the same polynomial identities,
in order to prove that f (x1, . . . , xn) is central valued on R, we may replace R by J(R)
(without loss of generality we consider R = J(R)). If f (r1, . . . , rn) is nilpotent for all
r1, . . . , rn ∈ R, then Fact 1.6 shows that f (x1, . . . , xn) is a polynomial identity for R.
Hence we may suppose that there exist r1, . . . , rn ∈ R such that c = f (r1, . . . , rn) is not
nilpotent, in other words cm , 0 for all m ≥ 1. Here we denote by f (R) the set of all
the evaluations of f (x1, . . . , xn) on R, that is f (R) = { f (r1, . . . , rn) : ri ∈ R}.

We divide the proof into two cases.
Firstly we suppose that there exists an ideal H of R such that, for any n ≥ 1, cn < H.

By Zorn’s lemma there is an ideal Pc of R which is maximal with respect to the
exclusion of all powers of c. In particular the ideal Pc is a prime ideal of R and,
for any ideal I of R such that Pc $ I ⊆ R, there exists n = n(c) ≥ 1 such that cn ∈ I.

Let F = {Pc : c ∈ f (R) is not nilpotent} and consider the following partition of F:

C = {Pc ∈ F : ∃0 , x ∈ R such that x2 = 0, x < Pc}

D = {Pc ∈ F : ∀x ∈ R such that x2 = 0, then x ∈ Pc}.

Let M = ∩Pc for all Pc ∈ F, C = ∩Pc for all Pc ∈C and D = ∩Pc for all Pc ∈ D.
Note that if r1, . . . , rn ∈ M then f (r1, . . . , rn) is nilpotent (since if not, then c =

f (r1, . . . , rn) < Pc, whereas c ∈ M ⊆ Pc). Moreover if M , (0), then f (x1, . . . , xn) is
nilpotent in the nonzero ideal M of the prime ring R. Therefore, again from Fact 1.6,
f (x1, . . . , xn) is central valued on M, as well as in R.

On the other hand if M = (0), then C ∩ D = (0). Therefore D contains all the square-
zero elements of R, and C contains no nonzero square-zero element. Since a ring with
no nonzero square-zero element is a subdirect sum of a domain, then the ideal C is
a subdirect sum of domains and by Lemma 2.2 we have that f (x1, . . . , xn) is central
valued in C, and so also in R. We may hence assume C = 0.
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In the last case, via the subdirect sum of R/Pc for Pc ∈ F, we suppose that for any
ideal H , 0 of R, there exists m = m(H) ≥ 1 such that cm ∈ H. Let b ∈ f (R) and suppose
that b is neither nilpotent nor regular. We also define

Lb = {x ∈ R : xbn = 0, n = n(x) ≥ 1}

Tb = {x ∈ R : bnx = 0, n = n(x) ≥ 1}.

Let a ∈ Lb. Since b ∈ f (R), by the assumption of Theorem 1.1, there exist suitable
m = m(a, b) ≥ 1 and k = k(a, b) ≥ 1 such that

[bm, (1 + a)b(1 + a)−1]k = 0 with abn = 0 for some n ≥ 1,

and in light of Fact 1.3 it also holds that

[bm, (1 + a)bn(1 + a)−1]k = 0 with abn = 0.

Therefore

k∑
h=0

(
k
h

)
(−1)h((1 + a)bnh(1 + a)−1)bm((1 + a)bn(k−h)(1 + a)−1) = 0

in other words

k−1∑
h=0

(
k
h

)
(−1)h((1 + a)bnh(1 + a)−1)bm((1 + a)bn(k−h)(1 + a)−1) = bm+nk

and easy computations show that bm+nk(1 + a)−1 = bm+nk, that is bm+nk = bm+nk(1 + a),
that is bm+nka = 0, that is a ∈ Tb. Analogously we can prove that Tb ⊆ Lb. Thus
Tb = Lb = I is a two-sided ideal of R. Since there exists a suitable m ≥ 1 such that
cm ∈ I, it follows that c is neither nilpotent nor regular. So by the above argument, there
exists m1 ≥ 1 such that cm1 ∈ Lc, therefore there exists m2 ≥ 1 such that cm1 cm2 = 0, a
contradiction.

Hence any element b ∈ f (R) is either nilpotent or regular. Since we are considering
the case when R is not a domain, by Lemma 2.9, R satisfies a polynomial identity and
by Lemma 2.4 f (x1, . . . , xn) is central valued on R. �

T P  T 1.1. By Lemma 2.1, we may consider only the case char(R) =

0. Let

A = {P | there exists 0 , x ∈ R such that x2 = 0, x < P}

B = {P | for any x ∈ R such that x2 = 0 then x ∈ P}

and A = ∩AP, B = ∩BP. Consider the diagonal map ϕ : R→
∏

P∈A R/P. Since
by Proposition 2.10 f (x1, . . . , xn) is central valued on R/P, for all P ∈ A,

https://doi.org/10.1017/S1446788712000511 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000511


188 V. De Filippis and G. Scudo [8]

then f (x1, . . . , xn) is central valued on R/Ker(ϕ), where Ker(ϕ) =
⋂

A P = A and
A ∩ B = (0), by the semi-primeness of R. Therefore B contains all the square-zero
elements of R, and A contains no nonzero square-zero element. In particular A is a
subdirect sum of domains, so by Lemma 2.2 f (x1, . . . , xn) is central valued on A.
Since R/A and A satisfy some polynomial identities, so does R and we obtain the
required conclusion by Lemma 2.4. �
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