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PSL(2, 2n)-Extensions Over F2n

Arne Ledet

Abstract. We construct a one-parameter generic polynomial for PSL(2, 2n) over F2n .

1 Introduction

Let F be a field, and let G be a finite group. A polynomial P(s, X) ∈ F(s)[X], where

s = (s1, . . . , sn) are indeterminates, is then called a generic polynomial for G over F, if

it satisfies the following two conditions:

(a) The splitting field for P(s, X) over F(s) is a Galois extension with Galois group

isomorphic to G;

(b) Whenever M/L is a G-extension over F, i.e., M/L is a Galois extension with Ga-

lois group isomorphic to G, and L ⊇ F, there exists a = (a1, . . . , an) ∈ Ln such

that M is the splitting field over L of P(a, X).

The si ’s are referred to as the parameters, and a as a specialisation.

Generic polynomials have been considered in a number of papers, e.g., [KM, JLY,

HM]. Also, there is the closely related concept of a generic extension, introduced by

Saltman [Sa].

In this paper, we prove

Theorem 1 Let n ≥ 1 be a natural number, and let F2n denote the finite field with 2n

elements. Then the polynomial

X2n+1 + sX2n

+ X + 1

is generic for the projective special linear group PSL(2, 2n) over F2n , with parameter s.

In particular, X3 + sX2 + X + 1 is generic for the symmetric group S3 over F2, and

X5 + sX4 + X + 1 is generic for the alternating group A5 over F4, cf. [Hu, II Satz 6.14].

2 Proof of Theorem 1

Let M/L be a PSL(2, 2n)-extension over F2n . The group PSL(2, 2n) is equal to the

special linear group SL(2, 2n), i.e., it consists of 2 × 2 matrices.

By a standard argument (see e.g., [JLY, 1.1]), we can match the Galois action with

a matrix action. In fact, if we let (Ax)A∈PSL(2,2n) be a normal basis for M/L, the map

ϕ : u 7→
∑

A∈PSL(2,2n)

π(A−1
u)Ax,
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where π : F
2
2n → F2n is the first coordinate function, will be an injective PSL(2, 2n)-

equivariant F2n -vector space homomorphism from F
2
2n into M.

Thus, we have elements x = ϕ((1, 0)t ) and y = ϕ((0, 1)t ) in M, linearly indepen-

dent over F2n , such that ( a b

c d
) ∈ PSL(2, 2n) acts by x 7→ ax + cy and y 7→ bx + dy.

Letting t = x/y, we get t 7→ (at + c)/(bt + d). This action on F2n (t) is faith-

ful. Of necessity, t is then transcendental over F2n , and we restrict our attention to

F2n (t)/F2n (t)PSL(2,2n).

We will need to make use of Lüroth’s theorem (see [Ja, 8.14]), and in particular

the following facts from it: If u = p(t)/q(t) ∈ F(t) is a rational function written

in reduced form, i.e., with gcd(p, q) = 1, then t is algebraic over F(u) of degree

max{deg p, deg q}; also, if K is an intermediate field F ( K ⊆ F(t), then t is algebraic

over K, and K = F(u) for any non-constant coefficient u in the minimal polynomial

for t over K.

We will construct an s such that F2n (t)PSL(2,2n)
= F2n (s), and show that for this s,

the polynomial in the theorem has F2n (t) as its splitting field. The s in the theorem

must then simply be specialised to this s in order to produce a polynomial with split-

ting field M = L(t) over L.

First, we note that | PSL(2, 2n)| = 2n(2n − 1)(2n + 1).

The matrix ( 1 0
a 1 ) acts by t 7→ t + a, for a ∈ F2n . These matrices form a subgroup

isomorphic to the additive group (F2n , +), and clearly the fixed field is

F2n (t2n

+ t),

since

∏

a∈F2n

(X − (t + a)) =

∏

a∈F2n

((X − t) − a)

= (X − t)2n

− (X − t) = X2n

− X − (t2n

− t).

Next, the matrix ( a 0
0 1/a ) acts by t 7→ a2t , for a ∈ F

∗

2n . The effect on t2n

+ t is

multiplication by a2, since a2n

= a. These matrices form a subgroup isomorphic

to the multiplicative group F
∗

2n , and together with the subgroup above produce a

group isomorphic to the semi-direct product F2n ⋊ F
∗

2n , where F
∗

2n acts on F2n by

multiplication. The fixed field is

F2n

(

(t2n

+ t)2n

−1
)

,

as
∏

a∈F
∗

2n

(X − au) = X2n

−1 − u2n

−1.

Now, (t2n

+ t)2n

−1 is algebraic over F2n (t)PSL(2,2n) of degree 2n + 1, and we claim

that its minimal polynomial is of the form X2n+1 + sX2n

+ X + 1 given in the theorem.

This allows us to solve for s:

s =

1 + (t2n

+ t)2n

−1 + (t2n

+ t)4n

−1

(t2n

+ t)2n(2n−1)
.
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It is obvious that this s is in reduced form, and therefore that F2n (t) has degree

2n(2n − 1)(2n + 1) over F2n (s). This ensures that s in fact generates F2n (t)PSL(2,2n),

provided that s is invariant under the action of PSL(2, 2n). In which case the minimal

polynomial will be as claimed.

We already know that s is invariant under the subgroup F2n ⋊ F
∗

2n described above.

For the rest, there is a matrix A in PSL(2, 2n) of order 2n + 1, obtained from F4n by

expressing multiplication by an element of order 2n + 1 in terms of a basis over F2n .

Together with F2n ⋊ F
∗

2n , it generates PSL(2, 2n). Conjugating if necessary, we may

assume A = ( 0 1
1 a

) for some a ∈ F2n . Since

(

0 1

1 a

)

=

(

1 0

a 1

)(

0 1

1 0

)

,

this means that PSL(2, 2n) is generated by F2n ⋊F
∗

2n and ( 0 1
1 0 ). This last matrix acts by

t 7→ 1/t , so to prove s ∈ F2n (t)PSL(2,2n) it is enough to show that s is invariant under

t 7→ 1/t . To see this, we rewrite

s =

1 + (t2n

+ t)2n

−1 + (t2n

+ t)4n

−1

(t2n

+ t)2n(2n−1)
=

(t2n

+ t) + (t2n

+ t)2n

+ (t2n

+ t)4n

(t2n

+ t)2n(2n−1)+1

=

t + t8n

(t2n

+ t)2n(2n−1)+1
,

and find

s(1/t) =

1/t + 1/t8n

(1/t2n

+ 1/t)2n(2n−1)+1
=

t8n+1(1/t + 1/t8n

)

t8n+1(1/t2n

+ 1/t)2n(2n−1)+1

=

t8n

+ t

(t + t2n

)2n(2n−1)+1
= s.

Hence, s is PSL(2, 2n)-invariant, and generates the fixed field.

The polynomial X2n+1 + sX2n

+ X + 1 is irreducible and has (t2n

+ t)2n

−1 as a root.

Its splitting field is all of F2n (t), since the conjugates of F2n ⋊ F
∗

2n in PSL(2, 2n) have

trivial intersection. This completes the proof of the theorem.

Remark It is not hard to see that the splitting field for X2n+1 + sX2n

+ X + 1 over F2 is

also F2n (t), with Galois group PSL(2, 2n)⋊Cn, where Cn acts entry-wise on PSL(2, 2n)

as the Galois group of F2n/F2. For instance, X5 + sX4 + X + 1 has Galois group S5 over

F2. However, X2n+1 + sX2n

+ X + 1 is not generic for PSL(2, 2n) ⋊ Cn over F2n , since

the Cn-subextension of F2n (t)/F2(s) is F2n (s)/F2(s).
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