
5 

From cuts to poles 

As we pointed out in the preceding chapter, there are several 
important differences between the behaviour of the perturbative 
QeD Pomeron which is the solution of the BFKL equation and 
that of the 'soft' Pomeron predicted by Regge theory and identi­
fied in total hadronic cross-sections and differential cross-sections 
at small tranverse momenta. Although one might have hoped that 
a purely perturbative analysis of QeD would yield results which 
were in qualitative agreement with the behaviour ofthe 'soft' Pom­
eron, it is not surprising that the results are in fact very different. 
Perturbative QeD theory can only be applied reliably to Green 
functions in which all the momenta and their scalar products are 
sufficiently large. In the subsequent two chapters we shall be dis­
cussing experimental situations in which such criteria are obeyed. 
However, total hadronic cross-sections or differential cross-sections 
with low momentum transfer do not obey these criteria and we 
must therefore expect that non-perturbative features of QeD will 
playa crucial role in describing such phenomena. Unfortunately 
a complete analysis of the non-perturbative behaviour of QeD 
is outside our present grasp. Nevertheless, we can investigate the 
'meeting points' ofperturbative and non-perturbative QeD in or­
der to obtain some idea of how non-perturbative effects are likely 
to affect the Pomeron and to what extent we may expect to be able 
to reproduce the behaviour of hadronic cross-sections in QeD. 

One of the most striking differences between the 'soft' Pomeron 
approach to high energy scattering and the perturbative approach, 
calculated by summing the leading In s terms to all orders, is that 
the Mellin transform of the scattering amplitude has a cut rather 
than an isolated pole. Lipatov (1986) pointed out that the origin 
of the cut is largely due to the fact that, in the leading logarithm 
derivation, the strong coupling constant, as, is kept fixed, whereas 
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in QCD we know that it runs. Accounting for the running of the 
coupling, together with some information about the infra-red be­
haviour of Q CD (provided by the non-perturbative sector) leads 
to a discrete pole singularity for the Pomeron rather than a cut. 
We shall begin this chapter by discussing the effect of the running 
of the coupling. 

Before we do so a caveat is in order. The effect of the running 
of the coupling is a part of the corrections beyond the leading 
logarithm approximation which were referred to in the preceding 
chapter. It is, strictly speaking, inconsistent to take this into ac­
count without all the other sub-leading logarithm corrections. The 
hope and expectation that higher order corrections are dominated 
by the effect of the running of the coupling has been used before in 
several branches of high energy physics such as the study of infra­
red renormalons or corrections to the gap equation for dynamically 
generated spontaneous chiral symmetry breaking in Technicolour 
theories. We now add the study of the BFKL Pomeron to this list. 

5.1 Diffusion 
At first sight it may appear unnecessary to account for the run­
ning of the coupling in the BFKL equation. The argument goes 
like this. The scale of typical transverse momenta involved in the 
(Mellin transform of the) BFKL amplitude, f(w, kI, k2' q), is set 
by the impact factors at the top and bottom of the gluon lad­
der. This transverse momentum, kh (we assume it is the same for 
both the impact factors), comes from the 'primordial' transverse 
momentum of partons inside the scattering hadrons. Now since 
the BFKL equation is infra-red safe there is no need to introduce 
any other momentum scale and so the integrations over transverse 
momenta in all sections as we go down the ladder must be domi­
nated by k ~ kh' and so the correct value to take for the coupling 
constant is simply O's(k~). 

This is almost correct but not quite. The correct statement is 
that in any section of the ladder the integrand of the transverse 
momentum integral has a maximum at k ~ kh' but as we go 
further away from the top or bottom of the ladder, where the 
kh is set, then a wider and wider range of transverse momenta 
becomes significant and consequently the running of the coupling 
becomes important. 
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5.1 Diffusion 115 

This broadening in the range of typical k values involved in the 
loop integrals as we move along the ladder is a diffusion effect 
which we will now discuss in some detail. It is an important prop­
erty of the BFKL amplitude to which we shall continually return 
in the following chapters. 

Consider the BFKL amplitude for zero momentum transfer, 
F(s,kI,k2'O), as a function of s (rather than its Mellin trans­
form). The asymptotic solution is given by Eq.(4.34). To simplify 
our notation, let us now define 

y 

r 

and 

W(y,r) = Jkik~F(s,kbk2'O). 
For large s we may use the asymptotic solution of Eq.( 4.34). In 

which case, W(y, r) satisfies the diffusion equation: 

OW(y, r) _ ,T,( ) 2 02W(Y, r) 
oy - Wo'l" y, r + a or2 . (5.1) 

Starting from the boundary condition, W(O,r) = 7r8(r), we can 
solve for w(y', r). The diffusion equation tells us that as y' in­
creases so the r-distribution broadens and so the important range 
of r-values increases. 

More quantitatively, we would like to know: (a) what is the 
mean In k 2 at some point along the ladder; (b) what is the RMS 
spread of the In k 2 distribution at this point. To answer these 
questions we need first to appreciate that t 

for arbitrary s' ~ s, i.e. we can view the BFKL amplitude as 
a convolution of two other BFKL amplitudes with an arbitrary 
partitioning of the total energy s. We define y' = In s' jk 2• For a 

t This can be seen by inverting the Mellin transform of Eq.(4.28) and using 
the orthonormality relations of the eigenfunctions. 
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Fig. 5.1. Diffusion in the r'-y plane. 

given y' we can now ask for the mean of 
k,2 

T' == In Jk2k2 ' 
1 2 

This is what we mean when we ask for the typical transverse 
momentum at some point along the ladder. It is a simple matter 
of Gaussian integration to compute 

(T') = J d2k'T,F( s', kll k', O)F( s/ s', k', k 2 , 0) 
F(s, k1 , k 2 , 0) 

T ( y,) "2 1- 2-y . 
The RMS deviation, (J", is similarly computed: 

(5.3) 

(J"2 Jd2k'(T' _ (r'))2 F (S',kll k',0)F(s/s',k',k2 ,0) 
F( s, kll k 2 , 0) 

2a2Y'(1-~). (5.4) 

In Fig. 5.1 we show a plot which illustrates the diffusion in T'. 
The dotted straight line represents (T') whilst the solid curves are 
of the functions (T') ± (J", i.e. they represent the RMS deviations 
about the mean. 
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The axis of the 'cigar' is tilted since we chose T i- 0, i.e. the 
virtualities of the external gluons are not equal. In order that we 
can trust a perturbative calculation, it had better be that the 
cigar does not dip (or tip!) too far into the region of k/ 2 rv A~CD. 
Remember we need to convolute F( s, kll k2' 0) with the relevant 
impact factors to obtain physical cross-sections. The avoidance of 
diffusion into the infra-red region is equivalent to demanding that 
the impact factors <Pi(ki)/kr be peaked at large kf. 

We have just seen that even if we pick the impact factors so that 
the axis of the cigar is horizontal (i.e. T = 0), we still have to worry 
about diffusion. It is therefore more sensible to conclude that the 
value of as which should be used in the BFKL equation is a s(k/ 2 ) 

rather than a fixed value. However, we must remember that the 
BFKL equation involves an integral over transverse momenta from 
zero upwards and hence, for sufficiently small arguments, the run­
ning coupling becomes far too large for perturbation theory to be 
valid. It is therefore necessary to freeze the coupling below a cer­
tain magnitude of transverse momentum (or perform some other 
regulating procedure). Of course this is a phenomenological pro­
cedure without any fundamental basis in QeD. Nevertheless, we 
now consider how to deal with such a running coupling, at least 
within a reasonable approximation. 

5.2 Accounting for the running of the coupling 

In order to solve the BFKL equation for running coupling t we 
need to find the solutions of the eigenvalue equation: 

CYs(k 2) J (k d~~/)2 [4>i(k/) - [k/2 + ~ _ k/)2] 4>i(k) 1 = Ai4>i(k). 

(5.5) 
The running coupling, CY s (k 2 ), is given (to leading order) by 

_ 2 4N 
as(k ) = (30( (5.6) 

where ~ = In k 2 / A~CD and (30 = 11N /3 - 2nj /3 for nj light 
flavours (we shall sometimes write this as CYs(O). We could have 

t For the time being we continue to work at zero momentum transfer, defer­
ring studies of large momentum transfer to the next section. 
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taken the running coupling inside the integral and written it as 
Ci s (k/ 2 ) so that it runs with the integrated transverse momentum. 
The difference between the two choices depends on whether we 
take the coupling at a particular rung of the ladder to be con­
trolled by the momentum of the gluon above or below that rung. 
Strictly speaking, one should take the maximum of the two, i.e. 
Cis (max(k2 , k/2 )), but this is not necessary since the transverse 
momenta of two adjacent sections of the ladder are indeed of the 
same order. 

Equation (5.5) cannot be solved analytically in the same way 
as we did for the case of a fixed coupling constant. There are 
two possible approaches to finding an approximate solution. The 
first is to approximate the integral equation by a large matrix (by 
discretizing the transverse momentum) and finding the eigenvalues 
and eigenvectors numerically. This was done by Daniell & Ross 
(1989). The other is to try analytic approximations, which is the 
method used by Lipatov (1986) that we discuss here. 

The method used is similar to the WKB approximation for 
solving Schrodinger's equation, in which good approximations are 
found in different regions and these are matched at the turning 
points. Once more we restrict ourselves to the azimuthally sym­
metric solution n = o. Motivated by the fact that for fixed coupling 
constant the eigenfunctions are 

¢~ rv ~exp(ivO, (5.7) 
yk2 

with eigenvalues CisXo(v), we try a solution 

Ja exp ( ±i J~ d(V(()) (5.8) 

for the eigenfunction with eigenvalue Ai. Now, v is treated as a 
function and it is related to the inverse of the function Xo such 
that, 

(5.9 ) 

Equation (5.8) reduces to Eq.(5.7) with C(O set to a constant if we 
take Cis to be fixed. Equation (5.8) will be a good approximation 
as long as the function v does not vary too much with ~. We can 
obtain a good approximation for the prefactor C(O by inserting 
Eq.(5.8) into the eigenvalue equation (Eq.(5.5)) expressed as a 
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differential equation, i.e. 

as (k 2 )xo ( -i :~) C(O exp ( ±i Je d(V(()) 

= AiC(~)exp (±i Je d(V(n) . (5.10) 

Assuming that C(~) and v(O are slowly varying functions so that 
we may neglect second and higher order derivatives, Eq.(5.10) is 
satisfied provided 

X~(lI(O) C'(O + ~x~(v(O)lI'(OC(O = 0, (5.11) 

which is solved by 
1 

C(O ex . 
jlx~(lI(O)1 

(5.12) 

More precisely if v n ( 0 is the nth derivative of the function 1I, then 
the approximation is good so long as 

(5.13) 

(for n ~ 1). This condition may be true for some regions of the 
integration variable t, but it cannot be valid throughout. This 
is because the function v( 0 has a zero when XO = 4ln 2, which 
occurs at some critical value of ~, depending on the eigenvalue Ai, 

Cc = 16Nln 2 
<" f30Ai (5.14) 

and its derivative becomes infinite at that point. Near ~ = ~c, 1I 

may be approximated using Eqs. (4.29), (5.6), (5.9) and (5.14) as 

( Aif30 ) 1/2 

V ~ 56N((3) j(~c - O· (5.15) 

For values of ~ larger than ~c, 1I is imaginary, and from Eq.(5.8) 
we see that the eigenfunction is no longer an oscillating function 
of ~, but an exponentially decreasing function: 

q,(k) ~ q J 1 exp (-le d(llI(()I) , (5.16) 
IX~(1I(O)lk2 ec 

where TJ is a (as yet undetermined) phase. Once again Eq.(5.16) 
is only valid away from the branch point where the inequality 
(5.13) is expected to hold. There is also an exponentially increasing 
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solution (the function v(O has two branches for ~ > ~c), but 
like all good physicists we throw this away since an exponentially 
increasing eigenfunction is not physically acceptable. 

What about the 'forbidden' region ~ ~ ~c. Since v is small in 
this region, we may use the expansion Eq.( 4.29) to expand XO up 
to quadratic order and rewrite the integral equation as a second 
order differential equation: 

4N ( {)2 ) f3o~ 4ln2 + 14((3) {)e <pi(k) = Ai<pi(k). (5.17) 

Again using Eq.(5.14), rearranging terms and changing variables 
from ~ to z where 

( f30Ai ) 1/3 
Z = 56N((3) (~- ~c), (5.18) 

this equation becomes 

(5.19) 

which is Airy's equation. There exists a solution, Ai( z), which has 
the following asymptotic forms: 

1 . (2 13 / 2 7r) Ai(z) ----7 folzl 1/4 sm "3 lz +"4' z - -00 

1 ( 2 3/2) Ai(z) -7 2Jiz1/4 exp -3"z ,z ----7 00 

(there is also a solution which grows exponentially as Izl ----7 00 

which corresponds to the unphysical discarded solution). 
Now for sufficiently small v where the approximation Eq.(5.15) 

is valid, we have 

~lzI3/2 ~ 1 re d(v(()1 
3 lee 

and from Eqs.(4.29), (5.15) and (5.18), 

IzI1/4V28((3) = ~ [56:ai~3)] 1/6 

Therefore we can match the region where the Airy function is a 
good approximation to the regions ~ ~ ~c (oscillatory solution) 
and ~ ~ ~c (exponentially decaying solution) and, furthermore, 
this matching uniquely determines the phase of the oscillatory 
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solution. We may therefore write the approximate solution (up to 
an overall constant) for all values of t: 

We have introduced one mass scale AQCD and this has allowed 
us to fix the phase of the oscillating solution at the turning point 
te. Now we need one more ingredient in order to compute the 
eigenvalues (or equivalently v( t)). We need to assume that the 
phase is fixed to some angle {) at some value of the (logarithm of 
the) transverse momentum, to. For sufficiently large momentum 
transfer (rather than the zero momentum transfer case that we are 
considering here) this second scale is provided by the momentum 
transfer, t, as we shall discuss below. For small or zero momentum 
transfer processes the value of the phase at the infra-red scale (to) 
must be provided by the infra-red features of QeD and cannot be 
attained from perturbation theory. In other words, we are going 
beyond perturbation theory in assuming the existence ofthis infra­
red scale which characterizes the non-perturbative behaviour of 
the gluons in the ladder. Now we have two scales at which the 
phase is fixed and in analogy with the WKB approximation for 
solving the Schrodinger equation this sets conditions which can 
only be met by certain eigenvalues. In this case matching the phase 
at to gives 

i tc ~ {) = dt'v(() + - + (i - 1)~, 
to 4 

(5.21) 

with i a positive integer. A typical solution is shown in Fig. 5.2. 
The phase is fixed at the point t = to to the value {) and is also 
fixed in region II, so that the Airy function solution in region 
III matches the oscillatory solution (region II) (up to a multiple 
of~) and the exponentially decaying solution (region IV). Below 
to (region I) the solution is dominated by the (non-perturbative) 
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Fig. 5.2. An eigenfunction <pi(k) in different regions of ~ (see 
Eq.(5.20)). Region I is the infra-red region dominated by non­
perturbative behaviour. Region II is the oscillatory region (~ ~ ~c). 
Region III is the region given by the Airy function (~ ~ ~c) and 
region IV is the decay region (~:::p ~c). (We have chosen one of 
the lower eigenfunctions so that the oscillating region can be seen 
clearly. ) 

infra-red features of QeD. Now recall that ~c depends on the eigen­
value Ai. Thus only certain discrete values of Ai can be solutions 
of Eq.{S.21) and hence we find a discrete spectrum of the inte­
gral operator !Co. This means that the Mellin transform is given 
by a sum of isolated poles, the leading one being the solution of 
Eq.(5.21) with i = 1 and is identified as the Pomeron pole. For ~o 
large enough for us to assume that 1/ is always small between ~o 
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and ~c we can use Eq.(5.15) for v. It then follows that 

ftc v(()d( = ( )..i(30 ) 1/2 ~(~ _ ~ )3/2. 
ito 56N((3) 3 c 0 

We can now calculate the first correction to the location of the 
Pomeron pole in terms of the phase angle, {j, i.e. 

ap(O) ~ 1+4In2as~0) (5.22) 

{ _ ((3oas(~0))2/3 [7((3)]1/3 (3({j _ 7r/4))2/3} 
X 1 4N 2ln2 2 . 

Unfortunately, this is only the first term in a slowly convergent 
series and provides a very poor approximation over sensible values 
of ~o. For a full numerical solution of Eq.(5.21) we refer to the 
literature (Hancock & Ross (1992)). We shall shortly turn to a 
study of the running coupling in the case of large momentum 
transfer. In this case the phase is fixed by perturbation theory 
and we are able to quantify the location of the Pomeron (and 
sub-leading) poles. 

However, before leaving the t = 0 case we wish to remark that 
(despite the fact that an exact analytic solution ofthe BFKL equa­
tion with running coupling is not possible) Collins & Kwiecinski 
(1989) have established upper and lower limits for the intercept of 
the leading trajectory. They found that if the running of the cou­
pling is 'frozen' at some infra-red scale, k5 = A~CD exp ~o, then 
the intercept obeys the inequalities 

1 + 1.2as (k6) ::; ap(O) ::; 1 + 4ln 2 a s(k6). (5.23) 

5.3 Large momentum transfer 

For non-zero momentum transfer, we proceed in the same way 
except that we work in impact parameter space and the eigen­
functions are functions of b, b', c. From Eq.( 4.49) we see that the 
quantity which is raised to the power iv is 

( 
(b - b,)2 ) 

((b-c)2(b'-c)2 ' 

so we replace k 2 in the preceding section with this expression for 
the argument of the running of the coupling. The impact parame­
ter c is integrated over and to the approximation to which we are 
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working (leading order in the running) we can set c = 0 inside the 
running coupling and take the quantity ~ to be 

( (b - b /)2 ) 
~ = In b2b/2 A 2 • 

QeD 

If b ~ b' or h' ~ h then the coupling is controlled by the smaller 
of the two impact parameters, as one would expect. 

As discussed by Kirschner & Lipatov (1990) it turns out to 
be convenient to work in the 'mixed representation' where we 
keep explicit the dependence upon the momentum transfer q2. 
In other words we invert one of the two Fourier transforms that 
were performed to get from an eigenfunction which depended on 
k and q - k to h and h'. More precisely, we perform the inverse 
Fourier transform ofthe right hand side ofEq.( 4.49) in the variable 
h + b' which is conjugate to q and keep the remaining combina­
tion b == b - h'. This leads to an eigenfunction which is a function 
of q and b. In this case the running of the coupling is controlled by 
the larger of q2 and l/b2. When b becomes larger than l/q2 the 
coupling stops running and is 'frozen' at u s ( q2). t For larger values 
of b the solution continues to oscillate but with a fixed (angular) 
frequency vo, where 

(5.24) 

The Fourier transform is straightforward but tedious. The details 
are given by Lipatov & Kirschner (1990). The result is 

<Pi(q, b) ex sin (~- vln (b2q2/4) + 8(n;v) + nth) + O(bq), 

(5.25) 
where (h is the angle between b and some fixed direction, and the 
phase 8( n, v) is given by 

eit5 (n,v) = f2((n + 1)/2 + iv)f(n + 1 - 2iv)f( -2iv) 
f2((n + 1)/2 - iv)f(n + 1 + 2iv)f(2iv) . 

(5.26) 

Equation (5.25) is valid in the region bq ~ 1, and we have not 
written down the constant since it is only the phase matching that 
is important for the determination of the permitted eigenvalues. 

t We aSSUllle that q2 is sufficiently large that U.(q2) is small enough to be a 
valid expansion parameter in perturbation theory. 
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In this case we set ~ to 

( ~ 2 2 ) ~ = -In 4b AQCD 

and once again for b < 1/ q the coupling runs as 

~ 4N 
frs(b) = f30~ 

and we have to replace lim (b2) in Eq.(5.25) by 

Je lI(()d(. 

For sufficiently small values ofb (where ~ > ~c), II becomes imagi­
nary and we obtain a solution which decays exponentially with b. 
The region II ~ 0 can again be solved in terms of an Airy function 
and the matching of the phase tells us that for ~ ~ ~c we have 

~ (7r ree ) <Pi ( q, b) oc sin "4 + le lI( ()d( . (5.27) 

Now for consistency we must match the phases in Eqs.(5.25) and 
(5.27) which puts a constraint on the allowed values for ~c and 
consequently also on the allowed eigenvalues, .Ai. We will impose 
this phase matching at ~ = ~o, where 

( q2) 4N 
~o = In -2 - = 2 . 

A QCD f3o fr s( q ) 
(5.28) 

At this point b 2 = b6 = 4/q2 and the coupling freezes (i.e. for 
larger impact parameters than b o the coupling is determined by 
q2 and not ( 2). Strictly, we cannot push Eq.(5.25) as far as this 
because there are corrections of order bq. However, since the cou­
pling varies only logarithmically with b we can go to a value of 
b where bq is still small but us(b) ~ us( q). Again we confine 
ourselves to the azimuthally symmetric solution (n = 0). Setting 
b to b o in Eq.(5.25) (where In(b2q2 /4) = 0) and in Eq.(5.27) and 
matching the phases we obtain 

r ee lI(nd( = (1 + 4i)7r + 15(0, lIO). 
l~ 4 2 

(5.29) 

This fixes the allowed eigenvalues (it is directly analogous to 
Eq.(5.21) for the t = 0 case) in terms of a perturbative phase, 
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5 (0, vo) (:::::: 7r for small vo). As before, for large enough q 2 , we can 
find the approximate solution: 

Ai :::::: 4In2Cis (q2) 

X {1- (flo,,;;q'f' [:~3ir C"(i~ 3/4rl (5.30) 

So again, running the coupling has discretized the cut to a semi­
infinite series of poles (again the analytic result is a poor approx­
imation for attainable values of t). As we shall see in Figs. 5.4 
and 5.5, the leading pole is shifted significantly downwards af­
ter taking asymptotic freedom into account. However, it is still 
too large to account for the behaviour of hadronic total cross­
sections. Moreover, the trajectory is very flat in t (we will discuss 
the t-dependence further in Chapter 7), which is not consistent 
with (for example) the observed shrinkage of the forward diffrac­
tion peak. We can conclude, therefore, that although it is indeed 
possible to obtain an isolated Pomeron trajectory purely from 
perturbative considerations (for sufficiently large values of q2), 
non-perturbative effects are likely to be essential if we are to have 
any chance of reproducing the Pomeron identified in the study of 
soft hadron physics. 

5.4 The Landshoff-Nachtmann model 

We shall spend the rest of this chapter discussing various attempts 
that have been made to incorporate non-perturbative effects into 
the construction of the Pomeron in the hope of reproducing at 
least some of the phenomenological properties of the 'soft' Pom­
eron. 

There are two orthogonal approaches to this. In the first ap­
proach it is assumed that the 'hard' Pomeron that we have been 
considering so far is heavily attenuated at small transverse mo­
menta so that it becomes sub dominant and the 'soft' Pomeron, 
an entirely different object which has nothing to do with gluon 
ladders and belongs completely to the non-perturbative realm 
of QCD, takes over as the dominant contribution to diffractive 
processes. In the second approach the 'hard' Pomeron converts 
smoothly into the 'soft' Pomeron at sufficiently low transverse 
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momenta. Whereas the first approach provides an adequate ex­
planation of why we have so far failed to reproduce any of the 
phenomenological properties of the 'soft' Pomeron, it offers no ex­
planation of how this 'soft' Pomeron might arise from QeD. The 
second approach is more optimistic, although, as we shall see, it 
has so far only made very small steps towards its ultimate goal of 
providing a complete description of the 'soft' Pomeron. 

Landshoff & Nachtmann (1987) developed a model based firmly 
on the Low-Nussinov picture, namely the exchange of two gluons 
in a colour singlet state. However, they argued that since the 'soft' 
Pomeron is very much controlled by the non-perturbative (infra­
red) aspects of QeD, one should not expect the exchanged gluons 
to have a propagator which at low k2 behaves like 

1 

P' 
particularly as gluons are supposed to be confined and so the prop­
agator cannot have a pole. These non-perturbative gluons would 
have a propagator, Dnp(k2), with a much softer k2-dependence. 
This non-perturbative propagator can be related to the vacuum 
expectation value of the square of the gluon operator: 

(01: GJ.ll/(x)GJ.ll/(x): 10) = -i J (~:~46k2Dnp(k2). (5.31) 

In order for the integral on the right hand side of Eq. (5.31) to con­
verge it is necessary that Dnp( k2) falls with increasing k2 at least 
as fast as 1/ k 6 (the perturbative propagator takes over at large 
k 2 ). Therefore, from dimensional analysis the non-perturbative 
propagator must depend on some length scale, a, provided by the 
infra-red region of QeD. 

Landshoff and Nachtmann were concerned with the problem of 
quark counting in the coupling of the Pomeron to hadrons (e.g. 
the Pomeron coupling to a baryon with three valence quarks is 
depicted in Fig. 5.3). A straightforward calculation shows that 
the contribution from the graph of Fig. 5.3(a), where both gluons 
couple to the same quark, dominates over the contribution from 
the graph in Fig. 5.3(b) provided a is small compared with the 
typical hadron radius, R. If this condition can be achieved then 
the quark-counting rule follows with corrections of order a2 / R2. 

The model was confined to the consideration of an Abelian 
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(a) (b) 

Fig. 5.3. Graphs contributing to the coupling of the Pomeron to 
the three valence quarks of a baryon. Graphs of type (a) must dom­
inate those of type (b) in order to reproduce the quark-counting 
rule. 

gauge theory to describe the gluons and did not address the ques­
tion of obtaining the Pomeron trajectory through gluon ladders. 
In a non-Abelian theory one would expect the scales a and R to be 
of the same order of magnitude since they are both generated by 
the same mechanism, i.e. the infra-red properties of QCD. Never­
theless, factors of 2 and 7r would certainly arise and it is perfectly 
possible that the non-perturbative gluon propagator does behave 
(at least qualitatively) in the manner suggested by Landshoff and 
Nachtmann and that a is sufficiently small compared with R to 
account for the observed quark-counting rule. 

5.5 The effect of non-perturbative propagators 

The Landshoff-Nachtmann model described above immediately 
poses two important questions for those who wish to relate the 
'soft' Pomeron to QCD. 

1. Can non-perturbative propagators with the required low mo­
mentum properties be extracted from QCD? 
2. Do gluon ladders with non-perturbative propagators for the 
vertical gluons simulate the 'soft' Pomeron? 

There have been several attempts to extract soft gluon propa­
gators from various non-perturbative approaches to QCD, vary­
ing from lattice techniques to solutions of the Dyson-Schwinger 
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equations. Some of these investigations do indeed give propaga­
tors which are finite as k 2 ----7 0 or at least have a softer singularity 
than a pole - others give propagators which have an even steeper 
singularity as k 2 ----7 0 and such behaviour has been hailed as a 
signal for a confining gluon potential. Recently Biittner & Pen­
nington (1995) have argued that, at least in the Landau gauge, 
a propagator with a small momentum behaviour softer than 1/ k2 

is inconsistent with the Dyson-Schwinger equation. They argue 
that the Pomeron cannot be explained in terms of the Landshoff­
Nachtmann model and that its behaviour is controlled by the cou­
pling of soft gluons to off-shell quarks inside the hadron. 

Notwithstanding this, we shall investigate the effect of soft prop­
agators, D(k2 ), which do not have a pole at k2 = 0 (i.e. propaga­
tors which represent confined as opposed to confining gluons) but 
which, for large k 2 , reduce to the usual perturbative propagators. 

A complete non-perturbative treatment of the Pomeron would 
require knowledge about all the gluon Green functions, not just 
the propagator. Clearly, this is impossible and so we have to com­
promise. One possible approach is to make the assumption that 
the non-perturbative features of QCD manifest themselves mainly 
by the effect of the propagators for soft gluons, whereas for the 
vertices we may continue to use the perturbative expressions. An 
approach along these lines is that used by Hancock & Ross (1992, 
1993) in which such non-perturbative propagators are inserted di­
rectly into the BFKL equation (with running coupling). Thus, for 
example, at zero momentum transfer the kernel, /Co, of Eq.( 4.18) 
is replaced by 

x [f(W, k', k2' q) 

- D(kDD(k,2)D((k l - k,)2) W k k 1 
D(k,2) + D((k1 _ k,)2) f( , 1l 2, q) . (5.32) 

Clearly, the eigenvalues of this operator have to be found by nu­
merical techniques which involve discretizing the transverse mo­
menta kl and k' and diagonalizing the resulting matrix. The 
eigenvalues are discrete since there is an 'ultra-violet' scale, AQCD , 
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encoded in the running of the coupling, as well as an infra-red 
scale, a, contained in the non-perturbative gluon propagator.t In 
other words the infra-red scale is set to ~o = -In(a2A~cD) and 
the fact that a discrete spectrum of eigenvalues is obtained means 
that the infra-red behaviour which has been introduced by replac­
ing the propagators with non-perturbative propagators fixes the 
phase 13 (see Eq.(5.21)) at this infra-red scale, although it is diffi­
cult to understand from analytic considerations exactly how this 
phase fixing mechanism works. 

It turns out that the leading eigenvalue for zero momentum 
transfer (Le. the intercept of the Pomeron) does not depend on 
the exact nature of the non-perturbative propagator but only on 
the infra-red scale. Therefore, in Fig. 5.4 we take the simplest 
possible example in which it is assumed that the infra-red ef­
fects introduce an effective mass l/a for the gluon (i.e. we take 
D(k2) = a2/(1 + a2k 2)), and plot the intercept of the Pomeron 
against 1/ a. We observe that there is a reduction of this intercept 
as the effective mass is increased. The intercept is still a long way 
from the observed value of 1.08 for the 'soft' Pomeron, but it is 
clear that this, albeit naive, attempt to take non-perturbative ef­
fects into consideration has the effect of pushing the intercept in 
the right direction. 

One can also insert non-perturbative propagators into the 
BFKL equation for non-zero momentum transfer and solve numer­
ically. The result of such a procedure (taking 1/ a to be 0.25 Ge V) 
for the leading trajectory and first two sub-leading trajectories is 
shown in Fig. 5.5. We also show (dashed lines) the result of the 
purely perturbative trajectories discussed in the preceding sec­
tion (i.e. the solutions of Eq.(5.30)). We note that these perturb­
ative solutions have a very small slope indicating a very small 
t-dependence of the perturbative trajectories. The trajectories 
obtained using non-perturbative propagators (solid lines) devi­
ate substantially from the perturbative trajectories at sufficiently 
small values of -to 

The slope of the trajectories at the origin increases as the infra­
red scale 1/ a increases. We can see from Fig. 5.6 that a slope at 

t The running of the coupling is assumed to stop at the infra-red scale, i.e. 
a s {q2 < 1/a2) = a,{1/a2). 
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Fig. 5.4. Pomeron intercept against infra-red scale (effective gluon 
mass) l/a for the Hancock and Ross approach (HR) and the Niko­
laev, Zakharov and Zoller approach (NZZ). 

the origin of 0.25 Ge Y as suggested by experiment would require 
an infra-red scale of about 0.8 GeY. On the other hand, it is quite 
clear from Fig. 5.5 that the trajectories are very far from linear 
and that the asymptotic (perturbative) solution has been reached 
at -t = 1 Gey2. 

The above treatment tells us that the inclusion of non­
perturbative gluon propagators directly into the BFKL equation 
produces qualitatively desirable effects as far as the reproduc­
tion of the 'soft' Pomeron phenomenology is concerned. However, 
this approach is clearly far too cavalier. A somewhat more subtle 
procedure has been carried out by Nikolaev, Zakharov & Zoller 
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Fig. 5.5. The Pomeron and the two sub-leading trajectories as 
functions of momentum transfer, -to The solid lines are the so­
lutions with the inclusion of a massive gluon propagator with l/a 
set to 0.25 GeV and the dashed lines are the results obtained using 
perturbative gluon propagators. 

(1994a,b), using the Fock space expansion, which was briefly men· 
tioned in the preceding chapter. In this procedure all the (BFKL) 
radiative corrections are incorporated in the impact factors, which 
are determined by considering the Fock space expansion for the 
wavefunction of the scattering hadron (e.g. for a meson the lowest 
order Fock space state is simply a quark-anti quark pair; the next 
is a quark-antiquark-gluon state, etc.). For each of these states 
a convolution is taken between the square wavefunction and the 
cross· section (calculated at Born level only) for the scattering pro· 
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Fig. 5.6. The slopes of the Pomeron and the first sub-leading tra­
jectories as functions of the infra-red scale (effective gluon mass) 
l/a. 

cess between the Fock states. Thus, for example, the leading term 
for meson-meson forward scattering, where both mesons are con­
sidered to be quark-anti quark pairs, is given by 

A(s, 0) = J d2bld2b2dzldz2Iw(Zl, b l Wlw(Z2, b 2 Wa(bb b 2 ), 

(5.33) 
where W(Zi' bj) is the amplitude for meson i, with momentum Pi 
to consist of a quark-antiquark pair with longitudinal momenta 
ZiPi, (1 - Zi)Pi and be separated by bi in impact parameter space. 
The 'cross-section' , a-(b l , b 2 ), is the lowest order amplitude for 
a process consisting of the exchange of two gluons between two 
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quark-anti quark pairs with impact parameter separations hI and 
h2 respectively. Up to a colour factor this is 

2! 2 (1 - eik.bl )(1 - eik.b2 ) 
8as d k k4 . (5.34) 

This procedure lends itself very easily to the incorporation of non­
perturbative propagators for the long-range gluons, since the long­
range gluons only appear in the cross-section. We therefore simply 
replace the two factors of 1/k2 in Eq.(5.34) by D(k2 ). Once again 
the simplest non-perturbative propagator is obtained by introduc­
ing an effective gluon mass 1/ a. The results for the intercept of 
the Pomeron obtained by Nikolaev, Zakharov & Zoller (1994a,b) 
are also shown in Fig. 5.4. We note that this procedure leads to a 
larger reduction of the intercept than the treatment by Hancock 
& Ross (1992). In fact, the results they obtained are lower than 
the lower limits given by Collins & Kwiecinski (1989) (Eq.(5.23)). 
However, these bounds were obtained within the context of the 
perturbative theory with a running coupling. Incorporation of any 
non-perturbative effects such as an effective gluon mass can lead 
to a violation of these bounds. 

Collins & Landshoff (1992) have taken a somewhat different 
approach to the low transverse momentum behaviour of the BFKL 
kernel. They cut the transverse momentum off below some ko in 
the integral for the part of the kernel which accounts for real gluon 
emission (the first term of Eq.( 4.18)). They found that this did not 
shift the position of the leading singularity in the Mellin transform 
of the amplitude. However, they observed that there should also be 
an upper limit to the transverse momentum integration (from the 
kinematic limits) which should be of order yfS. In the derivation 
of the BFKL equation this upper cut-off was ignored since it does 
not affect the leading logarithm results. Restoring the upper cut­
off effectively takes into account some of the sub-leading logarithm 
corrections. Collins & Landshoff showed that if this upper cut-off 
is introduced (along with the infra-red cut-off) then the intercept 
of the Pomeron is reduced. McDermott, Forshaw & Ross (1995) 
showed that the shift downwards of the leading eigenvalue is less 
than 20% for s/k~ > 10\ i.e. the leading eigenvalue is shifted to 

1 
ap(0)=4ln2a . 

sl +11"2/[2+ ~ln(s/k~)J2 
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Furthermore, in the Collins & Landshoff analysis the strong cou­
pling was kept fixed. The running of the coupling (which is also 
a sub-leading logarithm effect) plays a similar role to the imposi­
tion of an upper cut-off to the transverse momentum integration. 
If the coupling is allowed to run then the effect of imposing an 
upper cut-off on the transverse momentum integral is diminished. 

5.6 The heterotic Porneron 

Levin & Tan (1992) have given some consideration to the ques­
tion of how one might interpolate between the 'hard' and 'soft' 
Pomerons. They postulate a 'heterotic Pomeron' which tends to 
the BFKL Pomeron when the virtuality of the external gluons is 
sufficiently large, and tends to the 'soft' Pomeron for near on-shell 
external gluons. 

We introduce the impact parameter b, conjugate to q, and de­
fine F( s, kI, k2, b) by 

2--J d b iq.j) - -F(w,kI,k2' q) - - e F(s,kI,k2' b). 
271' 

We have shown that even with the running of the coupling 
the dependence of the trajectories with the momentum transfer, 
t = _q2, is very small, so to a good approximation we may neglect 
the diffusion of the impact parameter b as we go down the ladder. 
Therefore F(s, kI, k2, b) also (approximately) obeys the t = 0 
BFKL equation, Eq.( 4.17), which we can write (after inverting 
the Mellin transform) as 

- - 1s ds ' 2 I ~ I - I I -F(s,kI,k2,b)= -dkKo(k,kl)F(s,k,k2,b). (5.35) 
o S' 

We have explicitly written the argument of the kernel. This can be 
generalized to include the case where there is indeed substantial 
diffusion in the impact parameter b and we can also allow for a 
more general energy (s) dependence. The generalized equation is 
then 

f" d~' d2k ' d2b' K(sjsl,k',kI, (b - b')) 10 s 

X F(SI,kI,k2,b' ). (5.36) 
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For the 'hard' Pomeron which obtains at sufficiently large kl' k' 
the kernel is 

(5.37) 

On the other hand, for small k', kl (below ko) the Pomeron has a 
significant b-dependence, but does not depend much on the gluon 
virtuality, so we expect kl to remain fixed at around ko. In this 
limit the generalized kernel has the form 

1((sls',k',k1 , (b - b')) = 52 (k' - ko) (;,) C B(b - b'), (5.38) 

where B is a function which vanishes as its argument becomes 
large, but has a non-zero width. The dynamics which determine 
this function are not yet understood. It cannot be derived from 
usual perturbation theory, but alternative techniques such as the 
liN expansion may shed some light on it. 

The kernel Eq.(5.38) should lead to the 'soft' Pomeron, which 
can be described in terms of a 'ladder' in some sense (although it 
may not be a ladder of gluons) and as we go down the ladder we 
have diffusion in b but not in virtuality k. 

Levin and Tan considered the case where the function B(b - b') 
was determined by a random walk in impact parameter space as 
one goes down the ladder. In such a case the diffusion equation 
becomes 

(5.39) 

The solution to this equation has a dependence on impact param­
eter, b, which is 

exp( - b 2 14cbln s) 
(In s )(l-C) 

and which, when Fourier transformed, gives the t-dependence 

rv SCb t . 

Comparing this with the experimental value for the slope of the 
'soft' Pomeron trajectory we must have 

C& = 0.25 Ge V- 2 • 

The heterotic Pomeron would therefore be determined by a 
kernel which interpolates between the two expressions (5.37) and 
(5.38) as the virtuality of the external gluons varies from kl ~ ko 

https://doi.org/10.1017/9781009290111.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290111.007


5.7 Summary 137 

to kl ~ k o. The soft QeD physics which gives rise to this ker­
nel has not so far been identified. Nevertheless, the existence of 
a kernel, which interpolates between the 'two' Pomerons, is an 
intriguing possibility. 

We have been discussing various attempts to explain the soft 
Pomeron within the context of QeD. So far none of these attempts 
has been particularly successful. 

Nevertheless, we have the hard Pomeron which is derived from 
perturbative QeD using no further assumptions about the infra­
red behaviour. Of course, this hard Pomeron is in itself a very 
interesting object and it is important to put it to experimental 
test. In the next two chapters we shall be discussing processes 
such as deep inelastic scattering and large rapidity gap events in 
which the hard Pomeron can (at least in principle) be isolated, 
studied, and compared with the predictions of the 'clean' part of 
QeD. 

5.7 Summary 

• We can view the t = 0 BFKL equation as a diffusion equation in 
the transverse momentum of the emitted gluons (Le. which make 
up the rungs of the ladder). Therefore, a wide range of transverse 
momenta contributes to the amplitude and hence it becomes nec­
essary to consider the running of the QeD coupling. 

• The BFKL equation with running coupling can be solved ap­
proximately using a technique analogous to the WKB approxima­
tion. The modified solution changes from an oscillating solution to 
an exponentially decaying solution above some critical transverse 
momentum. 

• If the phase of the oscillations is fixed at some low transverse 
momentum by the (non-perturbative) infra-red effects of QeD, 
then it can only be matched for certain values of the Mellin trans­
form variable, w. This then leads to isolated poles for the Mellin 
transform of the Pomeron amplitude, as opposed to the cut ob­
tained in the fixed coupling case. 

• The infra-red phase fixing can be obtained by inserting non­
perturbative gluon propagators into the BFKL equation. The in­
tercept of the Pomeron thus obtained is reduced compared with 
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the position of the branch point in the fixed coupling case. How­
ever, the intercept is still too large to explain, by itself, the phe­
nomena which are so well described by the soft Pomeron . 
• Non-perturbative propagators are also required to explain the 
quark-counting rule within the context of the two-gluon exchange 
model of the Pomeron. The non-perturbative propagator intro­
duces a length scale which, if small compared to the hadron ra­
dius, will suppress quark-counting-violating contributions to the 
scattering amplitude in which the two gluons land on different 
quarks within the hadron. 
• A kernel which, for large transverse gluon momenta, tends to 
the BFKL kernel (giving rise to diffusion in s and transverse gluon 
momenta but no diffusion in impact parameter) and which for 
small transverse gluon momenta gives rise to diffusion in s and 
impact parameter but not in gluon transverse momentum, could 
provide a useful interpolation between the seemingly very different 
'hard' and 'soft' Pomerons. 
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