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SEMI-ORTHOGONAL FRAME WAVELETS AND FRAME
MULTI-RESOLUTION ANALYSES

HonGg OH KiM, RAE YOUNG KiMm AND JAE KUN LiM

We first characterise semi-orthogonal frame wavelets by generalising the character-
isation of orthonormal wavelets. We then characterise those semi-orthogonal frame
wavelets that are associated with frame multi-resolution analyses. This is a generali-
sation of a result of Wang and another result of Papadakis. Finally, we illustrate our
results by an example.

1. INTRODUCTION

It is well-known that most wavelets are associated with multi-resolution analyses,
whereas there exist some ‘pathological’ wavelets that are not associated with any multi-
resolution analyses. We are going to be more clear about what we mean. Let ¥ € L%(R)
be an orthonormal wavelet if it generates a wavelet orthonormal basis, that is, {¢j 1=
DTy : j, k € Z} is an orthonormal basis of L?(R), where D : L?(R) — L?*(R) is
the unitary dilation operator defined by Df(z) := 2'/2f(2z), and T, is the translation
operator defined by T f(z) := f(z —t) for ¢ € R. The following useful commutation
relation holds:

(1) DnTt = T2—ntDn, or /I‘tDn = DnTznt.

We recall the characterisation of orthonormal wavelets in [5, 6, 7, 14]:
THEOREM 1. ¢ € L?(R) is an orthonormal wavelet if and only if
(@) llwllexm =1;
(b) Zld)(?’i)]2 =1 for almost everywhere z € R;
jEZ :
o0 . = .
(€) X ¥(27z)9 (2 (z + 2mm)) = 0 for almost everywhere z € R,m € 2Z + 1.
=0
We use the following form of the Fourier transform: For f € L'(R) N L?(R) define
f(z) := [g f(t)e~™'dt and extend the Fourier transform A to be V27 times a unitary

operator from L?(R) onto L?(R). The most efficient way to construct an orthonormal
wavelet is to construct it from an orthonormal multi-resolution analysis ({7]).
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DEFINITION 2: A family {V;};cz of closed subspaces of L?(R) is said to be a multi-
resolution analysis if
(i) V; C Vi for each j € Z;
(i) D(V;) = Vi1 and T1(Vo) = Vo
(i) U Vj=L*R)and N V;=(0};

jez jeZ
(iv) There exists ¢ € Vo such that {Txp : k € Z} is an orthonormal basis for
Ve.

It is well-known that given a multi-resolution analysis there exists ¢y € V) &V} such that
{¥jx : 4, k € Z} is an orthonormal basis for L>(R) ([7]). On the other hand, suppose
that an orthonormal wavelet v is given. Let V; := span{vw : k € Z, | < j} for j € Z.
Then it is easy to see that if there exists ¢ € V;, called the scaling function, such that
{Tkp : k € Z} is an orthonormal basis for V;, then {V;},ez is a multi-resolution analysis.
In this case we say that 1 is associated with ¢ multi-resolution analysts. It is established
that most ‘nice’ wavelets are associated with multi-resolution analyses [7, Chapter 7).
For example, any compactly supported orthonormal wavelet is associated with a multi-
resolution analysis ([7, Corollary 3.15, Chapter 7]). On the other hand, there are some
‘pathological’ orthonormal wavelets that are not associated with multi-resolution analyses
([14, p. 77|, [6]). Herndndez and Weiss along with Wang ([7, 14]) characterised those
orthonormal wavelets that are associated with multi-resolution analyses. Let T denote
the circle group which can be identified with [—7, 7).

THEOREM 3. An orthonormal wavelet i is associated with a multi-resolution

oo PR )
analysis if and only if 3 3 l¢(21(a: + 2k7r))l =1 for almost every z € T.
J=1keZ

A sequence {f; : ¢ € I} of elements of a Hilbert space H is said to be a frame for H if
there exist positive constants A and B such that for each f € H A < Z[(f, f,-)l2 <B. If

{fi : 1€ I} is a frame for H, then there exists another frame {]: 4 € I} for H, called the
dual frame, such that for any f € H f = Y (f, f:)f;- Hence we can expand any vector

by a frame. Moreover, unlike orthonormalibasis, a frame can be redundant. In some
situations this redundancy is positively sought after. See [7] for more details on frames.
Papadakis ([13]) proved the following.

THEOREM 4. Any orthonormal wavelet ¢ is associated with a generalised multi-
resolution analysis in the sense that there exists a countable (finite or countably infinite)
subset ® of Vy such that {Typ : k € Z, ¢ € 9} is a frame for V}.

In this paper we generalise Theorem 1, Theorem 3 and Theorem 4 to semi-orthogonal
wavelet frames and frame multi-resolution analyses (see Theorems 7 and 11). First, let us
introduce some definitions in order to clarify what we are going to show. ¥ € L%(R) is said
to be a frame wavelet if it generates a wavelet frame for L*(R), that is, {¢jx : j, k € Z}
is a frame for L2(R). It is said to be a semi-orthogonal frame wavelet if the wavelet frame
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it generates is semi-orthogonal in the sense that (¥jx, ¥im) = 0if j # . {Vj}jez is said
to be a frame multi-resolution analysis if Condition (iv) in Definition 2 is replaced by the
following.

(iv)’ There exists ¢ € Vj such that {Tiyp : k € Z} is a frame for Vj.

It is said to be a finite frame multi-resolution analysis if Condition (iv) in Definition
2 is replaced by the following. _

(iv)” There exists a finite subset ® C V; such that {Typ : k € Z,p € @} is a frame
for V. )

If ® is countably infinite we say that {V;};ez is an infinite frame multi-resolution
analysis. Frame multi-resolution analyses were introduced in [1] with an intention to
apply the theory to analyse narrow band signals. The fundamental existence problem
concerning frame multi-resolution analyses was solved independently in [2] and [10], and
some extension of the theory can be found in [11].

In Section 2 we generalise Theorem 1 in the sense that we find equivalent conditions
for ¢ to be a semi-orthogonal frame wavelet. Then a generalisation of both Theorem 3
and Theorem 4 is presented in Section 3. The idea is to apply shift-invariant space theory
{[3, 4, 8]) to the problem of association of a wavelet with a multi-resolution analysis.
Our solution to the problem of the association of a Riesz wavelet, that is, {1jx : j, k € Z}
is a Riesz basis of L2(R), with a multi-resolution analysis is reported in [12]. Finally, we
illustrate our results by an example.

2. SEMI-ORTHOGONAL FRAME WAVELETS

We first characterise semi-orthogonal frame wavelets as a generalisation of the char-
acterisation of orthonormal wavelets by Gripenberg ([5]), Ha, Kang, Lee and Seo ([6]),
and Hernandez and Weiss, and also Wang ({7, 14]). The following two propositions are
well known. See [7, Theorem 1.6, Chapter 7] and [9, Theorem A3], respectively.

PROPOSITION 5. Lety € L*(R). Then {4 : j, k € Z} is a tight frame with
frame bound 1 for L*(R), that is, :

(2) STKE w0 = I£I%, for all f € LA(R),
Ik

if and only if ¢ satisfies (b) and (c) of Theorem 1.

PROPOSITION 6. Lety € L*R) and let Wy = Span{vos : k € Z}. Then
{Yox : k € Z} is a frame for Wy if and only if there exist positive constants A, B such
that

{3) AL ""lezn%i(m & B for almost every z € T\ N,

where Py := (P(z — 2rk)), ., and N := {z € T : 4§, = 0}. In this case, A and B are
frame bounds for {4 : k € Z}.
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Now, we state and prove our characterisation of semi-orthogonal frame wavelets.
THEOREM 7. Let € L*(R) and define ¢* by
N ¥z)
wt(m) = ||1/)||z| 2(2)

0, otherwise.

. if Pz #0,

Then the following statements are equivalent:
(@) {¥jx:jr k € Z} is a semi-orthogonal frame wavelet with frame bounds A
and B;
(b) There exist positive constants A,B such that ¢ satisfies (3) and

(4) Z|’l//)\*(2]$)|2 =1, for almost every z € R,
i€z
(5) Z @\*(2%)@\*(2"(:5 +2pm)) = 0, for almost every z € R, p € 2Z + 1;
%0

(c) There exist positive constants A,B such that i satisfies (3), (5) and

(6) le(:c + 2k7r)$(2j(a: +2kw)) =0, almost every 1€ R, j > 1,
keZ
(7) AL Z|1Z(2jx)|2 < B, for almost every = € R.
jEZ

PRrROOF: Let W; = span{y;x : k € Z} and W} = span{y}, : k € Z}. Note that
W]’ = W]—*.
(a) = (b): Suppose that % is a semi-orthogonal frame wavelet with frame bounds

A and B, that is,

AIFIP < S| wi)” < BIFIR, f € LA(R).

J.kEZL

Take f € Wy. Since W; LW, for j # j' by the semi-orthogonality, we have

AILFIZ < 31 o)) < BIFIR,

keZ

which is equivalent to (3) by Proposition 6.
Since W}’s are orthogonal to each other and

(8) Z|1//;\*(r - 27rk)|2 = 1, for almost everywhere z € T \ N,
kez
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{®;x}i.kez is a tight frame with frame bound 1 for L?(R). Hence (4) and (5) are satisfied
by Proposition 5.
(b) = (c): From (3), we have

—|1,b(a: | , for almost every z € R.

1, ~
(9) Flb@)° <
Hence, by Condition (4) we have
AL Z|1,/b\(2"ar:)|2 £ B, for almost everywhere z € R,
JEZ
which shows (7). From the definition of 9%, we see that {15, : k € Z} is a tight frame
for Wy with frame bound 1. By Proposition 5, {5, : j, k € Z} is also a tight frame

with frame bound 1 for L%(R). Since ¢* is in Wy, it follows from the tightness of both
{64 : k € Z} and {9}, : j, k € Z} that

9 oy = 3 [W", 45,0

J keZ

=3 W )’

kEZ

Therefore, (1", ,) = 0 for j # 0. We argue as in [7, Section 3.1] below:
0= (" j0) = 57 [ T2 D) b
—/1/1‘(2151,‘)527/""(/)*(:15)6“CI dz.
T JR

Thus, we have

U+ .
o=2/2 F(F2)9 (z)e™ da

1eZ lm
27 —_—
= / {Zzﬁ*(z + 2km)* (2 (z + 2k7r)}e“” dz
0 Yiez

for all k € Z when j > 1. This shows that

Z vz + 2k7r)$(2j(z +2km)) =0, for almost every z € R, j > 1.

lez
Therefore, we have
> Dla+2km) (2 (a+2k7)) = el aIip=lle@ D ¥ (a+2kn)e* (2 (z+2km)) = 0
keZ keZ

Thus, ¥ satisfies Condition (6).
(c) = (a): Condition (3) implies that {1;x : £k € Z} is a frame for W; by Proposition
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6, and Condition (6) shows that W, is orthogonal to W; for j # 0. By means of change
of variables, (Y, ¥im) = (Yok-2-1m» Yi-j0), from which W; L W, follows for j # L.
Therefore, {1;x : j, k € Z} is a frame of W := span{y; : j, k € Z}. We claim that
W = L%*(R). It suffices to show that {¢7,} is a frame for L?(R). As in (7, Proposition
1.19, Chapter 7],

Z I(f) /d);,k)|2
Jr k€L
=0 [ F@l'y

JEZ

¥ (@z)|* de

o0

+-21?Z Z / f(z)?(z+27rp2")0p(2'“a:) dz

neZ pe2Z+1Y —®

(10) = o [ 1l SiFes) s,

JjezZ

since 8,(z) := S 9*(2'z)9* (24(z + 2pm)) = 0 by (5). From (7) and (9), we have
=0

-~

A/B <Y |4 (22)|" < B/A.

jez
Thus we obtain from (10),

A/BIFI? < S U] < B/AIFIE

j, k€Z

That is, {#;,} is a frame for L?(R) and hence spans L*(R). Therefore, W = UW;
L?(R).

c ll

3. FRAME MULTIRESOLUTION ANALYSES

In this section we characterise those semi-orthogonal frame wavelets which are as-
sociated with frame multi-resolution analyses. This association problem can best be
understood by the theory of shift-invariant spaces. We first introduce briefly those parts
of shift-invariant space theory that will be used directly in this paper. The theory has
a rich history, and is well-known to approximation theorists. The interested reader may
consult [3, 4, 8] and the references therein. A closed subspace S of L*(R) is said to
be shift-invariant if T,f € S for any f € S and k € Z. Let ® C L*R). Then
S = 8(®) :=5pan {Txp : ¢ € ®, k € Z} is clearly shift-invariant. The length of S
is defined to be min{#@ :S=8(9),® C Lz(R)}, where #® means the cardinality of ®.
It is established in [3, Section 3] that the length of a shift-invariant subspace of L?(R)
is at most countable. For f € L(R), let fiz := (f(z — 2k)) . oz» Which is in ¢2(Z) for
almost every z € T. Forz € T, A C L?(R) we let 2||z = {ﬁlz : f e A}

https://doi.org/10.1017/50004972700020037 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700020037

(7] Semi-orthogonal frame wavelets and frame MRA'’s 41

LEMMA 8. Let S be a shift-invariant subspace of L?(R), and X its length which
may be infinite. Then there exists ® C L%*(R), with cardinality A, such that {Tf : k €
Z, f € ®} is a frame for S. Moreover, if S = S(¥) for some ¥ C L*(R), then

A = ess-sup{dim :57”I :z € T}
= ess-sup{dim3pan ¥y, : z € T}.

PRrROOF: The first part of the theorem follows from {4, Theorem 3.3] and the remark
following it. The equations concerning X follow from [3, Theorem 3.5] and [4, Proposition

1.5]. 0

Suppose that 1 generates a semi-orthogonal wavelet frame, that is, {D'Tyv : j, k €
R} is a frame for L?(R) and (D'Tyy), D'Trptp) = 0if j # 1. Let W, :=5pan {D'Tyy) : k €
Z},and V; := EB W, for j, | € Z. Then it is easy to see that { D'Ty¢ : k € Z} is a frame for
W, for each [ e Z and that L2(R) = @ W,. It is also easy to see that v is associated with

lez
a frame multi-resolution analysis if and only if there exists ¢ € Vg such that {Trp : k € Z}

is a frame for Vj; ¥ is associated with a finite frame multi-resolution analyses if and only
if there exists {@1,92,...,pn} C Vo such that {Txyp; : k € Z, 1 < i € n} is a frame for
Vo; 9 is associated with an infinite frame multi-resolution analysis if and only if there
exists {¢; : 1 € N} such that {Tip; : i € Z} is a frame for V}.

LEMMA 9. V, is shift-invariant.
ProOF: First note that Vj* = @ W,. Equation (1) implies that, for each | € Z,
120
f € W, if and only if Ty-1,,f € W, for each m € Z, that is, W; is 2'Z-shift-invariant
space. In particular, W is shift-invariant for [ > 0. This implies that VOL is shift-invariant.
Hence so is V; by (3, Corollary 3.4]. 0
LEMMA 10. Vp=S8({D7y:j <0}).

PROOF: Let Vj := S({D%% : j < 0}). Note that V =span {DTyyp: j <0, k € Z}
by the definition of V4, and that V; = 5pan {TxDiy : j < 0, k € Z} = 5pam {D/ Ty :
7 <0, k € Z} by the definition of the shift-invariant space and Equation (1). V4, however,
is shift-invariant by Lemma 9. Hence

Vo =span {T,D’Tyyp : j < 0,k,l € Z}
=span {D Ty st : j < 0,k, L €Z}

=span {D'Ty 9 :j <0,l€Z} =V, 0

The following theorem gives a generalisation of both {7, Theorem 3.2, Chapter 7} and
the main result in [13]. We note that the last part of the following theorem is Theorem 3.
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THEOREM 11. Suppose v generates a semi-orthogonal wavelet frame. Let, for

zeT, ‘
D(z) = dimspan {(D"¥)fy : j < 0},

and
A :=ess-sup{D(z) : z € T},

which may be infinite. Then v is associated with a frame multi-resolution analysis if and
only if A = 1; and it is associated with a finite frame multi-resolution analysis if and
only if A < co. In this case there exists {¢y,@2,...,pr} C Vo such that {Typ; : k € Z,
1 € ¢ < A} is a frame for V. It is associated with an infinite frame multi-resolution
analysis if A = oco. Suppose, furthermore, that 1 generates an orthonormal basis. Then

o 2
(11) D) =Y S| +2mk)|

j=1 keZ

and it is associated with an orthonormal multi-resolution analysis if and only if D(z) = 1
for almost everywhere x € T.

ProorF: First note that A is the length of the shift-invariant space V4 by Lemma 10
and Lemma 8. Suppose that 1 is associated with a frame multi-resolution analysis. Then
there exists ¢ € Vj such that {Txp : k € Z} is a frame for V5. Hence Vy = S(y). Hence
A =1 by Lemma 8. Suppose, on the other hand, that A = 1. Then there exists p € V}
such that {Txp : k € Z} is a frame for V; by Lemma 8. The statements about finite and
infinite frame multi-resolution analyses follow similarly. Now suppose that ¢ generates an
orthonormal basis. Equation (11) follows from (7, Equation (3.8), Chapter 7]. Suppose
that 1 is associated with an orthonormal multi-resolution analysis. Then there exists
@ € V, whose translates form an orthonormal basis of V4. Hence Vy = S(¢). Moreover,
D(z) = dimspan{@j;} by [4, Proposition 1.5]. It is well-known that ||§jzl|7(z) = 27 # 0
for almost every z € T. Hence D(z) = 1 for almost every z € T. Suppose, on the other
hand, that D(z) = 1 for almost every z € T. Then there exists ¢ € V; whose translates
form an orthonormal basis for V4 by {3, Theorem 3.2]. 0

We illustrate our results by considering an example ¥, € L?(R) defined by 17):
= X[-2a,~a) t X[a,2a) for a > 0. That is,

Ya(z) = (2/7x) cos(3ax/2) sin(az/2).

If a = 7, ¥, is the well-known Shannon wavelet.
For 0 < a € 7/2, we shall show that that i, is a semi-orthogonal frame wavelet by
checking the conditions in Theorem 7 (b). We see that

ZI@(WE)P = Z;p:(?x) =1, for almost everywhere z € R.
JEZ j€z
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=

Since ¥a(z)¥a(2z) =0 for j > 1,

Z{b:(x + Qkﬂ')i(Zj(IL' + 2km)) =0, for almost everywhere z € R, j > 1.
kez

We can check that -

ZI{/}Z(::: + 2lc7r)|2 = Zwa(z + 2km) = xT\N»

keZ keZ
where N = [—7,—2a) U [~a,a) U [2a,7). Finally, we check Condition (5). Let 2/z €
[-2a, —a)U|a,2a) for j > 0 and let p € 2Z + 1. If p > 1, then 27z + 2p2im > 27z + 27 >
~2a+2r 272 2a Ifp < —1, then'2j$+2p2j7r £ Yz — 27 < 2a — 2 € —2a. We have

17):(2jz)17)_:(2j(x +2pr)) =0for j > 0and p € 2Z +1,

and hence _

> $a(2z) a(P(z+2p7)) =0, pE2Z+1.

j20
Therefore, we have shown that 1), is a semi-orthogonal frame wavelet for 0 < a € 7/2
by Theorem 7. We can also check that 1, is not a semi-orthogonal frame wavelet if
w/2 < a <7 or a > 7 by using Theorem 7.

Now, we show that 1, is associated with a frame multi-resolution analyses for 0 <

a < m/2 by applying Theorem 11. If z € [—7, —a)U]a, 7), we see that J(Qj(z+27rk)) =0
fork € Z and j > 1 and so D(z) = 0. If z € [—a,a)\{0} then 2=z € [—2a, —a) U [a,2a)
for some 7, > 1 and so 9(2/(z + 2km)) = 6;;,00,; hence D(z) = 1. Therefore A = 1 and
S0 1, is associated with a frame multi-resolution analysis by Theorem 11.
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