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Abstract
While there arewell-knowndemonstrations that children can use distributional information to
acquire multiple components of language, the underpinnings of these achievements are
unclear. In the current paper, we investigate the potential pre-requisites for a distributional
learning model that can explain how children learn their first words. We review existing
literature and then present the results of a series of computational simulations with Vector
Space Models, a type of distributional semantic model used in Computational Linguistics,
which we evaluate against vocabulary acquisition data from children. We focus on nouns and
verbs, andwe find that: (i) amodel with flexibility to adjust for the frequency of events provides
a better fit to the human data, (ii) the influence of context words is very local, especially for
nouns, and (iii) words that share more contexts with other words are harder to learn.

Keywords: Word learning; Vector Space Models; semantic networks

Introduction

When acquiring word-meaning mappings, children are faced with a large hypothesis
space (Quine, 1960). One way to navigate this space to find successful mappings is to
reduce the number of hypotheses. For instance, there are suggestions in the literature that
children’s word-meaning mappings might follow a systematic set of (pre-conceived or
learned) constraints, such as the whole-object bias and the mutual exclusivity bias
(e.g. Regier, 2003).

A related problem is that children must acquire spoken language from continuous
speech (Cutler, 2012), which adds another layer of complexity to the word learning task.
However, this problem can be addressed by paying attention to available regularities. For
example, across many languages the speech directed to children contains many useful
prosodic markers, including variation in pitch, longer vowels, lower tempo and longer
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pauses (Fernald, 1985). Experimental studies suggest that these cues facilitate learning the
meaning of words when presented within sentences (Ma et al., 2011, 2020).

Regularities in the input language are also present at the lexical level: word tokens are
not randomly distributed. Rather, words differ in their frequency, and show marked
tendencies of co-occurrence with other words, or even with extra-linguistic information
that may be present during the communicative act. From a very young age, human
learners are capable of tracking co-occurrence information in the speech signal, a
mechanism often referred to as Statistical Learning (Saffran et al., 1996). This capacity
does not seem to be limited to the short exposure of experimental settings: in fact, children
can keep track of information (both from linguistic input and extra-linguistic environ-
ment) across separate linguistic experiences via cross-situational learning (Smith & Yu,
2008; Yu & Ballard, 2007).

Children’s sensitivity to distributional information can constitute a powerful mech-
anism to derive word-meaningmappings from the linguistic input, in particular when we
consider that a word’s distributional context (i.e., other words or morphemes occurring
around it in a sentence) contributes significantly to its meaning (Harris, 1954). For
instance, while we may be unaware of the meaning of bardiwac if we encounter the word
in isolation, its meaning can be deduced (or, at least, substantially constrained) when it
occurs in a sentence like If I drink too much bardiwac I get drunk (Evert, 2010). Thus, a
potentially fruitful acquisition strategy would be to attend to word co-occurrence, as
embodied in the famous quote You shall know a word by the company it keeps (Firth,
1957).

In the current paper we discuss computational modelling work investigating whether,
and under what conditions, a word’s context contributes to vocabulary acquisition. For
instance, does the fact that drink appears often in the context ofmilk help children learn
how to use the wordmilk? And if so, how far apart in the sentence can words yet still have
this effect? And does this change depending on the syntactic category of the word?

We begin with the basic assumption that words that share contexts can be arranged in
networks, such that words are connected if they are contextually related – which,
assuming the distributional hypothesis mentioned above (Firth, 1957; Harris, 1954),
would also be semantically related. This network construct is gaining traction in com-
putational studies of cognition (Kenett &Hills, 2022) and language in particular (Cancho
& Solé, 2001), including vocabulary acquisition (Steyvers & Tenenbaum, 2005; Hills et al.,
2010; Roy et al., 2015; T. A. Chang & Bergen, 2022; Grimm et al., 2017; Stella et al., 2017).
Interestingly, in the related field of Computational Linguistics and Natural Language
Processing the estimation of semantic relations from contextual information is one of the
most extensively studied tasks, in particular with Vector Space Models (VSMs), which
compute continuous vector-based word representations from distributional information
gathered across corpora. While these methods were not originally devised to account for
human learning, a substantial amount of work has been dedicated to finding how to
exploit context to obtain word representations that best encode their semantic properties.
Thus, these models are promising candidate models for investigations of how word
learning in children can be supported by contextual information. This is the approach
we take here.

To evaluate our models (i.e., to determine whether the semantic representations
extracted by VSM models can predict vocabulary acquisition in children), we used Age
of Acquisition (AoA) data, estimated from MacArthur-Bates Communicative Develop-
ment Inventory forms (CDIs). A growing body of work has focused on the use of CDI data
to predict vocabulary growth in multiple languages (Frank et al., 2017, 2021). In addition,
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CDI data are known to correlate highly with other estimations of children’s vocabulary,
with good reliability and validity (Fenson et al., 2007).

In the remainder of this paper, we review computational work that has used semantic
networks to study vocabulary growth. We then present VSMs as an alternative approach
to construct such networks to investigate word learning in children. Through a series of
studies, we use VSMs trained on child-directed speech to investigate which distributional
properties of the input (e.g. amount of context, word frequency) best explain the
acquisition of nouns and verbs, as observed in the CDI data.

Background

Semantic networks

This section reviews past research that has investigated how contextual information of
words in child-directed speech may support word learning. The papers we review have
proposed some metric to quantify the degree of connectivity of a word in a semantic
network, such that words which are connected become semantic neighbours. The
construction of these semantic networks differs greatly; however, all the work we describe
uses some notion of a word’s context to derive these networks, as observed in child-
directed input.1

Hills et al. (2010) investigated how word learning can be predicted from a semantic
network derived from words in child-directed speech. The authors hypothesized that
these semantic relations can be approximated as a function of word co-occurrence, such
that all thewords that have co-occurred at least once in child-directed input are connected
in an unweighted graph. The cognitive implication of this design is that children are
sensitive to word co-occurrence, and use it to derive the semantic relatedness between
words (such that words that co-occur are semantically related). The study related these
semantic networks to a measure of Age of Acquisition (AoA) of words, and found that
contextually diverse words (i.e., words with more connections to other words in the
semantic networks) were acquired earlier than words with fewer connections. However,
note that the frequency with which co-occurrence happens does not play a role in this
study, such that words that co-occur once are equally related towords that co-occur often,
which may not be a plausible assumption (see Ambridge et al., 2015).

A related study (Roy et al., 2015) defined the notion of a word’s context more
broadly, to include also extra-linguistic elements like the location and time of where
and when a word was produced. Unlike the study by Hills et al. (2010), the linguistic
context of a word was modelled in terms of a word’s topic distribution, which was
extracted using Latent Dirichlet Allocation (LDA) (Blei et al., 2003). The authors
quantified the distinctiveness of a word, measuring how much its context distribution
deviated from a baseline distribution of general language use. For instance (borrowing
the example provided in the original paper): a word like “with” has less distinctiveness
than a word like “fish” or “kick”. The study concluded that distinctiveness is helpful for
acquisition (although more so for extra-linguistic rather than linguistic context). One
may tentatively conclude that these results are at odds with those of Hills et al. (2010),
since words with more distinctive linguistic context may, a priori, have fewer semantic
neighbours (and therefore less contextual diversity). However, the exact relation
between those metrics has not been worked out, and there are notable differences in

1Unless otherwise mentioned, these studies have focused on English language.
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the methods to extract linguistic context (note that LDA is sensitive to frequency of
word co-occurrence within a certain span, which in this work was set to 10 minutes).
Thus, differences in the formalization of these measures are likely to have contributed
to, if not caused, the apparently different results between the two studies.

Most recently, T. A. Chang and Bergen (2022) reported results that directly contra-
dicted those of Hills et al. (2010), in this case using an equivalent estimation of contextual
diversity. This work extended the statistical analyses of the original study and used a
cross-linguistic data set, which included data from four other languages as well as English.
The study concluded that contextual diversity of a word hinders, rather than helps, its
acquisition.

Stella et al. (2017) studiedwhether free association norms and semantic feature sharing
influence acquisition, in addition to word co-occurrence and phonological similarity. The
authors created networks with these different types of information, and found that all of
these are fundamental to word learning, although the relative influence of each changed
across developmental time, with free association norms being more influential after the
age of 23 months. Free association norms and phonological similarity were also used in
Fourtassi et al. (2020), this time also for 9 languages other than English. The authors
reported that, even after controlling for frequency and word length, higher connectivity
(i.e., greater contextual diversity) facilitated acquisition.

The work we have reviewed so far assumes that all the linguistic input of caretakers can
be used equally for word learning. Grimm et al. (2017) present an alternative view which
suggests that word learning only takes place after the acquisition of larger multi-word
representations, which in turn facilitate the acquisition of single words. According to this
premise, the context that effectively influences word learning should be derived from the
previously acquired multi-word representations, rather than from the entirety of the raw
parental input. Tomodel this idea, the authors used a cognitivemodel (amodified version
of the Chunk-Based Learner, McCauley et al., 2015) to simulate learning of multi-word
units from parental input, which was then used to generate the contexts for the network
analysis. With this estimation, the authors also found that contextual diversity positively
influenced vocabulary acquisition.

Overall, the past work shows that, despite differences in definition of the core
construct, contextual diversity influences vocabulary acquisition. However, the direction
of the effect is extremely sensitive to different operationalisations of the concept. Thus,
more work needs to be done to determine the best way to operationalise contextual
diversity in order to accurately capture order of acquisition in children’s vocabulary
learning. This is the goal of the current paper.

Vector space models

In our work, we build semantic networks using VSMs in order to study lexical acquisition
from linguistic context. These models have a long tradition in the Computational
Linguistics and Natural Language Processing literature (Turney & Pantel, 2010), where
they have been used to derive word representations that can capture semantic relations
between words, as we describe next. Thus, they are promising candidates for modelling
the role of contextual diversity on children’s word learning.

VSMs represent lexical meaning in terms of distributional information, based on the
hypothesis that the (lexical) context of a word provides relevant information about its
meaning (Harris, 1954). Trained over corpora of linguistic productions, the models
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implement this idea by computing a vector-based word representation that aggregates
information about the contexts in which a word appears. Models differ on details of how
the vector word representations are constructed, but all the variants are computed in a
way such that the dimensions in these vectors preserve information derived from the
context in which a word appeared in the training data (see Table 1 for an illustrative
example).

My cat eats tuna every Monday.
Next Monday my cat will eat tuna.

Because the models represent words as vectors, it is possible to compute the semantic
relation between two words by using similarity metrics for their corresponding vectors
(often quantified as cosine similarity, i.e., the cosine of the angle formed by the vectors
when projected in multidimensional space). These models have been shown to success-
fully predict adult human behavior in a range of semantic tasks, such as free word
association, synonym tests, similarity ratings, and analogy problems (Baroni et al.,
2014; Levy et al., 2015; Mandera et al., 2017; Pereira et al., 2016).

We argue that VSMs have advantages compared to the methods used in previous
approaches. First, these models go beyond co-occurrence counting and use well-
studied techniques to transform, compress and automatically learn the word vectors
that best encode semantic relations. Second, the semantic distance estimated by these
models is continuous and bounded: it conveys more information than the unweighted
semantic networks proposed in prior work, and we can search for an optimal threshold
to decide which words should be connected. Third, these models have more sensitivity
to frequency of co-occurrence, in particular compared to some of the semantic
networks that have been proposed (in which frequency of co-occurrence is binarized,
such that words are considered only to either co-occur or not). This allows us to
investigate the role that frequency of co-occurrence may play in acquisition. In sum,

Table 1. Toy example of a matrix of co-occurrence counts, for a corpus featuring 2 sentences, and a
window size of 2. The rows (or columns) corresponding to each word can be used as the vector
representation for this word. Each model uses these vectors differently: (a) Hills et al. transform the
vectors such that any number higher than 1 is transformed to 1; (b) count-based models start with
vectors of co-occurrence like the ones in our example and (in most cases) transform them, often to
reduce the amount of zeros and the number of dimensions (in our work, we do this with PPMI and SVD);
(c) prediction-based models disregard these counts and estimate similar word vectors using neural
networks.

my cat eats tuna every Monday next will

my 0 2 1 0 0 1 1 1

cat 2 0 2 1 0 1 0 1

eats 1 2 0 2 1 0 0 1

tuna 0 1 2 0 1 1 0 1

every 0 0 1 1 0 1 0 0

Monday 1 1 0 1 1 0 1 0

next 1 0 0 0 0 1 0 0

will 1 1 1 1 0 0 0 0
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given that the method of estimation of contextual diversity has great influence on the
prediction of age of acquisition (as shown by the divergence of results in prior work),
the use of these models allows us to study how distributional information contributes
to vocabulary acquisition using a more fine-grained approach.

The present studies

We approach the study of how contextual information contributes to vocabulary acqui-
sition with three studies.

The goal of Study 1 is to study the effect of different modelling approaches (content-
counting and context-predicting, as will be explained later) and different modelling
choices (or hyperparameters) in predicting the age of acquisition of nouns and verbs in
English. The hyperparameters regulate distributional properties available to the models,
such as the amount of context that influences a word’s representation (i.e., how close in
the sentence a context word needs to be to affect word acquisition), and the minimum
frequency with which words have to occur to become part of the computation and
influence the representation of other words. Hence, by analyzing how these modeling
choices predict vocabulary growth, we gain insight into how context influences word
learning.

The models used in Study 1 are driven primarily by frequency of co-occurrence.
However, frequency of co-occurrence is affected by word frequency as well. Therefore, it
is plausible that word frequency has an indirect effect on the semantic spaces built with
these models (i.e., more frequent words may tend to have different number of neigh-
bours than less frequent words). Since we know that frequency plays an important part
in word acquisition (Ambridge et al., 2015), it is relevant to disentangle whether
frequent words have a differentiated status in the semantic spaces. This is the goal of
Study 2.

Finally, in Study 3 we revisit prior work and compare our findings to previous studies,
specifically addressing the relation between the semantic networks that we have built
using VSMs and those used before.

Methods

Models

Alhama et al. (2020) proposed methods to evaluate how well vector-based word repre-
sentations computedwithVSMs can be related to children’s emerging semantic networks.
To this aim, the authors optimized a threshold parameter to establish connections in a
semantic network based on semantic (cosine) distance in those models, and used ametric
of contextual diversity (called neighbourhood density) to predict Age of Acquisition
(AoA) data. This work established the validity of the approach of estimating semantic
networks through threshold optimization in VSM models to predict Age of Acquisition
data, providing a basis for the work we present here.

In our work, we focus on the bag-of-words approach to VSMs, according to which
context words are indistinguishable in terms of their position in the sentence. For
example, in the sentence She likes cats, the words she and cats have the same influence
on the representation of likes. Thus, these models do not assume knowledge of the exact
position of a word in a sentence (i.e., does not assume grammatical knowledge).
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We use models that derive a vector representation for each word type, based on
aggregated information about the context of each word token2. There are two main
approaches, which are known as count-based and prediction-based (Baroni et al., 2014).
The difference between these models is in the steps followed to build the word represen-
tations. Context-counting models gather co-occurrence counts between word types in
one pass over the input data, and arrange those counts into vectors. These vectors are then
further transformed with mathematical operations that improve these representations.
Context-predicting models, instead, start with random vectors for each word, which are
adjusted iteratively with a neural network. The network learns through an error-driven
algorithm: the (randomly initialized) vectors of each word are used to predict the
accompanying words in the input sentences. In this way, word types that appear in
similar contexts end up being represented with similar vectors (since a similar represen-
tation will be useful to predict the similar contexts).

Algorithmically, these approaches clearly differ in the steps performed on the input
data (see Figure 1). Context-counting models are applied over aggregated data (i.e., once
all the counts have been gathered), and are normally exact (repeated applications of the
models derive the same vectors). Context-predicting models, instead, use neural network
models to process the data incrementally (for every word-context pair), over many
repetitions, and gradually adjust the learnt vectors representations. Thus, a priori,
context-predicting models are more readily interpretable as accounts of cognitive pro-
cesses, given their incremental nature and the fact that they use a general neural network
approach, which is consistent with connectionist approaches to cognitive modelling
(McClelland, 1995). It must be noted, however, that authors have derived mathematical
connections between these two approaches, suggesting that the context-predicting model
we use (Skipgram) implicitly (Levy & Goldberg, 2014) or explicitly (Li et al., 2015)
factorizes a count-based matrix. Nevertheless, we find value in comparing both modeling
approaches because they have showed different performance in multiple studies (Baroni
et al., 2014; Mandera et al., 2017; Pereira et al., 2016), likely due to hyperparameter
configurations which may favour each model differently, and possibly the fact that the

Figure 1. Graphical representation of how context is incorporated in context-counting (top) and context-
predicting (bottom) models. While in context-counting models each co-occuring word is incorporated with raw
counts (which can be weighted later), context-predicting models use a neural network to derive vector represen-
tations that are useful for prediction.

2Currently, VSMs used in Natural Language Processing have shifted to contextualized models (GPT,
Brown et al., 2020, BERT, Devlin et al., 2019, ELMo, Peters et al., 2018) which derive a different vector
representation for each word token rather than for each word type.
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objective function in Skipgram prioritizes learning from frequent over infrequent word-
context pairs (Levy&Goldberg, 2014). The latter adds an additional level of interest to our
analysis.

We implemented the models as follows:

• Count-based model: First, we gathered the co-occurrence counts between words
and contexts (i.e., other words with which a target word co-occurs, given a certain
window size) in child-directed language corpora (seeData). These were arranged in
a matrix of counts in which the dimensions were words and contexts. We then
transformed these raw counts with Positive Pointwise Mutual Information (PPMI)
and compressed the resulting vectors using Singular Value Decomposition (SVD), a
procedure that identifies themost relevant dimensions in the word-context matrix3.
Concretely, SVD factorizes the matrix above into three matrices UΣVT, where Σ is
a diagonal matrix of singular values, and U and V are orthonormal matrices.

• Prediction-based model (Skipgram): As a context-predicting model we used the
Skipgram version of word2vec (Mikolov et al., 2013). This model is trained to learn
word representations that encode useful properties to predict which context words
appear within a specified window around the target word. This is done by incre-
mentally presenting the network with word-context pairs and adjusting the weights
based on the prediction error.

Data

We trained the models on transcriptions of English child-directed speech from
CHILDES (MacWhinney, 2000), including data from all the available English variants,
for children aged from 0 to 60 months. We extracted child-directed utterances with the
childesr library (Sanchez et al., 2019)4. Word tokens were coded at the lemma level. The
resulting data set contains a total number of 34,961 word types, and 12,975,520 word
tokens.

To test the models, we used data collected with the MacArthur-Bates Communica-
tive Development Inventory forms (CDI). These are parent report forms that collect
information about the number of gestures and words known/produced, and the extent
of morphosyntactic knowledge, of children at different ages, and thus can be used to
estimate the Age of Acquisition (AoA) of words. To estimate AoA we used all the
variants of English ‘Words & Sentences’ CDIs (from children aged 16-30M) from the
Wordbank database (Frank et al., 2017), which includes data from 1000s of English-
learning children. (We excluded the data from twins, as significant differences have
been observed in the language development of twins and singletons; see Rutter et al.,
2003).

We computed the AoA of a word using the Rmethod provided in Wordbank, where
AoA is defined as the age at which 50% of the children in the sample understood or
produced a given word. Our analyses of the relationship between distributional learning
and vocabulary acquisition focus on production, since comprehension data is not
available for all Wordbank corpora. Note that children typically understand more words

3We also experimented with the uncompressed vectors, but performance was very poor on our evaluation
metric.

4http://childes-db.stanford.edu/about.html.
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than they can produce, and so AoA based on production data from Wordbank will in
almost every case be older than AoA based on comprehension data.

We focus on the AoA of nouns and verbs, which are among the first categories learnt
by children. We decide to study them separately rather than together because they show
notably different learning patterns: nouns are consistently found to be acquired earlier
across a range of languages (McDonough et al., 2011). This has led to arguments in favour
of different mechanisms for the acquisition of words in each of these categories, based on
the fact that nouns in children’s lexicons tend to refer to static, often observable, entities,
while verbs describe actions, most of which have a fleeting, dynamic nature (Golinkoff
et al., 2002). It is therefore relevant to our study to analyze whether our models fare well
for both syntactic categories.

Study 1: How much context?

Our first goal was to determine the extent to which the context of a word is relevant to its
acquisition. To do so, we ran simulations with different hyperparameter configurations
that regulate the amount of context available to the model, and we evaluated how well
those configurations predicted the AoA data. Note that our goal was not to fine-tune the
models but to observe the general effect of different hyperparameter choices; in particular,
for those that regulate the amount of context provided to the model.

In VSMs, the relations between words are studied in terms of their geometric distance in
semantic space. To cast this continuous space into a network representation (in which
words are either connected or not), we established a threshold, such that only words with a
distance smaller than the threshold (or, mathematically, words for which the ‘cosine
similarity’ θ is larger than the threshold) are connected. We then computed, for each
word, the number of connectionswith otherwords (see Figure 2 for an illustrative example).
As in priorwork (Alhama et al., 2020), we call this index (semantic) neighbourhooddensity,
to distinguish it from other approaches to contextual diversity. For reasons of space, we
report results for θ = 0:7, but we observed equivalent tendencies for other values of this
parameter, with only small deviations for the thresholds with extreme values.

The hyperparameters that we analyze in this study are described below. We fixed the
values of the other hyperparameters to common default values5,6.

Figure 2. Toy example of a semantic network, with annotated neighbourhood density.

5Vector size: 100 (we also ran simulations with smaller and larger vector sizes, but those models did not
fare well), initial learning rate in Skipgram: 0.025, negative sampling: off, context distribution smoothing: off,
‘dirty’ subsampling: off, weight of eigenvalue matrix in SVD: 1 (following Levy et al. (2015), we experimented
with other values smaller than 1, but we did not find any improvements with our metric. See the
aforementioned publication for an explanation of these hyperparameters.

6Our scripts are available at: https://github.com/rgalhama/wordrep_jcl.
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• Window size (win): defined as the number of context words on each side of a target
word. In a context-countingmodel, a window of size n computes co-occurrences for
the n words occurring on the left and for the n words occurring on the right of a
word. In Skipgram,win determines the word-context pairs on which the network is
trained.7 We explore values 1, 2, 3, 5 and 10.

• Dynamic window size (dyn): when enabled, the window size is dynamic, such that
for each occurrence of a target word, the window size is sampled between 1 andwin.
It has no practical effect when win=1.

• Frequency threshold (thr):minimum frequency that words should have to be part
of the computation. Words with frequency of occurrence below this threshold are
removed, and therefore do not influence other words, and do not have any
representation (they are simply not part of the vocabulary). Note that this is done
after determining the context windows, and the filtered words are not replaced. For
example, take the sentence For whom the bell tolls, for a window size of 1, and
frequency threshold set to 50 occurrences of a word type. When deriving the
representation of the word bell, the model checks if the and tolls, which are part
of the context given thewindow size of 1,meet thisminimum frequency criterion. If,
for example, the frequency of tolls is below the threshold, then the effective context
of bell in this sentence is only the.Thus this has an effect on the context available to a
word8. We explore values 10, 50 and 100.

We first focused on the acquisition of nouns. The simulations for the count-based
models can be seen in Figure 3, which shows the size of the correlations between AoA and

Figure 3. Correlation between AoA and neighbourhood density computed with count-basedmodels, for nouns. In
the legend, thr stands for threshold, and dyn is dynamic window size.

7The context window does not cross sentence boundaries. That is, given the productions This is my cat. She
likes dogs., the words ‘she’, ‘likes’ and ‘dogs’ do not influence the representation of the words ‘this’, ‘is’ and ‘cat’
(and viceversa).

8In addition, this hyperparameter is known to be sensitive to properties of particular datasets or tasks,
which makes it particularly relevant given that our corpora is of smaller size and different register than those
commonly used in Natural Language Processing.
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neighbourhood density for eachmodel configuration. As can be seen, the correlations are
low: most points gravitate around 0, and even the best model (win=1, thr=10) yields only
a small effect size ( r = �0:177). These results suggest that the neighbourhood density
metric computed with this model is unlikely to provide a good fit to the AoA data.

Figure 4 shows the corresponding results for the prediction-based Skipgram models.
The pattern of results is clearer and completely different from that of the count-based
model. Notably, even the worst-performing configuration of this model performs better
in this metric than the best-performing configuration of the count-based model. Results
suggest that words acquired earlier by children are those that have fewer semantic
neighbours within this model, as evidenced by the clear pattern of positive correlations.
This has interesting implications for language acquisition, as we discuss later.

A very clear trend can be noticed for the window size: given the same value of dyn and
thr (i.e., for the same shape and colour in the graph), a smaller window size predicts a
larger correlation. This suggests that, if children use context in this manner to shape
semantic representations, the window size for its computation may be small. Not
surprisingly, the use of dynamic windows increases the fit (relative to the same fixed
window size), since it decreases the amount of context available to a number of words;
nevertheless, the minimumwindow size of 1 still performed better.We found that a small
frequency threshold (thr=10) improves performance, indicating that children are sensi-
tive to words with relatively small frequency, which have a role in shaping the semantic
connections9. Thus, the results suggest that a prediction-based approach like Skipgram
holds promise for modelling word learning, with the best model (win=1, thr=10) having a
medium effect size of 0.47.

In order to determine whether the good fit of the Skipgram model to nouns also
extends to other syntactic categories, we evaluated its performance against the AoA of
verbs. As can be seen in Figure 5, the model shows a similar trend as for nouns, albeit with
smaller effect sizes. One notable difference, however, is that models which are sensitive to

Figure 4. Correlation AoA and neighbourhood density in prediction-based models (Skipgram), for nouns. In the
legend, thr stands for threshold, and dyn is dynamic window size.

9Words that are filtered due to the frequency threshold are not replaced; thus, this parameter does not
influence window size.
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lower frequencies (in particular, thr=10, which was the best-performing value for nouns)
do not have the same strong tendency for performance to decrease with window size,
i.e., further context is not as unhelpful as in the case of nouns. In the case of dynamic
windows, the differences in performance are actually quite small up to window size 5. It
appears then that the context that is further from a window of 1 is only detrimental when
considered for every word, but less so when its incorporation is only occasional. We
return to this in the Discussion.

Study 2: Frequency and Semantic Networks

The models we have been working with are optimized for exploiting co-occurrences of
words and contexts. Another distributional aspect of the input that is a good predictor
of AoA is (log-transformed) word frequency (i.e., the number of times a word has
appeared in the input, Ambridge et al., 2015). For the data we used, we found that
correlation between AoA and log-transformed frequency was -0.32 ( p< 0.001) for
nouns and -0.14 ( p= 0.14) for verbs. This is a significant correlation for nouns. Thus,
any model of word learning must eventually formalize what role frequency plays in the
acquisition process (at least for nouns). For instance, frequency may provide more
opportunities to refine the phonetic representation of the word, or the repeated
activation of this representation may result in easier retrieval. Here, we investigate
whether word frequency plays a role in shaping the network of semantic associations
derived from linguistic context.

To investigate this, we correlated log-transformed frequency with neighbourhood
density in the best-performing hyperparameter configurations of the models from Study
1. Table 2 shows that correlations are negative and large for Skipgram (nouns) and
negative and small to moderate for Skipgram (verbs). This suggests that, with this model,
high frequency words end up in less dense neighbourhoods. In the case of the count-based
model, the correlations are small and positive for both nouns and verbs. Thus, there is a
tendency for higher frequency words to end up in densely populated spaces. One possible
interpretation of the divergent results across the two types of model is that Skipgram is

Figure 5. Correlation between AoA and neighbourhood density in prediction-based models (Skipgram), for verbs.
In the legend, thr stands for threshold, and dyn is dynamic window size.
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factoring in word frequency information, and thus the more occurrences a word has, the
more semantically distinguishable it becomes from other competing words.

In Study 3 we establish how our work relates to prior work, in particular to the
formalization of contextual diversity presented in Hills et al. (2010). To see the extent to
which we can replicate previous findings with our data, we first computed contextual
diversity in our input data, and correlated it with AoA from our evaluation data. Next, we
established how our measure (neighbourhood density estimated with Skipgram) correl-
ated with (log-transformed) contextual diversity as defined in Hills et al. (2010).

Hills et al. estimated the contextual diversity of a word as follows: given the child-
directed speech utterances in CHILDES (from ages 12 to 60 months), and variations in
window size, the authors gathered co-occurrence counts (like in the first step of our
context-counting model), and then converted all the counts that are different from 0 into
1. Thus, the co-occurrence matrix only had values of 0 (for words that never appear
together in the corpus) and 1 (for all the words that have co-occurred at least once). This
matrix was then collapsed into one column: all the entries in each row were summed, to
obtain the number of different contexts of each word. The log-transformed contextual
diversity of each word was then correlated with the AoA norms from Dale and Fenson
(1996).

We implemented the contextual diversity measure and applied it to our data. The
input data in both studies differed only slightly: we used a larger part of the CHILDES
English corpus (ages 0 to 60months, whereHills et al. used 12 to 60). Both studies used the
lemma of eachword.When it comes to the evaluation data, both studies estimated AoA of
words, but used data from different sources: Hills et al. used the norms in Dale & Fenson,
1996, while we used the CDI data fromWordbank. Ourmeasure of AoAwas estimated in
the sameway as the AoA reported byHills et al. (as the firstmonth inwhich at least 50% of
the children produced a word).

Table 3 shows the results of correlations between AoA and contextual diversity that
were reported by Hills et al., and from the present study, both using Hills et al.’s measure
of contextual diversity and AoA estimation 10. As can be seen, the correlation between
contextual diversity and AoA that we find in our replication is smaller than that reported
in Hills et al. We assume this is due to the fact that there are differences in the dataset that
we use; in particular, the CDI dataset is larger in our case, which, we expect, provides a
better estimation.11

Table 2. Correlation between log-transformed word frequency and neighbourhood density

Pearson’s r p-value

Skipgram (nouns) –0.78 p<0.001

Skipgram (verbs) –0.37 p<0.001

SVD (nouns) 0.20 p<0.001

SVD (verbs) 0.19 p=0.051

10Hills et al. report R2 of 0.38 for nouns and 0.09 for verbs.We take the negative square root to compute the
Pearson’s r, based on the fact that the reported standardized regression coefficients are negative.

11In personal communication, the first author reported to us that in later work (Jiménez&Hills, 2022) they
found correlations between words and AoA which are closer to ours ( r = 0.46 when considering all word
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Setting aside the difference in magnitude, the correlations are in the same direction
(negative), and the correlations were stronger for nouns than for verbs. Thus, consistent
with the work by Hills et al., the negative direction indicates that contextual diversity
(as defined by Hills et al.) facilitates rather than impedes acquisition.

Note that, according to its definition, contextual diversity is a form of ‘type
co-occurrence’, as it indicates how many different words appear in the context of one
word, regardless of how many times they do so. In contrast, the models we are working
with take the frequency of co-occurrence into account, either explicitly (for the count-
based models) or implicitly (for the prediction-based models). In order to see how
contextual diversity (as defined in Hills et al., 2010) relates to the neighbourhood density
that we compute with our models, we ran an additional study.

We correlated contextual diversity (log-transformed, as used in the original study) of
each word with the neighbourhood density of each word, computed with our models
(concretely, with the best hyperparameter configurations of both models). Results can be
seen in Table 4. We found a large negative correlation for nouns in Skipgram, which
suggests a very strong tendency for nouns to be projected into spaces with fewer
neighbours when their contextual profile is more diverse. The direction of the correlation
is the same for verbs, although much smaller. The count-based model shows almost no
correlation.

With this study we have seen that the original study of Hills et al. (2010) may have
slightly overestimated the effect of contextual diversity, since the strength of its correl-
ationwith AoAdata became smaller when using our data (and also in line with later work,
Jiménez & Hills, 2022). The direction of the correlation remains, indicating that we still
find the same qualitative effect, albeit weaker than anticipated (and weaker than the

Table 3. Correlation (Pearson’s r) between AoA and log-transformed contextual diversity

Hills et al. Replication (larger dataset)

win=5 win=1 win=5

nouns –0.62 –0.34 –0.32

verbs –0.3 –0.09 –0.05

Study 3: Comparison with Contextual Diversity

Table 4. Correlation (Pearson’s r; p-values in brackets) between neighbourhood density in the best
model configurations and log-transformed contextual diversity

Pearson’s r p-value

Skipgram (nouns) –0.79 p<0.001

Skipgram (verbs) –0.36 p<0.001

SVD (nouns) 0.05 p = 0.626

SVD (verbs) 0.01 p = 0.894

types and same age range as in our work); however, unlike in our case, the dataset used to compute such
correlation is restricted to the American English subset of CHILDES.

Journal of Child Language 1387

https://doi.org/10.1017/S0305000923000302 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000923000302


correlation of our own metric with the same data, as shown in Study 1). When looking at
how contextual diversity correlated with neighbourhood density computed with our
models, we found that there is a strong negative correlation for nouns, suggesting that
these two measures are capturing a related phenomenon.

Discussion

We have used VSMmodels to study vocabulary acquisition in English. Our first step was
to determine if the selected modelling approaches were suited to predict AoA, and which
hyperparameters (amount of context and minimum word frequency) best explained the
data. We found that neighbourhood density does hold promise to predict vocabulary
acquisition when the estimation model is the prediction-based Skipgram model (but not
so for the count-based SVD model, at least for our configurations). The best-performing
model used a very local context (only a window of 1 word), and required a very low
frequency threshold (thr=10). The medium-sized positive correlation with AoA suggests
that the words (in particular, nouns and verbs) that are learnt earlier are those with fewer
semantic neighbours, as suggested by some of the prior work (Roy et al., 2015; T. A. Chang
& Bergen, 2022) but not others (Hills et al., 2010; Stella et al., 2017; Fourtassi, 2020;
Grimm et al., 2017). Overall, the results from these simulations suggest that restricting the
influence of context to a very small window size leads to a better fit, and that words with
low frequency are relevant to shape the semantic space.

Consistent with the results of our second study –which explored the influence of word
frequency in building semantic associations –, the better fit of Skipgram may indicate a
prominent role for the flexibility of the algorithm in treating word-context pairs differ-
ently depending on their frequency. Frequency of co-occurrence underlies word fre-
quency, which is known to be a reliable predictor of AoA (Ambridge et al., 2015).
However, frequency (for words or for co-occurrences) is not a mechanism in itself: a
model of word learning needs to specify how frequency influences learning. Put together,
our findings for Studies 1 and 2 indicate that words with fewer semantic neighbours are
acquired earlier, and frequent words tend to have fewer semantic neighbours, thus
suggesting a possible explanation for why frequency is a good predictor of AoA: more
occurrences of a word create more opportunities for variability, which is reflected in a
more distinct semantic profile, and hence fewer competitors. Functionally, this means
that early acquired words are both frequent and functionally unique – that is, early
acquiredwords develop their own communicatively important niche in the system, in line
with the hypothesis explored in Roy et al. (2015).

The results suggest that childrenmay attend to very local context: the window size that
best fits the AoA data is very small (win=1), at least at an early age. Such a result makes
intuitive sense in the context of children’s small verbal memory spans, which only
improve as they acquire more language (Elman, 1993). Perhaps surprisingly then, the
Skipgram model with dynamic window size sampling did not improve the fit (unless
compared to amodel of the same fixed window size): even the occasional incorporation of
more distant context words was detrimental. However, our current set of simulations did
not investigate whether the optimum window size changes with age. When fitting
similarity and analogy scores provided by adults, the Skipgrammodel performs best with
window sizes that range from 2 to 10 (e.g. Levy et al., 2015). Although the tasks differ, a
tentative implication is that childrenmay learn to use larger context windows over time to
reach adult performance.
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Previous work suggests that the effect of distributional information in AoA varies
depending on the lexical category (Goodman et al., 2008; Braginsky et al., 2019). Perhaps
unsurprisingly then, we saw that the pattern of results of Skipgram with nouns is to some
extent replicated for verbs, although with relevant differences. A dynamic window with a
maximum size of 5 can provide a similarly good fit to the data (provided we kept a low
frequency threshold of 10). One potential interpretation is that larger windows allow the
model to reach distant content that may include a verb’s arguments, which is likely a
helpful source of information about verb meaning (Gleitman, 1990). Thus, one feature
that may contribute to the comparatively late acquisition of verbs compared to nouns is
the need for greater linguistic context, although more simulations are needed to flesh out
how (in particular, simulations with adaptive window size that depend on age and/or
syntactic category). The requirement for a low frequency threshold is stricter than in the
case of nouns, meaning that lower frequency words are even more relevant to the
acquisition of verbs than they are for nouns. This outcome is in line with Braginsky
et al. (2019), who find that word frequency is more relevant for the acquisition of
predicates (a class including verbs, adjectives and adverbs) than for nouns.

Some final issues deserve mention. First, we investigated the relation between our
metric (neighbourhood density, as estimated with VSMs) and contextual diversity as
defined inHills et al. (i.e., the number of different types it co-occurs with, regardless of the
frequency of co-occurrence). The two models fundamentally agree in the direction of the
effect, even though we find a larger effect size with our model. Our study indicates that
contextually diverse nouns (which are those that have more connections in semantic
networks estimated with that measure) tend to have fewer semantic neighbours in our
model, tentatively suggesting that having fewer semantic competitors facilitates the
acquisition of a word.

Second, our simulations were limited to English. This was largely a practical decision:
the English data on CHILDES and Wordbank are the most dense of any language, thus
enabling us to side-step any problems associated with data sparseness. It is instructive,
however, to consider how our approach might fare in other languages. Although the
number of languages studied is small and has been largely restricted to the Indo-European
family, some features of language, such as frequency, word length, and imageability
appear to be crosslinguistically robust in terms of their positive influence on learning
syntactic categories (Moran et al., 2018) and words (Braginsky et al., 2019). At the same
time, some distributional features of language are affected by typology, such that children
must implement language-attuned processingmechanisms (F. Chang et al., 2008; Saksida
et al., 2017). We note, however, that these language-specific results occur where order
matters, either in segmentation or in sequencing words for production. Since our bag-of-
words approach only searches for associations between commonly occurring elements in
a manner that is blind to the order, we suspect that it may have crosslinguistic value
beyond English. Although there are always exceptions, words that are in a syntactically
and/or semantically dependent relationship tend to occur close to each other (Firth,
1957), which provides the right conditions for extracting meaning from co-occurrences.

Conclusions

We have reviewed work that has related distributional information to vocabulary acqui-
sition, with a focus on contextual diversity. It is clear from the literature that the choice of
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the model used to estimate contextual diversity influences the direction of its effect in
vocabulary acquisition.

In our approach, we used bag-of-words VSM models to predict AoA. We found that
count-based and prediction-based models make opposite developmental predictions for
word learning. The better fit of the prediction-based approach suggests that a more
flexible treatment of words based on their frequency is particularly important in the
context of language acquisition. This approach further offers a specific account for how
word frequency and contextual diversity influence the semantic connections between
words, and thereby also their acquisition. The prediction-based approach also has the
advantage of being easier to relate to cognitive processes. Unlike the count-based
approach, it can be interpreted at Marr’s algorithmic level (Marr, 1982), a claim that
has also been put forward in Mandera et al. (2017). Thus, the model can be seen as a
procedural approach to error-based associative learning, with prediction as its driving
mechanism. This is in line with a long tradition of work that identifies a central role for
word prediction, both based on preceding information in a sentence, or even based on the
words that appear after a target word (which is often referred to as ‘retrodiction’ or
integration, (Federmeier, 2007; Kutas et al., 2011; Onnis & Thiessen, 2013; Huettig, 2015;
Onnis & Huettig, 2021; Alhama et al., 2021; Onnis et al., 2022).

A relevant, more general question concerns which distributional properties make
some words easier to learn than others. We have found that, in the case of nouns,
properly-weighted co-occurrence frequencies of words in very local context, word
frequency, and contextual diversity are cues that influence the semantic neighbours of
a word: contextual diversity reduces the density of semantic neighbours of a given word,
which in turn seems to aid the acquisition of that word. A theory of word learning thus
needs to account for the fact that children are likely to incorporate these cues into the
semantic representations of words.
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