POLYNOMIAL REMAINDERS AND PLANE AUTOMORPHISMS

Takis Sakkalis

This note relates polynomial remainders with polynomial automorphisms of the plane. It also formulates a conjecture, equivalent to the famous Jacobian Conjecture. The latter provides an algorithm for checking when a polynomial map is an automorphism. In addition, a criterion is presented for a real polynomial map to be bijective.

1. INTRODUCTION

Let \(f(x,y), g(x,y) \) be polynomials with coefficients in the field of complex numbers \(\mathbb{C} \), of (total) positive degrees \(n \) and \(m \), respectively. Consider the map \(F := (f, g) : \mathbb{C}^2 \to \mathbb{C}^2 \). Let \(J(F) = \det(J) \) be the determinant of the Jacobian matrix of \(F \). \(F \) is called a polynomial automorphism if it has a global polynomial inverse. In this case, an application of the chain rule and the fact that every nonconstant polynomial over \(\mathbb{C} \) has a root, implies that \(J(F) \) is a nonzero constant. The Jacobian conjecture is that the converse is true. It is also known as Keller's problem, since it first appeared in the literature in [3], in which he proves the complex birational case.

In this note, we shall relate polynomial remainders and polynomial automorphisms. In addition, we shall formulate a conjecture which is equivalent to the Jacobian conjecture. The latter provides a relatively easy algorithmic way of checking when a polynomial map \(f \) is an automorphism. We conclude with a criterion for a real polynomial map to be bijective.

2. POLYNOMIAL REMAINDERS AND AUTOMORPHISMS

POLYNOMIAL REMAINDERS. Let \(p(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n] \) of (total) degree \(k \). We say that \(p \) is regular in \(x_i \), for some \(1 \leq i \leq n \), if \(\deg x_i \ p = k \).

Let \(F, n, m \) be as above. We may, after a linear change of coordinates, assume that \(f, g \) are regular in \(x \), and of the form

\[
\begin{align*}
 f(x, y) &= x^n + a_1(y)x^{n-1} + \cdots + a_{n-1}(y)x + a_n(y) \\
 g(x, y) &= x^m + b_1(y)x^{m-1} + \cdots + b_{m-1}(y)x + b_m(y)
\end{align*}
\]

Received 19th November, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 $2.00+0.00.
Now suppose that F satisfies the Jacobian condition

\[J(F) = f_x g_y - f_y g_x = 1 \]

Let $f_n(x, y), g_m(x, y)$ be the homogeneous terms of f, g of degrees n, m, respectively. Since $J(F) = 1$, we get that [5],

\[f_n^m = g_m^n \]

Note that $H = (f, g - f)$ satisfies (2). Therefore, in the case where $n = m$, we may replace $g - f$ by g, and assume that $m < n$ and f, g are of the form (1).

Now we observe that $a_1(y) = a^1 y + a^2$ and $b_1(y) = b^1 y + b^2$. We may, after a linear change of coordinates, assume that

\[a'_1(y) = a^1 \neq 0, \quad \text{and} \quad b'_1(y) = b^1 \neq 0 \]

To see that, let

\[f_n(x, y) = x^n + a^1 y x^{n-1} + \text{lower degree terms in } x \]
\[g_m(x, y) = x^m + b^1 y x^{m-1} + \text{lower degree terms in } x \]

Condition (3) implies that $n(x^{m-1})^{n-1} \cdot b^1 y = m(x^{n-1})^{m-1} \cdot a^1 y$ and thus $nb^1 = ma^1$. Therefore, in the case where $b^1 = 0$ and thus $a^1 = 0$, we may replace x with $x + y$ and y with y to get $b^1 = m$ and $a^1 = n$. Then, the polynomials f_x, f_y, g_x, g_y are all regular in x. Now, consider the resultant of g_x and g_y with respect to x,

\[\text{Res}_x(g_x, g_y) = -g_x B + g_y A = c \]

where $A, B \in \mathbb{C}[x, y]$ of degrees--(in x)--at most $m - 2$. Since $J(F) = 1$, we see that c is a non zero constant. Replace A/c with A and B/c with B. The latter, together with (2), gives

\[g_y (f_x - A) = g_x (f_y - B) \]

Since no factor of g_x divides g_y, we see that g_x divides $f_x - A$ and thus we get

\[f_x = g_x h + A \]
\[f_y = g_y h + B \]

for some $h \in \mathbb{C}[x, y]$. Note in the above that $\text{deg}_x B, \text{deg}_x A \leq m - 2$. Therefore, A and B are nothing but the *remainders* of the division of f_x by g_x and f_y and g_y, respectively, where the above polynomials are thought of as members of the ring $\mathbb{R}[y][x]$. For notational purposes, we denote $A = \text{rem}_x(f_x, g_x)$ and $B = \text{rem}_x(f_y, g_y)$.

Plane Automorphisms. Suppose now that $F : \mathbb{C}^2 \to \mathbb{C}^2$ is an automorphism. Then in this case it is possible to precisely find what the polynomials A and B look like. Indeed,
since \(F \) is an automorphism, we see that \(m \) divides \(n \) and thus \(n = mk \), [4]. Note that \(F_1 = (f, f - g^k) \) is also an automorphism with \(\deg(f - g^k) < \deg f \). Using an inductive procedure, we may find a polynomial \(\phi(t) \in C[t] \),
\[
\phi(t) = t^k + c_1 t^{k-1} + \cdots + c_{k-1}t
\]
so that
\[
\deg(f - \phi(g)) < m = \deg g
\]
Note that \(G = (g, f - \phi(g)) \) is also a polynomial automorphism with \(J(G) = -1 \). Also we have:
\[
\begin{align*}
 f_x &= g_x \phi'(g) + (f_x - g_x \phi'(g)) \\
 f_y &= g_y \phi'(g) + (f_y - g_y \phi'(g))
\end{align*}
\]
(5)
In the above we have:
\[
\begin{align*}
 \deg((f_x - g_x \phi'(g)) \leq m - 2, \\
 \deg(f_y - g_y \phi'(g)) \leq m - 2
\end{align*}
\]
The above, combined with (4), gives us the nature of the polynomials \(A \) and \(B \):
\[
\begin{align*}
 A &= f_x - g_x \phi'(g) = (f - \phi(g))_x \\
 B &= f_y - g_y \phi'(g) = (f - \phi(g))_y
\end{align*}
\]
(6)
Notice that in this case, \(A \) and \(B \) can also be obtained as follows: Since \(F = (f, g) \) is an automorphism, \(f \) and \(g \) are both regular in \(x \) and \(y \), [4], and thus if we set \(A = \text{rem}_x(f_x, g_x) \) and \(B = \text{rem}_y(f_y, g_y) \), a degree comparison shows that \(A = A \) and \(B = B \).

THE PR CONJECTURE. From (6) we observe that
\[
A_y = B_x
\]
(7)
With the aid of the above we can formulate the following conjecture and show that it is equivalent to the Jacobian conjecture.

The Polynomial Remainder Conjecture. Suppose that \(F, f_x, g_x, f_y, g_y, n, m \) are as above with \(m < n, f, g, f_x, g_x, f_y, g_y \) regular in \(x \) and \(J(F) = 1 \). Suppose also that \(A = \text{rem}_x(f_x, g_x), B = \text{rem}_y(f_y, g_y) \). Then, \(A_y = B_x \).

Theorem 2.1. The polynomial remainder conjecture is equivalent to the Jacobian conjecture.

Proof: In view of (7), it only suffices to show that the polynomial remainder conjecture implies the Jacobian conjecture. Indeed the condition \(A_y = B_x \) combined with (4) gives us \(J(g, h) = 0 \). Since \(J(f, g) = 1 \) we get that \(h = \psi(g) \) for some \(\psi(t) \in C[t] \), [2]. Then
\[
\begin{align*}
 A &= f_x - g_x \psi(g) \\
 B &= f_y - g_y \psi(g)
\end{align*}
\]
Now let $\phi(t) = \int \psi(t) \, dt$ and consider $P(x, y) = f - \phi(g)$. Then,

$$P_x = A, \quad \text{and} \quad P_y = B$$

Notice that $J(F) = J(f - \phi(g), g) = 1$, and thus [2, Lemma 9] shows that $\deg_x(f - \phi(g)) = \deg(f - \phi(g))$. Let now $k = \deg \phi(t)$. Since $\deg_x(f - \phi(g)) = \deg_x A + 1 < m$, we see that the degree of $\phi(g)$ kills the degree of f. Therefore, $n - mk = 0$ and thus m divides n. Repeating the procedure for the map $(g, f - \phi(g))$ and using simple induction on n, it is easily seen, [4, Theorem 6, p. 101] that F is a polynomial automorphism.

3. A DECISION PROCEDURE FOR A MAP TO BE BIJECTIVE

In this section we shall first state an algorithm for deciding whether a polynomial map F over \mathbb{C}^2 is an automorphism. Cheng and Wang in [1], have also given such an algorithm which is based on the fact that F is an automorphism if $J(F) = c \neq 0$ and F is injective on a line. Ours, on the other hand, is solely based on remainder sequences and it is motivated by the PR conjecture. In addition, we shall give a criterion for a polynomial map over \mathbb{R}^2 to be a homeomorphism.

THE COMPLEX CASE. Let $F = (f, g) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map. Suppose that the following (double) polynomial remainder sequence $A^i, B^i, i = 1, 2, \ldots, k$ can be created as follows:

1. $A_1 = \text{rem}_x(f_x, g_x), B_1 = \text{rem}_y(f_y, g_y)$
2. If $A_y = B_1$, we set $A_2 = \text{rem}_x(g_x, A_1)$ and $B_2 = \text{rem}_y(g_y, B_1)$
3. Assume that $A_1, A_2, \ldots, A_j, B_1, \ldots, B_j$ have been defined. If $A_y = B_j$, we set $A_{j+1} = \text{rem}_x(A_{j-1}, A_j)$ and $B_{j+1} = \text{rem}_y(B_{j-1}, B_j)$
4. The sequence ends where one of A^k, B^k is a constant different than zero.

Observe that a necessary condition for the construction of such a sequence is that $\deg_x g_x \leq \deg_x f_x, \deg_y g_y \leq \deg_y f_y, \text{and} \; f, f_x, A_j$ are regular in x and f, f_y, B_j are regular in y. We then have:

THEOREM 3.1. Suppose $F = (f, g) : \mathbb{C}^2 \to \mathbb{C}^2$ is a polynomial map with $m = \deg g \leq n = \deg f$ and $J(F) = c \neq 0$. Then F is an automorphism if and only a sequence A^i, B^i can be created as above.

PROOF: (\Leftarrow) From the proof of Theorem 2.1 we see that there exist polynomials $P^j(x, y), j = 1, \ldots, k$ so that:

1. $P^j_x = A^j, P^j_y = B^j$,
2. $\deg_x P^1 < \deg_x g_x, \deg_x P^{j+1} < \deg_x P^j, j = 2, \ldots, k - 1, \deg_y P^1 < \deg_y g_y, \deg_y P^{j+1} < \deg_y P^j, j = 2, \ldots, k - 1$.

Now, let $F^1 = (g, P^1), F^j = (P^j, P^{j+1}), j = 1, \ldots, k - 1$. It is easy to see that $J(F_j) = \pm 1$ and F is an automorphism if and only F^j is an automorphism, $j = 1, \ldots, k - 1$. Finally,
let us look at $F^{k-1} = (P^{k-1}, P^k)$. Since $\min\\{\deg_x P^k, \deg_y P^k\} = 1$ and $J(F^{k-1}) = \pm 1$, we may assume that $P^k(x, y) = ax + by + c$. Then, [2, Lemma 19, p. 9] shows that this last map F^{k-1} is an automorphism.

(**) From the discussion proceeding (6) we see that polynomials $A^1 = \text{rem}_x(f_x, g_x)$ $B^1 = \text{rem}_y(f_y, g_y)$ can be defined and they satisfy $A^1 = B^1_x$. In addition, the proof of Theorem 2.1 shows that there exists a polynomial $P(x, y)$ of degree less than m so that (g, P) is an automorphism. Since g, P are regular in x and y, a repetition of the above procedure produces the required sequence A^*, B^*.

Suppose now that f, g are regular in x, y, and let u, v be indeterminates. Consider

\begin{align*}
A(x, u, v) &= \text{Res}_y(f - u, g - v) = A_k(u, v)x^k + \cdots + A_1(u, v)x + A_0(u, v) \\
B(y, u, v) &= \text{Res}_x(f - u, g - v) = B_r(u, v)y^r + \cdots + B_1(u, v)y + B_0(u, v)
\end{align*}

In [5, Lemma 1, p. 479, Proposition 1, p. 480] a simple theoretical criterion and formula for the inversion of $F = (f, g)$ is given in terms of $A(x, u, v), B(y, u, v)$, which for the sake of completeness we shall state it here, along with a new proof that will serve as a motivation for the real case.

Proposition 3.1. Let $F = (f, g) : \mathbb{C}^2 \to \mathbb{C}^2$ with f, g regular in x, y. Then F is an automorphism if and only if $A(x, u, v) = ax + A_0(u, v)$ and $B(y, u, v) = by + B_0(u, v)$, where $a, b \in \mathbb{C}$, $ab \neq 0$. In that case the inverse $F^{-1}(x, y) = (-A_0(x, y)/a, -B_0(x, y)/b)$.

Proof: (**) In view of [5, Theorem 1, p. 475] we see that $k \geq 1$. We shall first show that A_k is a non zero constant. For if not, there exists a $z_0 = (u_0, v_0)$ so that $A_k(z_0) = 0$. Then, in this case either $A_k(z_0) = \cdots = A_0(z_0) = 0$ or there exists $r < k$ such that $A_r(z_0) \neq 0$. In the first case, $f - u_0$ and $g - v_0$ would have a common factor of positive degree, a contradiction to F being one to one. In the second case, by the lifting property of the resultant, [5, Property 2, p.474], it follows that there exists a sequence $\{z_j\}$ so that $|z_j| \to \infty$ and $F(z_j) \to z_0$, again a contradiction to F being a proper map. Finally, if $k > 1$ we see that this contradicts the fact that F is one to one.

(\(=\)) From (8) we observe that $A(x, f, g) = B(y, f, g) = 0$, and thus $ax + A_0(f, g) = 0$, $by + B_0(f, g) = 0$, and upon solving for x, y the desired result follows. \(\square\)

The Real Case. Suppose now that $f(x, y), g(x, y) \in \mathbb{R}[x, y]$ and consider $F = (f, g) : \mathbb{R}^2 \to \mathbb{R}^2$. In this paragraph we are going to give a somewhat similar criterion to the above for F to be a homeomorphism.

Suppose first that F is a homeomorphism. Note that F is a proper map [a map is proper if the inverse image of a compact set is compact]. Also F is locally one to one, and thus its Jacobian $J(F)(x, y)$ does not change sign over \mathbb{R}^2. With loss of little generality, we shall here deal with the case where $J(F)(x, y)$ is a real non vanishing polynomial over \mathbb{R}^2.

Proposition 3.2. Let $F = (f, g) : \mathbb{R}^2 \to \mathbb{R}^2$ be a real polynomial map with f, g regular in y, and $J(F)$ a non constant and non vanishing polynomial over \mathbb{R}^2. Then
F is a homeomorphism of \(\mathbb{R}^2 \) onto \(\mathbb{R}^2 \) if and only if either \(A_k \) is equal to a nonzero constant, or \(A_k \) does not change sign in \(\mathbb{R}^2 \), and if it vanishes at \(w_0 = (u_0, v_0) \), then either \(A_j(w_0) = 0 \) for \(j = 0, \ldots, k \) or there exists an \(r < k \) with \(A_r(w_0) \neq 0 \) and near \(w_0 \), \(A_k \) and \(A_r \) have the same sign and \(k = r \mod 2 \).

Proof: (\(\Rightarrow \)) As in the complex case, we observe that \(k \geq 1 \). Now suppose that \(A_k \) vanishes at \(w_0 = (u_0, v_0) \) and \(A_k \) and \(A_r \) have different signs near \(w_0 \) and/or \(k \neq r \mod 2 \). Let \(N \) be a disk around \(w_0 \) so that \(A_r \neq 0 \) on \(N \). In the first case, for any \(b > 0 \), the image of the map \(A : N \times [b, \infty] \to \mathbb{R} \), \(A(u, v, x) = A(x, u, v) \) contains 0, and thus by the lifting property of the resultant and the fact that \(F \) is a homeomorphism, there exists a real sequence \(\{(x_j, y_j)\} \to \infty \) and \(F(x_j, y_j) \to w_0 \). But this contradicts the fact that \(F \) is proper. The case where \(k \neq r \mod 2 \) is treated similarly. Finally, in the case where \(A_j(w_0) = 0 \) for \(j = 0, \ldots, k \), note that the number of such points \(w_0 \) is finite, since any such \(w_0 \) corresponds to a non trivial factor of \(J(F) \).

(\(\Leftarrow \)) Now suppose that \(A_k \) is a non zero constant and let \(K \) be a compact subset of \(\mathbb{R}^2 \). Consider the set \(M = \{ x \in \mathbb{R} \mid A(x, u, v) = 0, (u, v) \in K \} \). Since \(A_k \) is a non zero constant, \(M \) is a compact subset of \(\mathbb{R} \). In addition, since \(f, g \) are both regular in \(y \), the set \(\{(x, y) \in \mathbb{R}^2 \mid F(x, y) = z, z \in K \} \) is also compact. The latter implies that \(F \) is a proper map, and since \(F \) is locally one to one, we deduce that \(F \) is a homeomorphism of \(\mathbb{R}^2 \) onto \(\mathbb{R}^2 \). Finally, the case where \(K \) contains a zero of \(A_k \) is treated similarly.

Example 1. Let
\[
\begin{align*}
f &= x + y + (x - y)^3, \\
g &= x - y - (x + y)^3.
\end{align*}
\]
Then, \(J(F) = -18(x^2 - y^2)^2 - 2 \) and
\[
A(x, u, v) = 512x^9 - 192(u - v)x^6 + 384x^5 - 288(u + v)x^4 + (24u^2 + 24u^2 + 168uv)x^3 \\
&+ (24u - 24v)x^2 + (-18u^2 + 8 + 18u^2)x + (-18u^2 - 4v - 4u - 3v^2u + 3u^2v + v^3).
\]

Example 2. Let
\[
\begin{align*}
f &= (y + y^3)(1 + (x + y)^2 + y^2), \\
g &= (x + y + (x + y)y^2)(1 + (x + y)^2 + y^2).
\end{align*}
\]
Then,
\[
J(F) = -(1 + y^2)(1 + x^2 + 2xy + 2y^2)(5x^2y^2 + 3x^2 + 10y^3x + 6xy + 1 + 10y^4 + 9y^2),
\]
and
\[
A(x, u, v) = (32u^4 + 32u^2v^2)x^5 + (32u^4 + 96u^2v^2 - 128u^3v - 64uv^3 + 64u^4)x^3 \\
&+ (-128uv^3 + 32u^4 - 128u^3v + 192u^2v^2 + 32u^4)x \\
&+ (-32u^5 + 32u^5 - 160u^4v + 320u^3v^2 - 320u^2v^3 + 160uv^4).
\]
It is easily seen that in both examples $F = (f, g)$ satisfies the conditions of the above Proposition, and thus F is a homeomorphism of \mathbb{R}^2 onto \mathbb{R}^2.

REFERENCES

Department of Mathematics
Agricultural University of Athens
Athens 118 55
Greece
e-mail: takis@aua.gr