The Nature of High HI Mass-to-Light Ratio Galaxies

Bradley E. Warren¹, Helmut Jerjen¹, Bärbel S. Koribalski²

¹Research School of Astronomy and Astrophysics, ANU, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611, Australia
²ATNF, CSIRO, PO Box 76, Epping NSW 1710, Australia

Abstract. We present here preliminary results of our multi-wavelength investigation into high HI mass-to-light ratio dwarf galaxies identified in the HIPASS Bright Galaxy Catalog.

One way to investigate aspects of star formation and galaxy evolution is to study galaxies which appear to have done little of either, those with excessive quantities of neutral hydrogen compared to their stellar content. To this end we are exploiting the HI Parkes All-Sky Survey (HIPASS) which has provided the largest blind survey of extragalactic neutral hydrogen over the southern sky to date. One of its first products is the HIPASS Bright Galaxy Catalog (BGC, Koribalski et al. 2003) listing the 1000 apparently strongest extragalactic HI sources in the southern hemisphere. A comparison of the BGC HI data with preliminary optical properties (from LEDA, the Lyon-Meudon Extragalactic Database, Paturel et al. 1997, http://cismbdm.univ-lyon1.fr/~leda/) of the BGC galaxies (Jerjen et al., in preparation) revealed numerous sources, mostly intrinsically faint dwarf galaxies, with high HI mass-to-light ratios; three with $M_{HI}/L_B > 20 M_\odot/L_\odot$ (ES0505-G007, ES0215-G?009 and IC4212).

Figure 1(a) shows a plot of M_{HI}/L_B for 789 BGC galaxies as a function of their absolute photographic B magnitude. The plot shows that there is a much larger spread in M_{HI}/L_B for low luminosity (dwarf) galaxies, with some dwarf galaxies (in the top right corner) having unusually high ratios. We have undertaken extensive multi-wavelength observations (optical, near-infrared, radio) of a sample of 20 high and 20 low M_{HI}/L_B dwarf galaxies on this plot (filled circles) using the ANU 2.3m telescope and the Australia Telescope Compact Array (ATCA). We present here preliminary results from this investigation, some of the optical (B band photometry) and radio (HI flux and rotation) properties from three of the objects classified as high M_{HI}/L_B galaxies in our initial sample. Optical VRI and infrared JHK bands have also been taken, along with optical spectra for some galaxies.

Our measured apparent B magnitudes from CCD imaging for all three galaxies, ESO215-G?009 (16.13 ± 0.07 mag), ESO348-G009 (14.82 ± 0.07 mag) and MCG–04–02–003 (15.27 ± 0.07 mag), were brighter than those stated in LEDA (16.43, 16.71, 15.84 mag respectively) based on photographic plates. The integrated HI flux densities of the three sample galaxies are $F_{HI} = 104 ± 12, 13.4 ± 2.2, and 16.0 ± 2.5$ Jy km s$^{-1}$ (BGC). With the ATCA we obtain $F_{HI} = 121.6 ± 0.3, 11.3 ± 0.5, and 16.1 ± 1.8$ Jy km s$^{-1}$. Using the ATCA HI flux and correcting the B magnitudes for galactic extinction (Schlegel et al.)
High M_{HI}/L_B Galaxies

Figure 1. (a) The log(M_{HI}/L_B) of 789 BGC galaxies as a function of absolute B magnitude. Our sample (filled circles) is drawn from all galaxies with $M_{B,0} > -16.5$ (mostly dwarf galaxies). The high M_{HI}/L_B sample was drawn from galaxies with $M_{\text{HI}}/L_B > 3 M_\odot/L_\odot$ (top right). A control sample has been drawn from galaxies with $M_{\text{HI}}/L_B < 3 M_\odot/L_\odot$ (bottom right). (b) HI line intensity contour map for ESO215–G?009 overlaid on a DSS2 red image. Contour levels are at 0.08, 0.16, 0.32, 0.56, 0.88, 1.20 and 1.60 Jy beam$^{-1}$ km s$^{-1}$.

1998) we obtain HI mass-to-light ratios of 21.3 ± 1.4, 1.36 ± 0.15 and 2.9 ± 0.5 M_\odot/L_\odot respectively, compared to the previous photographic plate estimates of 24.4, 9.2 and 4.8 M_\odot/L_\odot.

A study of HI envelopes around low luminosity galaxies with Arecibo by van Zee et al. (1995) claimed to have found numerous high M_{HI}/L_B galaxies, including the galaxy HI 0542+05 (the Orion dwarf galaxy) at 84.1 M_\odot/L_\odot. However, Karachentsev & Musella (1996) using CCD photometry and a better estimate of the high galactic extinction for this galaxy produced a M_{HI}/L_B of just 2.6 M_\odot/L_\odot. Similarly two of our sample galaxies have dropped into the low M_{HI}/L_B regime, but ESO215–G?009 is confirmed as a very high M_{HI}/L_B galaxy. A detailed discussion of this galaxy will appear in an upcoming paper (Warren, Jerjen and Koribalski, in preparation). Figure 1(b) shows the HI intensity map for ESO215–G?009, the HI cloud extending to several times the radius of the faint stellar component.

References