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Abstract

An ergodic probability measure preserving (p.m.p.) equivalence relation R is said to be
stable if R ∼= R×R0 where R0 is the unique hyperfinite ergodic type II1 equivalence
relation. We prove that a direct product R × S of two ergodic p.m.p. equivalence
relations is stable if and only if one of the two components R or S is stable. This result
is deduced from a new local characterization of stable equivalence relations. The similar
question on McDuff II1 factors is also discussed and some partial results are given.

1. Introduction

An ergodic type II1 equivalence relation R is stable if R ∼= R × R0 where R0 is the unique
hyperfinite ergodic type II1 equivalence relation. This notion was introduced and studied in
[JS87], by analogy with its von Neumann algebraic counterpart [McD70]. In particular, the
following characterization of stability was obtained (for the notation, see the end of this section):
an ergodic type II1 equivalence R is stable if and only if, for every finite set K ⊂ [[R]] and every
ε > 0, there exists v ∈ [[R]] such that v2 = 0, vv∗ + v∗v = 1 and

∀u ∈ K, ‖vu− uv‖2 < ε.

Our first theorem strengthens this characterization by showing that the condition vv∗+ v∗v = 1
can be removed, thus allowing v to be arbitrarily small.

Theorem A. An ergodic type II1 equivalence relation R is stable if and only if, for every finite
set K ⊂ [[R]] and every ε > 0, there exists v ∈ [[R]] such that v2 = 0 and

∀u ∈ K, ‖vu− uv‖2 < ε‖v‖2.

As an application of Theorem A, we obtain the following rigidity result.

Theorem B. Let R and S be two ergodic type II1 equivalence relations. Then the product
equivalence relation R× S is stable if and only if R is stable or S is stable.

As we said before, the study of stable equivalence relations was inspired by its von Neumann
algebraic counterpart: the so-called McDuff property. Recall that a II1 factor M is called McDuff
if M ∼= M ⊗ R where R is the hyperfinite II1 factor. In [McD70] it is shown that a II1 factor M
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is McDuff if and only if, for every finite set K ⊂ M and every ε > 0, there exists v ∈ M such
that v2 = 0, vv∗ + v∗v = 1 and

∀a ∈ K, ‖va− av‖2 < ε.

Similarly to the equivalence relation case, we can strengthen this characterization by removing
the condition vv∗ + v∗v = 1, and we obtain the following analog of Theorem A.

Theorem C. A type II1 factor M is McDuff if and only if, for every finite set K ⊂M and every
ε > 0, there exists x ∈M such that x2 = 0 and,

∀a ∈ K, ‖xa− ax‖2 < ε‖x‖2.

With regard to this result and the similarity between the theory of stable equivalence relations
and the theory of McDuff factors, we strongly believe that the following analog of Theorem B
should be true.

Conjecture D. Let M and N be type II1 factors. Then M ⊗ N is McDuff if and only if M is
McDuff or N is McDuff.

Even though the proof of Theorem B does not admit a straightforward generalization to
the von Neumann algebraic case, we can still provide some partial solutions to Conjecture D by
using a different approach. We fix ω, a free ultrafilter on N. Given a II1 factor M , we denote by
Mω its ultrapower and by Mω = M ′ ∩Mω its asymptotic centralizer (see [McD70]). Recall from
[McD70] that M is McDuff if and only if Mω is non-commutative.

Our first partial result strengthens [WY14, Theorem 2.1].

Theorem E. Let M be a non-McDuff II1 factor and suppose that there exists an abelian
subalgebra A ⊂ M such that Mω ⊂ Aω. Then, for every II1 factor N , we have that M ⊗ N
is McDuff if and only if N is McDuff.

As far as the author knows, all concrete examples of non-McDuff factors in the literature do
satisfy the assumption of Theorem E (in fact, this is how we show that they are not McDuff).
Deciding whether or not this property holds for all non-McDuff factors is an interesting open
question.

The second result solves Conjecture D under the additional assumption that (M ⊗ N)ω is a
factor.

Theorem F. Let M and N be type II1 factors and suppose that (M ⊗ N)ω is a factor. Then
both Mω and Nω are factors. If M ⊗ N is McDuff, then M is McDuff or N is McDuff.

Examples of factors with factorial asymptotic centralizers are obtained by taking infinite
tensor products of non-Gamma II1 factors (see Proposition 5.4). These factors were studied in
[Pop10]. By combining [Pop10, Theorem 4.1] and Theorem F, we obtain the following corollary
which is not related to Conjecture D. It provides the first example of a McDuff II1 factor that
does not admit any McDuff decomposition in the sense of [HMV16].

Corollary G. Let M =
⊗

n∈NMn be an infinite tensor product of non-Gamma type II1 factors
Mn, n ∈ N. Let N be a type II1 factor such that M ∼= N ⊗ R. Then M ∼= N .
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Stability of products of equivalence relations

Before we conclude this introduction, let us say a few words about the methods used to
obtain these results. The proof of Theorem A (and Theorem C) is based on a so-called maximality
argument. This technique involves patching ‘microscopic’ elements satisfying a given property
in order to obtain a ‘macroscopic’ element satisfying this same property. The term ‘maximality’
is a reference to Zorn’s lemma which is used in the patching procedure. Maximality arguments
in the theory of von Neumann algebras were initiated in [MvN43]. Since then, they have been
used fruitfully in many of the deepest results of the theory, reaching higher and higher levels
of sophistication in [Con76, CS76, Con85, Haa86, Pop86] and culminating in the incremental
patching method of [Pop87, Pop95, Pop14]. See also [Mar16, HMV17, Mar18] for other recent
applications of maximality arguments. On the other hand, the proofs of Theorems E and F are
based on a completely different technique which appears in [IV15] and which is inspired by an
averaging trick of Haagerup [Haa85]. By using this technique, one can reduce some problems
on arbitrary tensor products M ⊗ N to the much easier case where one of the two algebras is
abelian. This very elementary transfer principle is surprisingly powerful and Theorems E and F
are two applications among many others.

Notation
For simplicity, in this paper, all probability spaces are standard and all von Neumann algebras
have separable predual (except ultraproducts). We fix some non-principal ultrafilter ω ∈ βN\N
once and for all. We denote by L(R) the von Neumann algebra of a probability measure preserving
(p.m.p.) equivalence relation R (see [FM77]). We denote by [R] (respectively, [[R]]) its full group
(respectively, full pseudo-group) and we will identify them with the corresponding unitaries
(respectively, partial isometries) in the von Neumann algebra L(R). In particular, if v, w ∈ [[R]],
then ‖v − w‖2 refers to the 2-norm of L(R).

2. A local characterization of stable equivalence relations

In this section we establish the following more precise version of Theorem A. The proof is inspired
by [Con76, Theorem 2.1] and [Con85, Theorem 2].

Theorem 2.1. Let R be an ergodic p.m.p. equivalence relation on a probability space (X,µ).
Then the following statements are equivalent.

(i) R is stable.

(ii) For every finite set K ⊂ [[R]] and every ε > 0, there exists v ∈ [[R]] such that

v2 = 0,

vv∗ + v∗v = 1,

∀u ∈ K, ‖vu− uv‖2 < ε.

(iii) For every finite set K ⊂ [[R]] and every ε > 0, there exists v ∈ [[R]] such that

v2 = 0,

∀u ∈ K, ‖vu− uv‖2 < ε‖v‖2.

(iv) For every finite set K ⊂ [[R]] and every ε > 0, there exists v ∈ [[R]] such that

∀u ∈ K, ‖vu− uv‖2 < ε‖vv∗ − v∗v‖2.

2007

https://doi.org/10.1112/S0010437X18007388 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007388


A. Marrakchi

Proof. The equivalence (i) ⇔ (ii) is proved in [JS87]. The implications (ii) ⇒ (iii) ⇒ (iv) are
clear.

First, we show that (iv) ⇒ (iii). Let K = K∗ ⊂ [[R]] be a finite symmetric set and ε > 0.
Choose v ∈ [[R]] such that

∀u ∈ K, ‖vu− uv‖2 < ε‖vv∗ − v∗v‖2.

Let w = v(1− vv∗) ∈ [[R]]. Then w2 = 0. Moreover, a simple computation shows that

∀u ∈ K, ‖wu− uw‖2 < 3ε‖vv∗ − v∗v‖2

and we have ‖vv∗ − v∗v‖2 = ‖ww∗ − w∗w‖2 =
√

2‖w‖2. Hence we obtain

∀u ∈ K, ‖wu− uw‖2 < 3
√

2ε‖w‖2.

Next, we prove that if R satisfies condition (iii) then every corner of R also satisfies it. Let
Y ⊂ X be a non-zero subset and p = 1Y . Suppose that the corner RY does not satisfy (iii). Then
we can find a finite set K ⊂ p[[R]]p and a constant κ > 0 such that, for all v ∈ p[[R]]p with
v2 = 0, we have

‖v‖22 6 κ
∑
u∈K
‖vu− uv‖22.

Since R is ergodic, we can find a finite set S ⊂ [[R]] such that
∑

w∈S w
∗w = p⊥ and ww∗ 6 p

for all w ∈ S. Then, for every v ∈ [[R]], we have

‖v‖22 = ‖pv‖22 +
∑
w∈S
‖wv‖22

and, for all w ∈ S, we have

‖wv‖22 6 2(‖wv − vw‖22 + ‖vw‖22) 6 2(‖wv − vw‖22 + ‖vp‖22).

Hence, we obtain

‖v‖22 6 2|S|(‖vp‖22 + ‖pv‖22) + 2
∑
w∈S
‖wv − vw‖22.

Moreover, we have
‖pv‖22 + ‖vp‖22 = ‖pv − vp‖22 + 2‖pvp‖22,

hence
‖v‖22 6 2|S|‖pv − vp‖22 + 4|S|‖pvp‖22 + 2

∑
w∈S
‖wv − vw‖22.

Now fix v ∈ [[R]] such that v2 = 0. Since (pvp)2 = 0, we know, by assumption, that

‖pvp‖22 6 κ
∑
u∈K
‖(pvp)u− u(pvp)‖22 6 κ

∑
u∈K
‖vu− uv‖22.

Therefore, we finally obtain

‖v‖22 6 2|S|‖pv − vp‖22 + 4|S|κ
∑
u∈K
‖vu− uv‖22 + 2

∑
w∈S
‖wv − vw‖22.

This shows that R does not satisfy (iii).
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Finally, we use a maximality argument to show that (iii)⇒ (ii). Let u1, . . . , un ∈ [[R]] be a
finite family and let ε > 0 and δ = 8ε. Consider the set Λ of all (v, U1, . . . , Un) ∈ [[R]]n+1 such
that

– v2 = 0,

– [Uk, vv
∗ + v∗v] = 0 for all k = 1, . . . , n,

– ‖vUk − Ukv‖2 6 ε‖v‖2 for all k = 1, . . . , n,

– ‖Uk − uk‖1 6 δ‖v‖1.

On Λ put the order relation given by

(v, U1, . . . , Un) 6 (v′, U ′1, . . . , U
′
n)

if and only if v 6 v′ and ‖U ′k−Uk‖1 6 δ(‖v′‖1−‖v‖1) for all k = 1, . . . , n. Then Λ is an inductive
set (because [[R]] is inductive and is also complete for the distance given by ‖ · ‖1). By Zorn’s
lemma, let v ∈ Λ be a maximal element. Suppose that q = vv∗+ v∗v 6= 1. Since, by the previous
step, all corners of R also satisfy (iii), we can apply it to K = {Ukq

⊥ | k = 1, . . . , n} ⊂ q⊥[[R]]q⊥

in order to find a non-zero element w ∈ q⊥[[R]]q⊥, with w2 = 0 such that

‖wUk − Ukw‖2 6 ε‖w‖2,
‖wU∗k − U∗kw‖2 6 ε‖w‖2,

for all k = 1, . . . , n.
Now let

– p := ww∗ + w∗w,

– U ′k := pUkp+ p⊥Ukp
⊥,

– v′ := v + w,

– q′ := v′(v′)∗ + (v′)∗v′ = q + p.

Note that (v′)2 = 0 and [U ′k, q
′] = 0 for all k. We also have

‖v′U ′k − U ′kv′‖22 6 ‖vUk − Ukv‖22 + ‖wUk − Ukw‖22 6 ε2‖v‖22 + ε2‖w‖22 = ε2‖v′‖22.

Moreover, by the Cauchy–Schwarz inequality, we have

‖U ′k − Uk‖1 6 ‖pUkp
⊥‖1 + ‖p⊥Ukp‖1

6 ‖p‖2(‖pUkp
⊥‖2 + ‖p⊥Ukp‖2)

6
√

2‖p‖2‖[Uk, p]‖2
6 2
√

2‖p‖2(‖[Uk, w]‖2 + ‖[Uk, w
∗]‖2)

6 4
√

2ε‖p‖2‖w‖2
= 8ε‖w‖22
= δ‖w‖1.

Since ‖v′‖1 = ‖v‖1 + ‖w‖1, this implies that

‖U ′k − Uk‖1 6 δ(‖v′‖1 − ‖v‖1)

and

‖U ′k − uk‖1 6 ‖U ′k − Uk‖1 + ‖Uk − uk‖1 6 δ‖v′‖1.
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Therefore v′ ∈ Λ and v 6 v′. This contradicts the maximality of v. Hence we must have v∗v +
vv∗ = q = 1. Moreover, since

‖vuk − ukv‖2 6 ‖vUk − Ukv‖2 + 2‖Uk − uk‖2,
‖vUk − Ukv‖2 6 ε

and
‖Uk − uk‖22 6 2‖Uk − uk‖1 6 2δ = 16ε,

we conclude that
‖vuk − ukv‖2 6 ε+ 8

√
ε.

Since such a v exists for every ε > 0, we have proved (ii). 2

3. Proof of Theorem B

In this section we prove Theorem B. We need to introduce some notation which will be useful
in order to decompose elements of the full pseudo-group [[R× S]] as functions from R to [[S]].

Let R be a p.m.p. equivalence relation on a probability space (X,µ). We denote by µ̃ the
canonical σ-finite measure on R induced by µ. Then L2(R) := L2(R, µ̃) can be identified with
the canonical L2-space of L(R). For every x ∈ L(R), we denote by x̂ the corresponding vector in
L2(R). If v ∈ [[R]], then v̂ is just the indicator function of the graph of v. We denote by P(X)
the set of projections of L∞(X,µ). For every p ∈ P(X), we can view p̂ as an indicator function
in L2(X), where L2(X) is embedded into L2(R) via the diagonal inclusion.

If S is a second p.m.p. equivalence relation on (Y, ν), then for any v ∈ [[R×S]], there exists
a unique function vS ∈ L0(R, [[S]]) which satisfies

v̂(x, x′, y, y′) = ̂vS(x, x′)(y, y′)

for almost every (a.e.) (x, x′, y, y′) ∈ R× S.
If p ∈ P(X × Y ), then there exists a unique function pY ∈ L0(X,P(Y )) such that

p̂(x, y) = p̂Y (x)(y)

for a.e. (x, y) ∈ X × Y .
All this heavy notation is needed for the following key lemma which allows us to decompose

a commutator in [[R × S]] into two parts which we will be able to control independently. The
proof is just an easy computation.

Lemma 3.1. Let R and S be two p.m.p. equivalence relations on (X,µ) and (Y, ν), respectively.
Let R× S be the product p.m.p. equivalence relation on (X × Y, µ⊗ ν). Let v ∈ [[R× S]] and
p ∈ P(X × Y ). Let v1 := vR ∈ L0(S, [[R]]) and v2 := vS ∈ L0(R, [[S]]) be the two functions
defined by v. Let p1 := pX ∈ L0(Y,P(X)) and p2 := pY ∈ L0(X,P(Y )) be the two functions
defined by p.

Define ξ1 ∈ L2(S,L2(R)) by

ξ1(y, y
′) = ̂[v1(y, y′), p1(y)] for a.e. (y, y′) ∈ S,

and ξ2 ∈ L2(R,L2(S)) by

ξ2(x, x
′) = ̂[v2(x, x′), p2(x′)] for a.e. (x, x′) ∈ R.

Then, after identifying L2(S,L2(R)) ∼= L2(R,L2(S)) ∼= L2(R× S), we have [̂v, p] = ξ1 + ξ2.
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Proof. For a.e. (x, x′, y, y′) ∈ R× S, we compute

(ξ1(y, y
′))(x, x′) = v̂(x, x′, y, y′)(p̂(x, y)− p̂(x′, y)),

(ξ2(x, x
′))(y, y′) = v̂(x, x′, y, y′)(p̂(x′, y)− p̂(x′, y′)),

[̂v, p](x, x′, y, y′) = v̂(x, x′, y, y′)(p̂(x, y)− p̂(x′, y′)),

hence the required equality. 2

Proof of Theorem B. Clearly, if R or S is stable then R × S is also stable. Now suppose that
R and S are not stable. Then, by Theorem 2.1, we can find a constant κ1 > 0 and a finite set
K1 ⊂ [[R]] such that, for all v ∈ [[R]], we have

‖vv∗ − v∗v‖22 6 κ1
∑
u∈K1

‖vu− uv‖22.

Similarly, we can find a constant κ2 > 0 and a finite set K2 ⊂ [[S]] such that, for all v ∈ [[S]],
we have

‖vv∗ − v∗v‖22 6 κ2
∑
u∈K2

‖vu− uv‖22.

In order to prove that R× S is not stable, we will show that, for all v ∈ [[R× S]] with v2 = 0,
we have

‖v‖22 6 κ
∑
u∈K
‖vu− uv‖22,

where κ = 2(κ1 + κ2) and K = (K1 ⊗ 1) ∪ (1⊗K2).
Indeed, let v ∈ [[R× S]] with v2 = 0 and let p = v∗v. Using the notation of Lemma 3.1, we

can write v̂ = [̂v, p] = ξ1 + ξ2 and we have the formulas

‖ξ1‖22 =

∫
S
‖v1(y, y′)p1(y)− p1(y)v1(y, y

′)‖22 dν`(y, y′),

‖ξ2‖22 =

∫
R
‖v2(x, x′)p2(x′)− p2(x′)v2(x, x′)‖22 dµ`(x, x′).

Since pv = 0, then for a.e. (y, y′) ∈ S we have that p1(y)v1(y, y
′) = 0, hence

v1(y, y
′)p1(y)− p1(y)v1(y, y

′) = v1(y, y
′)(v1(y, y

′)∗v1(y, y
′)− v1(y, y′)v1(y, y′)∗)p1(y).

This shows that

‖v1(y, y′)p1(y)− p1(y)v1(y, y
′)‖22 6 ‖v1(y, y′)∗v1(y, y′)− v1(y, y′)v1(y, y′)∗‖22

6 κ1
∑
u∈K1

‖v1(y, y′)u− uv1(y, y′)‖22.

After integrating over S and using the formula

∀u ∈ K1, ‖v(u⊗ 1)− (u⊗ 1)v‖22 =

∫
S
‖v1(y, y′)u− uv1(y, y′)‖22 dν`(y, y′),

we obtain
‖ξ1‖22 6 κ1

∑
u∈K1

‖v(u⊗ 1)− (u⊗ 1)v‖22.
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Similarly, since vp = v, we have v2(x, x
′)p2(x

′) = v2(x, x
′) for a.e (x, x′) ∈ R, hence

v2(x, x
′)p2(x

′)− p2(x′)v2(x, x′) = p2(x
′)⊥(v2(x, x

′)v2(x, x
′)∗ − v2(x, x′)∗v2(x, x′))v2(x, x′).

Then, proceeding as before, we show that

‖ξ2‖22 6 κ2
∑
u∈K2

‖v(1⊗ u)− (1⊗ u)v‖22.

Finally, since v̂ = [̂v, p] = ξ1 + ξ2, we conclude that

‖v‖22 6 2(‖ξ1‖22 + ‖ξ2‖22) 6 κ
∑
u∈K
‖vu− uv‖22

as required. 2

4. A local characterization of McDuff factors

In this section, we establish Theorem C. The proof is more involved than the proof of Theorem A.
We will need the following lemma (for a proof see [Con76, Lemma 1.2.6], [CS76, Proposition 1]
and [CS76, Theorem 2]).

Lemma 4.1. Let (M, τ) be a tracial von Neumann algebra. For every x ∈M and every t > 0, let

ut(x) = u1[t,+∞)(|x|),

where x = u|x| is the polar decomposition of x.

(i) For all x ∈M , we have ∫ ∞
0
‖ut1/2(x)‖22 dt = ‖x‖22.

(ii) For all x, y ∈M+, we have

‖x− y‖22 6
∫ ∞
0
‖ut1/2(x)− ut1/2(y)‖22 dt.

(iii) For all x ∈M and all a ∈M+, we have∫ ∞
0
‖ut1/2(x)a− aut1/2(x)‖22 dt 6 4‖xa− ax‖2‖xa+ ax‖2.

Now we can prove the following more precise version of Theorem C. Note that even if one is
only interested in item (iii), one still needs first to prove that it is equivalent to (iv)′.

Theorem 4.2. Let M be a factor of type II1 with separable predual. Then the following
statements are equivalent.

(i) M is McDuff.

(ii) For every finite set F ⊂M and every ε > 0, there exists a partial isometry v ∈M such that

vv∗ + v∗v = 1,

∀a ∈ F, ‖va− av‖2 < ε.
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(iii) For every finite set F ⊂M and every ε > 0, there exists a partial isometry v ∈M such that

v2 = 0,

∀a ∈ F, ‖va− av‖2 < ε‖v‖2.

(iii)′ For every finite set F ⊂M and every ε > 0, there exists x ∈M such that

x2 = 0,

∀a ∈ F, ‖xa− ax‖2 < ε‖x‖2.

(iv) For every finite set F ⊂M and every ε > 0, there exists a partial isometry v ∈M such that

∀a ∈ F, ‖va− av‖2 < ε‖vv∗ − v∗v‖2.

(iv)′ For every finite set F ⊂M and every ε > 0, there exists x ∈M such that

∀a ∈ F, ‖x‖2 · ‖xa− ax‖2 < ε‖|x| − |x∗|‖22.

Proof. The equivalence (i)⇔ (ii) is already known [McD70]. First, we show that (iii)⇔ (iii)′ ⇔
(iv)⇔ (iv)′. For this, we will prove the implications (iii)⇒ (iv)′ ⇒ (iv)⇒ (iii)′ ⇒ (iii).

(iii)⇒ (iv)′. If v satisfies (iii) then x := v also satisfies (iv)′ since ‖|x| − |x∗|‖2 =
√

2‖x‖2.
(iv)′ ⇒ (iv). Suppose, by contradiction, that there exist a finite set F ⊂ M and a constant

κ > 0 such that, for all partial isometries v ∈M , we have

‖vv∗ − v∗v‖22 6 κ
∑
a∈F
‖va− av‖22.

We can assume that F ⊂M+. Let x ∈M . Then the above inequality applied to v := ut(x) yields

‖ut(|x∗|)− ut(|x|)‖22 6 κ
∑
a∈F
‖ut(x)a− aut(x)‖22

for all t > 0. Therefore, by Lemma 4.1, we obtain

‖|x∗| − |x|‖22 6
∫ ∞
0
‖ut1/2(|x∗|)− ut1/2(|x|)‖22 dt

6 κ
∑
a∈F

∫ ∞
0
‖ut1/2(x)a− aut1/2(x)‖22 dt.

6 κ
∑
a∈F

4‖xa− ax‖2‖xa+ ax‖2

6 8κ
(

max
a∈F
‖a‖∞

)
‖x‖2

∑
a∈F
‖xa− ax‖2

and this contradicts (iv)′.
(iv) ⇒ (iii)′. Let F = F ∗ ⊂ M be a finite self-adjoint set and ε > 0. Pick v ∈ M , a partial

isometry such that
∀a ∈ F, ‖va− av‖2 < ε‖vv∗ − v∗v‖2.

Let x1 = (1− v∗v)v and x2 = v(1− vv∗). Note that x21 = x22 = 0. Let x := x1 if ‖x1‖ > ‖x2‖ and
x := x2 otherwise. Then

‖vv∗ − v∗v‖22 = ‖x1‖22 + ‖x2‖22 6 2‖x‖22.
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Moreover,

∀a ∈ F, ‖xa− ax‖2 6 2‖va− av‖2 + ‖v∗a− av∗‖2 = 2‖va− av‖2 + ‖a∗v − va∗‖2.

Therefore, since F is self-adjoint, we obtain

∀a ∈ F, ‖xa− ax‖2 < 3ε‖vv∗ − v∗v‖2 6 3
√

2ε‖x‖2.

(iii)′ ⇒ (iii). Suppose, by contradiction, that there exist a finite set F ⊂ M and a constant
κ > 0 such that, for all partial isometries v ∈M with v2 = 0, we have

‖v‖22 6 κ
∑
a∈F
‖va− av‖22.

We can assume that F ⊂ M+. Let x ∈ M such that x2 = 0. Then, for every t > 0, we have
ut(x)2 = 0. Hence, by Lemma 4.1, we have

‖x‖22 =

∫ ∞
0
‖ut1/2(x)‖22 dt 6 κ

∑
a∈F

∫ ∞
0
‖ut1/2(x)a− aut1/2(x)‖22 dt.

Since, for every a ∈ F , we have∫ ∞
0
‖ut1/2(x)a− aut1/2(x)‖22 dt 6 4‖xa− ax‖2‖xa+ ax‖2 6 8‖a‖∞‖x‖2‖xa− ax‖2,

we obtain
‖x‖2 6 8

(
max
a∈F
‖a‖∞

)
κ
∑
a∈F
‖xa− ax‖2

and this contradicts (iii)′.
This finishes the proof of the equivalences (iii) ⇔ (iii)′ ⇔ (iv) ⇔ (iv)′. Next, we will prove

that if M satisfies (iii) then pMp also satisfies (iii) for every non-zero projection p ∈M . Suppose,
by contradiction, pMp does not satisfy (iii). Then pMp does not satisfy (iv)′. Hence we can find
a constant κ > 0 and a finite set F ⊂ pMp such that

∀x ∈ pMp, ‖|x| − |x∗|‖22 6 κ‖x‖2
∑
a∈F
‖ax− xa‖2.

Take S ⊂ M a finite set of partial isometries such that
∑

w∈S w
∗w = p⊥ and ww∗ 6 p for all

w ∈ S. Now take a partial isometry v ∈M with v2 = 0 and let x := pvp. Then we have

‖v‖22 = ‖pv‖22 +
∑
w∈S
‖wv‖22

and, for all w ∈ S,

‖wv‖22 6 2(‖wv − vw‖22 + ‖vw‖22) 6 2(‖wv − vw‖22 + ‖vp‖22).

Hence, we obtain

‖v‖22 6 2|S|(‖vp‖22 + ‖pv‖22) + 2
∑
w∈S
‖wv − vw‖22.

Moreover, we have
‖pv‖22 + ‖vp‖22 = 2‖x‖22 + ‖pv − vp‖22,
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hence

‖v‖22 6 4|S|‖x‖22 + 2|S|‖pv − vp‖22 + 2
∑
w∈S
‖wv − vw‖22.

Now, by assumption, we have

‖|x| − |x∗|‖22 6 κ‖x‖2
∑
a∈F
‖ax− xa‖2.

Moreover, we have

‖|x| − |pv|‖2 6 ‖x− pv‖2 6 ‖vp− pv‖2

and

‖|x∗| − |vp|‖2 6 ‖x∗ − vp‖2 6 ‖vp− pv‖2.

Hence, by using the fact that v2 = 0, we get

‖x‖2 6 ‖pv‖2 6 ‖|pv| − |vp|‖2 6 ‖|x| − |x∗|‖2 + 2‖vp− pv‖2

which implies that

‖x‖22 6 2κ‖x‖2
∑
a∈F
‖ax− xa‖2 + 8‖pv − vp‖22.

Therefore, we obtain

‖v‖22 6 8|S|κ‖x‖2
∑
a∈F
‖ax− xa‖2 + 34|S|‖pv − vp‖22 + 2

∑
w∈S
‖wv − vw‖22.

Finally, using the fact that

‖x‖2
∑
a∈F
‖ax− xa‖2 6 ‖v‖2

∑
a∈F
‖av − va‖2,

‖pv − vp‖22 6 2‖v‖2‖pv − vp‖2

and

‖wv − vw‖22 6 2‖v‖2‖wv − vw‖2,

we can conclude that

‖v‖2 6 κ′
∑
a∈F ′

‖av − va‖2,

for some κ′ > 0, some finite set F ′ ⊂M and all partial isometries v ∈M with v2 = 0. This shows
that M does not satisfy (iii), as required.

Finally, one can prove (iii) ⇒ (ii) by using exactly the same maximality argument that we
used in the proof of Theorem 2.1. 2

5. Another approach to Question D

The following lemma is extracted from [IV15] and is inspired by a trick used in [Haa85].
Recall that if M is a von Neumann algebra, then L2(Mω) is in general much smaller than
the ultraproduct Hilbert space L2(M)ω (see [Con76, Proposition 1.3.1]).
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Lemma 5.1. Let M and N be finite von Neumann algebras. Fix a tracial state τ on M and pick
an orthonormal basis (en)n∈N of (M, τ). Let A = L∞(TN) = L∞(T) ⊗ N and, for each n ∈ N,
let un ∈ U(A) be the canonical generator of the nth copy of L∞(T). Let V : L2(M) → L2(A) be
the unique (non-surjective) isometry which sends en to un for every n ∈ N.

Then the naturally defined ultraproduct isometry

(V ⊗ 1)ω : L2(M ⊗ N)ω → L2(A ⊗ N)ω

sends L2((M ⊗ N)ω) into L2((A ⊗ N)ω).

Lemma 5.1 is useful because it allows us to reduce many problems on sequences in tensor
products M ⊗ N to the case where M is abelian. We now present two applications of this
principle.

The first one slightly generalizes [IV15, Corollary]. We will need it for Theorem E.

Proposition 5.2. Let M and N be finite von Neumann algebras. For any von Neumann
subalgebras Q,P ⊂ N such that Q′ ∩Nω ⊂ Pω, we have

(1⊗Q)′ ∩ (M ⊗ N)ω ⊂ (M ⊗ P )ω.

Proof. First, we deal with the case where M is abelian, that is, M = L∞(T, µ) for some
probability space (T, µ). Take (xn)ω in the unit ball of (1 ⊗ Q)′ ∩ (M ⊗ N)ω and write
xn = (t 7→ xn(t)) ∈ M ⊗ N = L∞(T, µ,N) for every n ∈ N. Let ε > 0 and choose a finite
set F ⊂ Q and δ > 0 such that, for every x in the unit ball of N , we have

(∀a ∈ F, ‖[x, a]‖2 6 δ) =⇒ ‖x− EP (x)‖2 6 ε.

Since (xn)ω ∈ (1 ⊗ Q)′ ∩ (M ⊗ N)ω, we have

lim
n→ω

µ({t ∈ T | ∀a ∈ F, ‖[xn(t), a]‖2 6 δ}) = 1.

Hence, we have
lim
n→ω

µ({t ∈ T | ‖xn(t)− EP (xn(t))‖2 6 ε}) = 1.

This means that
lim
n→ω
‖xn − EM ⊗ P (xn)‖2 6 ε,

and since this holds for every ε > 0, we conclude that (xn)ω ∈ (M ⊗ P )ω.
We now extend to the general case where M is not necessarily abelian. Let ξ ∈ L2((M ⊗ N)ω)

be a Q-central vector. We want to show that ξ ∈ L2((M ⊗ P )ω). By Lemma 5.1, we know that
η = (V ⊗ 1)ω(ξ) ∈ L2((A ⊗ N)ω). Since (V ⊗ 1)ω is N -bimodular, we know that η is Q-central.
Hence, by the abelian case, we obtain that η ∈ L2((A ⊗ P )ω). But this clearly implies that
ξ ∈ L2((M ⊗ P )ω). 2

Proof of Theorem E. Suppose that M ⊗ N is McDuff, that is, (M ⊗ N)ω is non-commutative.
By Proposition 5.2, we know that (M ⊗ N)ω ⊂ (A ⊗ N)ω, so that (A ⊗ N)ω is also non-
commutative. Therefore, we can find x = (xn)ω and y = (yn)ω in (A ⊗ N)ω with ‖xn‖∞,
‖yn‖∞ 6 1 for all n, such that ‖[x, y]‖2 = δ > 0. Let A = L∞(T, µ) with (T, µ) a probability space.
Write xn = (t 7→ xn(t)) ∈ A ⊗ N = L∞(T, µ,N) with ‖xn(t)‖∞ 6 1 for all n and t. Similarly,
let yn = (t 7→ yn(t)). Fix F ⊂ N a finite subset and ε > 0. Since x, y ∈ (A ⊗ N)ω, we know that

lim
n→ω

µ({t ∈ T | ∀a ∈ F, ‖[xn(t), a]‖2 6 ε}) = 1
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and
lim
n→ω

µ({t ∈ T | ∀a ∈ F, ‖[yn(t), a]‖2 6 ε}) = 1.

Moreover, since ‖[x, y]‖2 = δ > 0, we have

lim
n→ω

µ({t ∈ T | ‖[xn(t), yn(t)]‖2 > δ/2}) > 0.

Hence, for n large enough, the intersection of these three sets is non-empty, that is, there exists
t such that

∀a ∈ F, ‖[xn(t), a]‖2 6 ε,

∀a ∈ F, ‖[yn(t), a]‖2 6 ε,

‖[xn(t), yn(t)]‖2 > δ/2.

Hence, by iterating this procedure, we can extract a sequence ak = xnk
(tk), k ∈ N, and bk =

ynk
(tk), k ∈N, such that a = (ak)ω and b = (bk)ω are in Nω and ‖[a, b]‖2 > δ/2. Thus Nω is not

commutative, that is, N is McDuff as we wanted. 2

The second application is the following lemma which we will need in the proof of Theorem F.

Lemma 5.3. Let M and N be finite von Neumann algebras. Then we have

1⊗Z(Nω) ⊂ Z(N ′ ∩ (M ⊗ N)ω).

Proof. First, we treat the case where M is abelian, that is, M = L∞(T, µ) for some probability
space (T, µ). Let (ak)k∈N be a ‖ · ‖2-dense sequence in (N)1 and let

Nk := {x ∈ (N)1 | ∀r 6 k, ‖[x, ar]‖2 6 1/k}.

Let y = (yn)ω ∈ Z(Nω) with ‖yn‖∞ 6 1 for all n. By [McD70, Lemma 10], there exists a
sequence of sets Uk ∈ ω, k ∈ N, such that

∀k ∈ N, ∀x ∈ Nk, ∀n ∈ Uk, ‖[yn, x]‖2 6 1/k.

Let x = (xn)ω ∈ (1⊗N)′ ∩ (M ⊗ N)ω with ‖xn‖∞ 6 1 for all n ∈N. We want to show that
x(1⊗ y) = (1⊗ y)x. Write xn = (t 7→ xn(t)) ∈M ⊗ N = L∞(T, µ,N) with ‖xn(t)‖∞ 6 1 for all
t and all n ∈N. Since x ∈ (1⊗N)′∩ (M ⊗ N)ω, there exists a sequence of sets Vk ∈ ω such that

µ({t ∈ T | xn(t) ∈ Nk}) > 1− 1/k2

for all n ∈ Vk.
Therefore, for all n ∈ Uk ∩ Vk, we have

µ({t ∈ T | ‖[yn, xn(t)]‖2 6 1/k}) > 1− 1/k2,

which implies that

‖[1⊗ yn, xn]‖22 =

∫
T
‖[yn, xn(t)]‖22 dµ(t) 6 5/k2.

Since Uk ∩ Vk ∈ ω for all k ∈ N, we conclude that limn→ω ‖[1⊗ yn, xn]‖2 = 0 as required.
Finally, we extend to the general case where M is not necessarily abelian. Let ξ ∈

L2((M ⊗ N)ω) be an N -central vector. We want to show that ξ is Z(Nω)-central. By Lemma 5.1,
we know that η = (V ⊗ 1)ω(ξ) ∈ L2((A ⊗ N)ω). Since (V ⊗ 1)ω is N -bimodular, we know that
η is N -central. Hence, by the abelian case, we obtain that η is Z(Nω)-central. Since (V ⊗ 1)ω is
Nω-bimodular, we conclude that ξ is also Z(Nω)-central. 2
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Proof of Theorem F. By Lemma 5.3, we know that 1 ⊗ Z(Nω) is contained in the center of
(1⊗N)′ ∩ (M ⊗ N)ω, hence it is also contained in the center of (M ⊗ N)ω. Since (M ⊗ N)ω is
a factor, this implies that Nω is also a factor, and the same argument shows that Mω is a factor.

Now suppose that M ⊗ N is McDuff. Then (M ⊗ N)ω is non-trivial. Thus Mω or Nω is
also non-trivial (use [Con76, Corollary 2.2] or Proposition 5.2). This means that Mω or Nω is a
non-trivial factor. In particular, M or N is McDuff. 2

The following fact is well known to experts, but we provide a proof for the reader’s
convenience.

Proposition 5.4. Let M =
⊗

n∈NMn be an infinite tensor product of non-Gamma type II1
factors Mn, n ∈ N. Then Mω is a factor.

Proof. For every n ∈ N, we let

Qn := M0 ⊗ M1 ⊗ · · · ⊗ Mn ⊗ 1⊗ 1⊗ · · · ⊂M.

Suppose that (xk)k∈N is a non-trivial central sequence in M with ‖xk‖2 = 1 and τ(xk) = 0
for all k ∈ N. Then, since Qn is non-Gamma, we know by [Con76, Theorem 2.1] that
limk ‖xk − EQ′

n∩M (xk)‖2 = 0. Hence we can find a sequence (nk)k∈N with nk → ∞ such that
‖EQ′

nk
∩M (xk)‖2 > 1

2 for all k ∈ N. Let yk = EQ′
nk
∩M (xk). Since Q′nk

∩M is a finite factor, we

know that 0 = τ(xk) = τ(yk) is in the weakly closed convex hull of

{uyku∗ | u ∈ U(Q′nk
∩M)}.

Hence, there must exist some unitary uk ∈ U(Q′nk
∩M) such that

‖ukyku∗k − yk‖2 > 1
2‖yk‖2 >

1
4

which yields ‖[uk, xk]‖2 > 1
4 . But, by construction, (uk)k∈N is a central sequence in M . This

shows that (xk)k∈N is not in the center of Mω. Therefore Mω is a factor. 2

Proof of Corollary G. By Proposition 5.4, we know that Mω is a factor. By Theorem F, we then
know that Nω is also a factor. Since N has property Gamma thanks to [Pop10, Theorem 4.1], we
conclude that Nω is non-commutative or equivalently that N is McDuff. Thus N ∼= N ⊗ R ∼= M
as required. 2
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