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Abstract. We start here the study of some algebraic varieties related to cluster
algebras. These varieties are defined as the fibres of the projection map from the cluster
variety to the affine space of coefficients. We compute the number of points over finite
fields on these varieties, for all simply laced Dynkin diagrams. We also compute the
cohomology with compact support in some cases.
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1. Introduction. Cluster algebras have been introduced by Fomin and Zelevinsky
around 2001 [1, 5–7] in order to study canonical bases of quantum groups and
total positivity. Since then, this theory has become a very active subject and many
connections have been found to combinatorics, Poisson geometry and representation
theory (see for instance [2–4] and the Bourbaki seminar by Keller [8]).

As part of their definition, cluster algebras are commutative algebras, and can
therefore be considered as objects of algebraic geometry. We consider here some
algebraic varieties contained in the spectrum of cluster algebras. We count the points
over finite fields on these varieties and also compute their cohomology with compact
support in some cases.

In the classical cluster algebra setting, each cluster algebra comes with a
polynomial subalgebra (or sometimes a subalgebra consisting of Laurent polynomials)
in some elements, which are called coefficients variables. This inclusion of algebras
defines a morphism from the spectrum of the cluster algebra to the affine space (or
algebraic torus).

We use as a starting point a theorem ([1], Corollary 1.17),which gives a presentation
by generators and relations of acyclic cluster algebras. We use this presentation to
define, for each tree, a family of algebraic varieties depending on parameters in an
affine space.

This affine space of parameters corresponds to the subalgebra generated by
coefficient variables in cluster algebras. The fibre over a point in our affine space
of parameters is a fibre of the map from the spectrum of the cluster algebra to the
spectrum of its coefficient subalgebra.

The definition of these fibres makes sense for cluster algebras associated with any
acyclic quiver. For simplicity, we restrict ourselves to simply laced cluster algebras of
finite type, which are indexed by the usual �-�-� list of Dynkin diagrams. We have
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implicitly chosen to work with the alternating orientation of these Dynkin diagrams,
but the results do not depend on the orientation.

This paper is only an elementary first step in the study of these varieties. After
a number of points over finite fields, the next thing one would like to know is the
cohomology with compact support. We were only able to obtain this description in the
case of type � with even index.

One interesting detail of our results on the number of points is the very simple
shape of the answers in the generic case (formulas (6) and (7) in type � and formulas
(22) and (24) in type �), which are nice polynomials in the cardinal q of the finite field
�q. It would be very interesting to see if the cohomology with compact support is as
simple as one may expect from these nice polynomials. Our results show that this is
indeed the case in type �n with n even.

2. General results. In this section, we introduce general definitions and tools valid
for all trees. Later on, we will use these for finite-type simply laced Dynkin diagrams.

2.1. Definition. Let T be a tree, i.e. a finite graph, which is connected and simply
connected. We will write s–t to denote that s and t are adjacent vertices of T .

Let α = (αt)t∈T be a function on the set of vertices of T with values in some
field �.

Let us call XT (α) the affine scheme over � defined by

xtx′
t = 1 + αt

∏
s−t

xs (1)

for all vertices t of T .
One can also consider this set of equations as defining a family of schemes over the

base affine scheme Spec �[(αt)t∈T ]. We will study the fibres of this family. From now
on, we will assume (unless explicitly stated otherwise) that the αt are invertible. This
amounts to restrict the family to Spec �[(αt, α

−1
t )t∈T ].

REMARK 2.1. Instead of a tree T , one can also consider a disjoint union of trees
F , in which case the variety XF (α) will be the product of the varieties associated with
the connected components of F .

2.2. Reduction using domino tiling. Every tree T is a bipartite graph. Let us fix a
choice of black and white vertices such that every edge has white and black ends.

LEMMA 2.2. Let s and t be adjacent vertices. Let β be the function defined by

βs = 1,

βu = αu/αs if u �= s and u − t,

βu = αu else.

Then XT (α) is isomorphic to XT (β).

Proof. One uses the change of variable xt = αsxt and x′
t = x′

t/αs. �
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Note that this operation only changes the values of the function on vertices that
have the same colour as s. In a pictorial way, the value at vertex s jumps over vertex t
and get spread over the other neighbours of t.

A partial domino tiling of T is a subset of the set of edges such that every vertex
appears at most once among the ends of the chosen edges. It is called full if every vertex
appears exactly once.

LEMMA 2.3. Let T be a tree with a full domino tiling. Then T has a white leaf.

Proof. By an easy induction on the number of vertices. �
PROPOSITION 2.4. Let T be a tree, endowed with a partial domino tiling. Every XT (α)

is isomorphic to some XT (β) where βs = 1 for every vertex s which is covered by a domino.

Proof. The proof uses only Lemma 2.2 to modify the function α. One can, therefore,
treat black and white vertices separately. Let us just prove the statement for white
vertices, the case of black vertices being the same with colours exchanged.

Let C be the set of vertices covered by dominoes. The partial domino tiling of T
defines for every white vertex s ∈ C a canonical black neighbour B(s).

Let us orient the edges of T from white to black inside the dominoes (from s to
B(s)) and from black to white outside the dominoes.

Then the induced subgraph of T on the set C of vertices covered by dominoes is
a disjoint union of trees with oriented edges. One has to flip every white vertex s ∈ C
over the black vertex B(s) (which means using Lemma 2.2 to replace α by a modified
function) in a well-chosen order. This order must be compatible with the partial order
given by the orientation of edges: one has to start with white leaves (which exist by
Lemma 2.3).

At the end of the process, one obtains a function β such that every white vertex in
C has value 1 such that XT (α) is isomorphic to XT (β). �

REMARK 2.5. For every tree, one can find a partial domino tiling where the only
vertices that are not covered are leaves.

2.3. Induction by removal of leaves. Let T be a tree and let f be a leaf of T . Let g
be the unique vertex adjacent to f . Let α be a function on T .

Let T ′ be the tree obtained from T by removing f . For every element β in the
ground field �, let α′(β) be the function on T ′ defined by

α′
g(β) = αgβ, (2)

α′
s(β) = αs if s �= g. (3)

Let T ′′ be the tree or disjoint union of trees obtained from T by removing f and
g. Let α′′ be the function on T ′′ defined by

α′′
s = −αs/αf if s − g in T, (4)

α′′
s = αs else. (5)

PROPOSITION 2.6. The scheme XT (α) is the disjoint union of the scheme A1 × XT ′′(α′′)
and of a variety fibred over A1\{0} with fibre XT ′(α′(β)) over β.
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Proof. One simply has to separate points according to whether xf = 0 (which gives
the first part) or not (which gives the variety fibred over A1\{0}).

If one assumes xf = 0, then equation (1) for vertex f gives the invertible value
−1/αf for xg. Then equation (1) for vertex g gives a value for x′

g. There remains a free
variable x′

f and the equations for T ′′ with function α′′. This corresponds to the product
of the affine space A1 and the variety XT ′′(α′′).

If one now assumes that xf is invertible, then equation (1) for vertex f gives a value
to x′

f . One can remove this equation; there remains the equations for T ′ with a function
depending on the value of xf . Moreover, if one fixes the value of xf to be an invertible
element β of �, then one gets the equations of XT ′(α′(β)). �

3. Type �. We will now consider the Dynkin diagrams of type �.

3.1. Number of points over finite fields. In type �n, the cluster algebra is generated
by n cluster variables x1, . . . , xn (which form a cluster), the n adjacent cluster variables
x′

1, . . . , x′
n and n coefficient variables α1, . . . , αn with the following relations:

x1x′
1 = 1 + α1x2,

x2x′
2 = 1 + α2x1x3,

. . .

xn−1x′
n−1 = 1 + αn−1xn−2xn,

xnx′
n = 1 + αnxn−1.

Let us call X�n (α1, . . . , αn) this variety. As before, we assume that αi are invertible.

PROPOSITION 3.1. If n is even, then X�n (α1, . . . , αn) � X�n (1, 1, . . . , 1).
If n is odd, then X�n (α1, . . . , αn) � X�n (α, 1, . . . , 1), for some α depending only on

the αi with i odd.

Proof. This is obtained by applying Proposition 2.4 to the obvious full domino
tiling (even case) or to the partial domino tiling avoiding only the first vertex (odd
case). �

For short, we will denote Xn(α) for X�n (α, 1, . . . , 1). For the number of points of
these varieties over finite fields, we will use the following notation: N�n (α) is the number
of points of Xn(α). When n is even, we will also use N�n for short.

PROPOSITION 3.2. If n is even, then

N�n = qn+2 − 1
q2 − 1

. (6)

If n is odd and α �= (−1)(n+1)/2, then

N�n (α) = (q(n+1)/2 − 1)(q(n+3)/2 − 1)
q2 − 1

. (7)
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If n is odd, then

N�n ((−1)(n+1)/2) = (q(n+1)/2 − 1)(q(n+3)/2 − 1)
q2 − 1

+ q(n+1)/2. (8)

Proof. By induction using leaf-removal (Proposition 2.6). The statement is clear if
n = 0, in which case the variety X�0 ( ) is just a point. It is also immediate if n = 1.

Let us first note that the statement implies (for n being even or odd) that

∑
α∈�∗

q

N�n (α) = qn+2 + (−1)n+1

q + 1
. (9)

Assume that n is even. Then Proposition 2.6 becomes

N�n = qN�n−2 +
∑
α∈�∗

q

N�n−1 (α), (10)

which can be rewritten (using (9)) as

N�n = qN�n−2 + qn+1 + 1
q + 1

. (11)

This implies the expected formula for N�n .
Assume that n is odd. Then Proposition 2.6 becomes

N�n (α) = qN�n−2 (−1/α) + (q − 1)N�n−1 , (12)

which can be rewritten as

N�n (α) = qN�n−2 (−1/α) + qn+1 − 1
q + 1

. (13)

Note that α = (−1)(n+1)/2 if and only if −1/α = (−1)(n−2+1)/2. The induction
hypothesis then implies the expected formulas for N�n (α). �

Let Y�n be the union of all varieties Xn(α) for α invertible. By a natural convention,
Y�0 is just A1\{0}. Let us note as a lemma the formula (9) that we have obtained in the
proof of Proposition. 3.2.

LEMMA 3.3. For every n ≥ 0, one has

∑
α∈�∗

q

N�n (α) = qn+2 + (−1)n+1

q + 1
. (14)

This is the number of points on Y�n over the finite field �q.

Let now Z�n be the union of all varieties Xn(α) for any α (we do not assume here
that α is invertible).

PROPOSITION 3.4. For every n ≥ 1, the space Z�n is the disjoint union of Y�n and
Y�n−1 . The number of points on Z�n over the finite field �q is qn+1.
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Proof. The proof of this decomposition is obvious: either α = 0 (and one obtains
Y�n−1 ) or not (in which case one gets Y�n ). The counting result follows from
Lemma 3.3. �

This result immediately suggests that Z�n may just be an affine space. This is
proved in the next section and will allow to compute some cohomology groups.

We will use later the following result.

LEMMA 3.5. For every even n ≥ 1, the space Y�n is isomorphic to the product of
Xn(1) with A1 \ {0}.

Proof. This is a simple consequence of Lemma 2.2. One clearly has a fibration,
and this is made trivial by a simple change of variables. �

3.2. Cohomology with compact supports.

PROPOSITION 3.6. For every n ≥ 1, there is a surjective morphism φ from Z�n+1 to
Z�n with fibre A1. For every n ≥ 1, there is an isomorphism Z�n � An+1.

Proof. The morphism φ from Z�n+1 to Z�n is defined by forgetting the first
equation (1):

x1x′
1 = 1 + αx2. (15)

One simply has to shift down the indices of variables xi and x′
i for i ≥ 2 and let x1 play

the role of α.
As it is not possible that both x1 and x2 vanish (by the second equation (1)), the

first equation is the equation of a line in the plane with coordinates x′
1, α. Therefore

every fibre of φ is a line.
One can easily check that Z�1 � A2. Then the expected isomorphism follows by

induction. �
COROLLARY 3.7. As an open set of Z�n , Y�n is smooth.

Recall that the cohomology with compact support of the affine space An is very
simple: the only non-zero group is H2n

c (An) � �(n), where �(n) is the Tate Hodge
structure of weight n.

PROPOSITION 3.8. For n ≥ 0, the non-zero cohomology groups with compact support
of Y�n are

Hi+n+1
c (Y�n ) � �(i), (16)

for 0 ≤ i ≤ n + 1.

Proof. The proof is by induction on n. The statement is true if n = 0. One
then uses the long exact sequence in cohomology with compact support for the
open–closed decomposition Z�n = Y�n 
 Y�n−1 (see Proposition 3.4), together with
Proposition 3.6. �

One can then obtain the cohomology with compact support of Xn(1) when n is
even.
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PROPOSITION 3.9. For n ≥ 0 even, the non-zero cohomology groups with compact
support of Xn(1) are

Hi+n
c (Xn(1)) � �(i), (17)

for all even i between 0 and n.

Proof. By induction on n. The statement is true for n = 0 with the natural
convention that X�0 ( ) is a point.

One uses two ingredients. The first one is the long exact sequence for the open–
closed decomposition Xn(1) = Y�n−1 
 A1 × Xn−2. The second one is the Künneth
isomorphism describing the cohomology of the product Y�n � A1 \ {0} × Xn(1) (see
Lemma 3.5). We also need the fact that the cohomology with compact support of
A1 \ {0} is �(0) in degree 1 and �(1) in degree 2.

From the long exact sequence, one gets exact sequences

0 → �(i) → Hi+n
c (Xn(1)) → �(i + 1) → �(i + 1) → Hi+n+1

c (Xn(1)) → 0 (18)

for even i between 0 and n.
One would like to conclude that Hi+n

c (X�n+2 ) � �(i) and Hi+n+1
c (X�n+2 ) � 0.

Assume on the contrary that, for some even i, Hi+n+1
c (X�n ) � �(i + 1) and

Hi+n
c (X�n ) are extensions of �(i) by �(i + 1), hence has dimension 2.

Then the Künneth formula would imply that Hi+n+1
c (Y�n ) has dimension of at

least 2, which is absurd, as Hi+n+1
c (Y�n ) is �(i) by Proposition 3.8. �

3.3. Smoothness. Let us prove that the varieties Xn(α) are smooth for generic α.
Recall that α is assumed to be invertible.

PROPOSITION 3.10. For n even, Xn(α) is smooth.
For n odd and α �= (−1)(n+1)/2, Xn(α) is smooth.
For n odd and α = (−1)(n+1)/2, Xn(α) has a unique singular point: xi = x′

i = 0 for
odd i and xi = x′

i = −(−1)(n+i)/2 for even i.

Proof. The proof is by induction on n. The statement is clear if n = 0, 1.
Assume that there is a singular point on Xn+2(α).
The equations defining a singular point on Xn+2(α) are the n equations of Xn+2(α)

together with the vanishing of all minors of rank n of the 2n × n matrix Mn+2(α) of
partial derivatives of these n equations with respect to variables x1, . . . , xn, x′

1, . . . , x′
n.

This matrix Mn+2(α) looks as follows:
⎡
⎢⎢⎢⎢⎢⎣

x′
1 −α 0 . . . 0 x1 0 . . . 0

−x3 x′
2 −x1 0 0 x2 0

0 −x4 x′
3 −x2 0 0 0 x3 0

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 −1 x′
n 0 . . . 0 xn

⎤
⎥⎥⎥⎥⎥⎦

. (19)

Let us distinguish two cases and some sub-cases.
First case. x1 = 0.
Using the equations, this hypothesis implies that x2 = −1/α and x′

2 = −α.
Assume first that x′

1 = 0. Then the vanishing of all minors of the matrix Mn+2(α)
reduces to the vanishing of all minors of the matrix Mn(−1/α) (with a shift of indices
by 2). So the singular point gives, by restriction to coordinates (xi, x′

i)i≥3, a singular
point on Xn(−1/α).
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If n + 2 is even or n + 2 is odd and α �= (−1)(n+2+1)/2, this is absurd by induction
hypothesis.

If n + 2 is odd and α = (−1)(n+2+1)/2, there is only one solution by induction
hypothesis: xi = x′

i = 0 for odd i ≥ 3 and xi = x′
i = −(−1)(n+i)/2 for even i ≥ 2. It is

readily checked that the point (xi, x′
i)i≥1 is indeed a singular point on Xn+2(α).

Assume on the contrary that x′
1 �= 0. Then the vanishing of all minors of the matrix

Mn+2(α) reduces to the vanishing of all minors of an extended matrix, which is made
of Mn(−1/α) plus one more column on the left:

⎡
⎢⎢⎢⎢⎣

−x4 x′
3 −x2 0 . . . 0 x3 0 . . . 0

0 −x5 x′
4 −x3 0 0 x4 0

...
. . .

. . .
. . .

. . .
. . .

0 0 . . . 0 −1 x′
n 0 . . . 0 xn

⎤
⎥⎥⎥⎥⎦

. (20)

In particular, by restriction to coordinates (xi, x′
i)i≥3, we obtain a singular point on

Xn(−1/α).
If n + 2 is even or n + 2 is odd and α �= (−1)(n+2+1)/2, this is absurd by induction

hypothesis.
If n + 2 is odd and α = (−1)(n+2+1)/2, there is only one solution by induction

hypothesis: xi = x′
i = 0 for odd i ≥ 3 and xi = x′

i = −(−1)(n+i)/2 for even i ≥ 2. One
can then check that the extended matrix has a non-vanishing minor at this point, and
therefore (xi, x′

i)i≥1 is not a singular point on Xn+2(α). This is absurd.
Second case. x1 �= 0. Then the vanishing of all minors of the matrix Mn+2(α) reduces

to the vanishing of all minors of an extended matrix, which is made of Mn+1(x1) (with
a shift of indices by 1) plus one more column on the left:

⎡
⎢⎢⎢⎢⎣

−x3 x′
2 −x1 0 . . . 0 x2 0 . . . 0

0 −x4 x′
3 −x2 0 0 x3 0

...
. . .

. . .
. . .

. . .
. . .

0 0 . . . 0 −1 x′
n 0 . . . 0 xn

⎤
⎥⎥⎥⎥⎦

. (21)

In particular, by restriction to coordinates (xi, x′
i)i≥2, we obtain a singular point on

Xn+1(x1).
If n + 2 is odd, this is absurd by induction hypothesis.
If n + 2 is even, then there is only one possible solution by induction hypothesis:

xi = x′
i = 0 for even i ≥ 2 and xi = x′

i = −(−1)(n+1+i)/2 for odd i ≥ 3. One can then
check that the extended matrix has a non-vanishing minor at this point, which is
therefore not a singular point on Xn+2(α). �

4. Type �. We will now consider the Dynkin diagrams of type �.

In type �n, the cluster algebra is generated by n cluster variables x1, x2, x3, . . . , xn

(which form a cluster), the n adjacent cluster variables x′
1, x′

2, x′
3, . . . , x′

n and n
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coefficient variables α1, . . . , αn with the following relations:

x1x′
1 = 1 + α1x3,

x2x′
2 = 1 + α2x3,

x3x′
3 = 1 + α3x1x2x4,

x4x′
4 = 1 + α4x3x5,

. . .

xn−1x′
n−1 = 1 + αn−1xn−2xn,

xnx′
n = 1 + αnxn−1.

Let us call X�n (α1, . . . , αn) this variety. As before, we assume that the αi are
invertible.

PROPOSITION 4.1. If n is even, then X�n (α1, . . . , αn) � X�n (α, β, 1, . . . , 1), for some
α, β depending on the αi.

If n is odd, then X�n (α1, . . . , αn) � X�n (α, 1, . . . , 1), for some α depending on the αi.

Proof. This is obtained by applying Proposition 2.4 to the partial domino tiling
avoiding the first two vertices (even case) or to the partial domino tiling avoiding only
the first vertex (odd case). �

Let us introduce some notation for the number of points of these varieties over
finite fields. If n is odd, we will denote N�n (α) the number of points of X�n (α, 1, . . . , 1).
If n is even, we will denote N�n (α, β) the number of points of X�n (α, β, 1, . . . , 1).

PROPOSITION 4.2. If n is odd and α �= 1, then

N�n (α) = qn − 1. (22)

If n is odd, then

N�n (1) = qn − 1 + q2 qn−1 − 1
q2 − 1

. (23)

If n is even, α �= β, α �= (−1)n/2 and β �= (−1)n/2, then

N�n (α, β) = (qn/2 − 1)2. (24)

If n is even, and α = β differs from (−1)n/2, then

N�n (α, α) = (qn/2 − 1)2 + q2 (q(n−2)/2 − 1)(qn/2 − 1)
q2 − 1

. (25)

If n is even, and α �= β and α = (−1)n/2, then

N�n ((−1)n/2, β) = (qn/2 − 1)2 + (q − 1)qn/2. (26)

If n is even, and α = β = (−1)n/2, then N�n ((−1)n/2, (−1)n/2) equals

(qn/2 − 1)2 + 2(q − 1)qn/2 + q2 (q(n−2)/2 − 1)(qn/2 − 1)
q2 − 1

+ q(n+2)/2. (27)
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Proof. The proof uses leaf-removal (Proposition 2.6) and knowledge of type �.
If n = 3, one has X�3 (α) � X�3 (α) and the statement follows from type �.
If n ≥ 5 is odd, let us remove the leaf with value α. One gets, using Lemma 2.2 to

compute the rightmost term,

N�n (α) = qN�1 (−1/α)N�n−3 + (q − 1)N�n−1 . (28)

According to results in type �, one therefore has to distinguish the case α = 1. One
then computes using Proposition 3.2.

If n is even, let us remove the leaf with value α. One gets

N�n (α, β) = qN�1 (−β/α)N�n−3 (−1/α) + (q − 1)N�n−1 (β). (29)

According to Proposition 3.2, one has to distinguish according to three alternatives:
β = α or not, α = (−1)n/2 or not and β = (−1)n/2 or not. One can also use the
symmetry exchanging α and β. In each case, one can compute the result using
Proposition 3.2. �

REMARK 4.3. One may wonder, in type �n with n odd, if the homotopy type of
X�n (α) (for α �= 1) is that of a sphere.

5. Type �. We will now consider the Dynkin diagrams of type �.

Using the general definition given for trees, one can introduce varieties X�6 (α),
X�7 (α) and X�8 (α) depending on invertible parameters α.

PROPOSITION 5.1. Every variety X�6 (α) is isomorphic to the variety X�6 (1, . . . , 1).
Every variety X�7 (α) is isomorphic to the variety X�7 (1, . . . , 1, α), where α is the value on
the last vertex on the long branch of �7. Every variety X�8 (α) is isomorphic to the variety
X�8 (1, . . . , 1).

Proof. This follows from Proposition 2.4, using appropriate domino tilings. �
Let us introduce some notation for the number of points of these varieties over

finite fields. We will denote N�6 the number of points of X�6 (1, . . . , 1) and N�8 the
number of points of X�8 (1, . . . , 1). We will denote N�7 (α) the number of points of
X�7 (1, . . . , 1, α), where α is the value on the last vertex on the long branch of �7.

PROPOSITION 5.2. The number of points are as follows:

N�6 = q6 + q4 + q3 + q2 + 1,

N�7 (α) = q7 + q5 − q2 − 1 if α �= −1,

N�7 (−1) = q7 + 2q5 + q3 − q2 − 1,

N�8 = q8 + q6 + q5 + q4 + q3 + q2 + 1.

(30)

Proof. The proof uses leaf-removal (Proposition 2.6) and the knowledge of the
numbers in type �.
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In the case of �6, let us remove the leaf of the shortest branch. One gets, using
Lemma 2.2, to compute the second term,

N�6 = qN�2 N�2 +
∑
β∈�∗

q

N�5 (β). (31)

One can compute this using Proposition 3.2 and Lemma 3.3.
In the case of �7, let us remove the leaf of the shortest branch. One gets

N�7 (α) = qN�2 N�3 (−1/α) + (q − 1)N�6 . (32)

Therefore, by applying Proposition 3.2 to �3, one has to separate the case α = −1.
One can compute the different results using Proposition 3.2.

In the case of �8, let us remove the leaf of the shortest branch. One gets (using
Lemma 2.2 to compute the second term)

N�8 = qN�2 N�4 +
∑
β∈�∗

q

N�7 (β). (33)

One can compute this using Proposition 3.2 and Lemma 3.3. �
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