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Abstract. Let G be a Lie group acting in Hamiltonian fashion on a symplectic
manifold M with moment map <$>:M ->g*. A function of the form f°$> where /
is a function on g* is called 'collective'. We obtain necessary conditions on the G
action for there to exist enough Poisson commuting functions on g* so that the
corresponding collective functions on M form a completely integrable system. For
the case G = O(n) or U(n) these conditions are sufficient. This explains Thimm's
proof [17] of the complete integrability of the geodesic flow on the real and complex
grassmanians. We also discuss related questions in the geometry of the moment map.

0. Introduction
In a recent paper [17], Thimm has devised a method for proving the complete
integrability of a large collection of interesting Hamiltonian systems. His method,
roughly speaking, is as follows. Suppose we are given a Hamiltonian action of a
Lie group G on a symplectic manifold M with attendent moment map

$>:M^g*

(cf. [3] for the relevant definitions). If H is a G -invariant Hamiltonian it commutes
with all functions of the form

/°<D /:g*^R.
(Such functions are called 'collective' in [3] because of their relevance to various
models of the nucleus.) The space of smooth functions on g*, which we denote by
3F{g*), has its own Poisson bracket, the Kostant-Souriau bracket which we shall
denote by { }g*. We denote the Poisson bracket on M by { , }M and recall from
[3] that the map

= /<.<&

is a homomorphism for the Lie bracket structures, i.e., that

If/I is a G-invariant function, then

{/i,/2}g- = 0 for all f2
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220 V. Guillemin and S. Sternberg

and hence if fu . .. ,f, are independent G -invariant functions, the functions

<*>7i, • • •, <&7r
will all Poisson commute on M and also Poisson commute with any G invariant
H. Of course, in general, there will not be enough of them. But suppose that we
consider a subalgebra g ^ g . This gives rise to a projection

and hence a homomorphism

of Poisson algebras. If we now consider the invariants / ! , . . . , / , , in ^(gf), they
Poisson commute with one another, and thus

Poisson commute with one another and with the invariants of g. Hence pulling
them back to M via <$> gives more Poisson commuting integrals of H.

(We point out that the Poisson bracket of two functions on g* can be defined
as follows: at any point, x eg*, restrict the functions to the G orbit C through a.
All G orbits are symplectic manifolds. Then at a,

Also the map

is the moment map for the G\ action on 0. Thus the passage from f\ to ir*f\ is
essentially the same as the passage from / to $*/.) Proceeding in this way we can
consider a chain

of subalgebras and iteratively pull back the invariants. Under certain circumstances
this will lead to n/2 independent integrals where n =dimM, i.e., to complete
integrability. This is Thimm's method. In a sense it is a generalization of the
Gelfand-Ceitlin method described in [3, p. 280]

The purpose of this note is to investigate when this method can be expected to
work, to give some alternative proofs of the complete integrability of some of the
examples on Thimm's list and to add some new classes of examples. We will also
construct, by a related procedure, an entirely new class of integrable systems. These
examples are "obtained by considering the pre-image under the moment map of a
section to the coadjoint G action.

As a preliminary we need to develop some extensions of known facts about the
moment map which have an interest in their own right.

1. Generalities about the moment map
Let <$>:M->g* be the moment map of a Hamiltonian G action. For each peM the
G action defines a linear map
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and the symplectic form at p gives an isomorphism of TMP with TM*. We denote
the composite of these two maps by 4ip so that

On the other hand we have the differential of the moment map at p

The basic formula in this whole subject says that these two maps are transposes
of one another:

(1.1) {<!%)* = 4, p,

cf. [5, formula (3.2)] or [4, after formula (2.7)"].

Suppose that the image of M under <J> is a submanifold, W, of g* and that

d4>p(TMp) = TWa

where a = <t>(p). Then (1.1) implies that

ker 4>P = TW°m

the annihilator of TWa in g. But ker tpp = gp, the isotropy algebra of p. Thus

(1.2) gP = TW°a a = * ( p ) .

Now since <1> is equivariant we clearly have

(1.3) gP<=g«.

Let Ga be the isotropy group of a. Clearly Ga leaves W, and hence TWa, invariant.
Therefore Ga preserves TW°a. Thus

(1.4) gp is invariant under the adjoint representation of Ga

in particular

(1.5) gp is an ideal in ga.

Let 6 denote the G- orbit through a, so (7 c W. It is known cf. [8], and is an
immediate consequence of (1.1) that $~1(<5>) is a co-isotropic submanifold, and that
the null foliation through p of <&~l(0) is swept out by the connected component
of Ga. Indeed, it follows from (1.1) that

(1.6) ker<*<&p = Mp(g)x

where 1 denotes perpendicular relative to the symplectic form on TMP. Since *
is equivariant,

d<i>p(up(g)) = ma a =

and hence, since 4>:Af -> W is clean,

(1-7) d<$>\

Its null space is

so d<^p\Wa) is co-isotropic. Also, by (1.6), if £ e g then Mp(^)e«p(g)± if and only
if £ 6 ga. Thus

(1.8) d^~p\Wa)
L = up{g)nup{gf = up(ga).
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Let G° and G° denote the connected components of Ga and Gp. Since Gp and Ga

are given as isotropy subgroups it follows that G°p is a closed subgroup of G° which
is a closed subgroup of G. From (1.8) we see that G° p is the null foliation through
p. It follows from (1.5) that

(1.9) Gp is a normal subgroup of G°

and hence, since Gap = aGpa~x, it follows from (1.9) that

(1.10) Gp.=G° forany/onLp,

where Lp is the leaf of the null foliation of &~l(G) through p. It also follows
immediately from the preceding discussion that

(1.11) G ° / G ° acts locally freely on Lp.

We will now show that
(1.12) / / dim G is maximal among all G orbits in W then G°aIG°p is abelian.

This is a generalization of a theorem of Duflo and Vergne [2] which asserts that
if € is a maximal dimensional orbit in g* and a e.6 then ga is abelian. The result
(1.12) was obtained independently by Mishchenko in [12].

Proof of (1.12). From the definition of ga it follows that if £ega then

(1.13) <<*,[& £]> = 0 for all £ eg,
where ( , ) denotes the pairing between g* and g. If dim G is maximal, this means
that dim gp is locally constant near a and hence the g0 fit together to form a smooth
vector bundle over W near a. Thus, given any smooth curve a, in W with ao = a
and any £ and TJ € ga, we can find smooth curves £, and 17, where

If 6 ga,, V< G ga,
and

io = i, 170 = 17-
Then

Let denote derivative at t = 0. Then differentiating the preceding equation gives

0 = <d, [£ r,]> + <a, [£, T, ]) + («, [£ tj]>.

The last two terms vanish by (1.13) and a can be any tangent vector in TWa. Thus

(1-14) [ga,g«]<
By (1.2) this implies that

(1-15) [ga,ga] = gp,
which gives (1.12). •

(When we get to discussing integrable systems, we will use the G°/Gp for the angle
variables.)

Let Z be a submanifold of W that is a transverse section to the G orbits of W.
Thus at each point a e W we have
(1.16) TVK = TZa e 717a (direct sum).
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For any p e O ' ^ a ) let

Since U => ker d<$>p we have

and hence

(1-17) UxcUp(g).

We claim that U is a symplectic subspace of 7MP, i.e., that

(1.18) UnU± = {0}.

Indeed, by (1.17) we must show that any £ e g satisfying

must satisfy MP(£) = 0. But d<$>p(up(g))e TGa by the equivariance of <t and hence if
d<$>p(up(£))e TZa we must have

dQ>p{up{£)) = 0 since TZa n TGa = {0}.

Thus £e 717". Also if up(£)e Ux then (1.1) implies that £e TZ". Thus, by (1.16),

hence «„(£) = 0. Thus we have proved

(1.19). Suppose that Z is a submanifold of W that is a transverse section to the G
orbits in the sense that (1.16) holds at all points. Then ^^(Z) is a symplectic
submanifold of M.

For the case W = g* this was proved in [5]. A particularly interesting case would
be when we can choose Z to be a slice in the group theoretic sense. Then the
isotropy groups gp at all (3 eZ would be equal to ga. Then, in 4>(Z) we might be
able to choose a slice for the G action, so that all the gp would be equal. (Again
this is always possible at general points if G is compact, for example.)

Then we get a Hamiltonian action of Ga/Gp over i>~1(Z), and Ga/Gp is a torus.

2. Collective complete integrability
We now obtain a necessary condition for Thimm's method to work. Suppose that
hi,... ,hn are functions on g* such that <t>*/i i , . . . , <S>*hn are n independent func-
tions which Poisson commute on M, where n = \ dim M. This means that the
manifolds

<$>*hi = constant,. . . , $>*hn = constant

are Lagrangian submanifolds of M. In particular, for any p e M with <$>(p) = a the
submanifold <$>~l(a) is contained in one of the above submanifolds and hence must
be isotropic. By (1.6) this implies that

(2.1) Mp(g)x is isotropic,

or, what amounts to the same thing, that

(2.2) «P(g)x<=«P(g).

In other words,

(2.2') the G orbits are co-isotropic.
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By (1.7), (2.2) is the same as

(2-3) rf*;1(7Ta) = «p(g)

which, under our cleanness assumptions is the same as

(2.4) G acts transitively on *~\Ga).

This, of course, is the same as saying that

(2.5) Ga acts transitively on 4>~'(a).

For a general Hamiltonian G-manifold the spaces <&~l(a)/Ga are all symplectic
manifolds known as the Marsden-Weinstein reduced spaces, cf. [10]. Then (2.5) is
the same as

(2.6) The Marsden-Weinstein reduced spaces are all points.

In general, co-istropic &~x(Ga) quotiented by its null foliation is a symplectic
manifold (if it is a manifold) which we may call the KKS reduced space, cf. [7].
Then the preceding are equivalent to

(2.7) The KKS reduced space of G is G.

Finally, let us consider the algebra of G-invariant functions on M. By (2.2')
(generically) the common level surfaces of these functions are co-isotropic. So the
G- invariant functions Poisson commute. Thus (2.1)-(2.7) are all equivalent to

Condition (2.8). The algebra of all G-invariant functions on M is commutative
under Poisson bracket.

Condition (2.8) is the 'classical analogue' of a well known 'quantum' property:
If we are given a representation of a group, then the algebra of G -invariant

operators (those which commute with the G action) is commutative if and only if
the representation is multiplicity free, i.e. if and only if every irreducible of G
occurs in the representation with multiplicity at most one.

In other words, the quantum action of G is multiplicity free if and only if the
algebra of G-invariant quantum observables is commutative. The classical analogue
would thus be that the algebra of G -invariant classical observables be commutative.
This is exactly (2.8). For this reason we will call a Hamiltonian G-space multiplicity
free if any (and hence all) of the equivalent conditions (2.1)-(2.8) hold. (This name
was suggested to us by Joe Wolf.) We shall study these multiplicity free spaces in
more detail in a forthcoming paper.
We have thus proved:

THEOREM. If the Hamiltonian G space, M, admits a collective completely integrable
system then it must be multiplicity free.

Now suppose that (2.1)-(2.8) are satisfied at all p and suppose that we are given
a foliation Lw of W which is tangent to each orbit and Lagrangian when restricted
to each orbit. For example we might be given k functions defined on W which
Poisson commute and which, when restricted to each orbit, give a Lagrangian
foliation. Then $>*LW obtained by

<P*(Lw)p=d<i>;\(Lw)a), a=<P(p)
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defines a Lagrangian foliation of M. In particular, if we can find n — k additional
functions on W whose common level surfaces are the G orbits on W then we get
n functions on W which pull back to give a completely integrable system on M.

As we have remarked for Gi c G the map

is just the moment map when restricted to each G orbit. Thus for the Thimm
method to work, we must satisfy the criteria (2.1)-(2.8) for the Gi action on each
G orbit. Proceeding inductively we see that
(2.9). A necessary and sufficient condition for the Thimm method to work is that
(2.1)-(2.8) hold for each of the maps

cD:A/^g*, g*^*gf, gf^g*, etc,
withgn={0}.
We shall see in §4 that the conditions on the tr hold generally for the pair

u(n)^u(n -1).
In fact, this is a result of Heckmann [6] who shows that the same is true for the pair

o(n)=>o(n-l)

and that these are the only pairs where this holds generically. (In particular it does
not hold for the symplectic group pairs. This is why we would expect quaternionic
Grassmannians to behave differently from the real or complex ones.)

For any Lie group G there is an alternative method of constructing a family of
Poisson commuting functions on g*. It consists of taking the G-invariant functions
on g* and considering all possible shifts

f(- + ta) where a is in g* and t is any real number.

Mishchenko and Fomenko prove that the collection of these functions all Poisson
commute. Furthermore, if G is semi-simple and a is generic, they prove [13] that
these provide a completely integrable system on generic orbits. In [1] Dao Chong
Tkhi claims to prove that this system is also completely integrable on lower
dimensional orbits. But there seem to be some problems with his proof, cf. the
comments of Mishchenko in [12]. If the results of [1] are correct, this would imply
that every multiplicity free space for a semisimple Lie group has a collective
completely integrable system.

Now suppose that we are in the situation described at the end of § 1, where Z
is a slice to the G action on W and (i>~1(Z) is a symplectic manifold with a
Hamiltonian action of the torus GJGP. Let ̂  denote the moment map for this
torus action. Then

dim <b~l{Z) = dim V~l[(gjgp)]* sdim (gjgp) + max dim ker dVpK

Suppose that (2.5) holds. Then

dim ker d^p' = dim (go/gP)

so
dim<D-1(Z)<2dim(ga/gp).
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But this can only occur, by (2.1), if we have equality everywhere. Thus

(2.10). If Z is a slice to the G action on W such that we get a toral action of GJGP

on <J>~ (Z), and if (2.5) holds, then GJGP provide the angle variables for a completely
integrable system on $- 1(Z). In particular, this happens near generic points if G is
compact

3. Cotangent bundles of homogeneous spaces
Let X = G/K be a homogeneous space and let M = T*X. We wish to investigate
the meaning of conditions (2.1)-(2.7) for this case. By homogeneity, it suffices to
check these conditions at points lying over the base point, K.

We may identify TXK with g/k and hence T*XK with H°cg*. The moment
map, when restricted to T*XK is just the injection of k° into g*.

To verify (2.4) we may use G acting on X to reduce the verification to T*XK

which we have identified with k°. Then K still acts on k° and the condition (2.4)
says that K must act transitively on

<t>~1(e)nT*Xk=Gnk°
Thus

(3.1). For M = T*X with X = G/K the conditions (2.1)-(2.7) are equivalent to the
condition:

K acts transitively on 6 nk°.

Infinitesimally, this condition says:
(3.2). For each £ eg and I e k°,

£ • / = TJ • / for some TJ e k.

For example, if G is the semi-direct product of K with a vector space V (relative
to a representation of K on V) then

T*G/K = T*V and g* = k*+V*;

so k°= V*. The G orbits in g* are described in [3]. The ones which intersect V*
are exactly the cotangent bundles of Kp for peV* and the intersection is then
the zero section of T*Kp, i.e. Kp itself, on which K clearly acts transitively.
Thus this set-up verifies (3.1).

Thimm considers the situation where there is a non-degenerate invariant scalar
product on g which allows the identification of g* with g and the coadjoint
representation with the adjoint representation. We may take p = k± and identify
k° with p. Then (3.2) becomes

(3.3) {fsp | [£f]ep} = teep|[£/] = h , / ] for some r, zk}.

This condition is certainly satisfied if [p,p]<=k since both sides of (3.7) are then:

(3.4) {£ep |&/] = 0}.

Thus the conditions are satisfied for the cotangent bundles of compact symmetric
spaces.

Another way to see that the equivalent conditions (2.1)-(2.8) are satisfied for
symmetric spaces is as follows. Let G be a compact Lie group and X a transitive
G -space with the property that every irreducible representation of G occurs in
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• 2 /L (X) with multiplicity at most one. (This is one of the basic properties of compact
symmetric spaces.) Let U be a maximum dimensional orbit of G in T*X\{0}. We
can find G -invariant functions

/ , , . . . , / * onr*AT\{0}

such that the J/,'s span the normal space to U at every point. Without loss of
generality we can further assume that ft =fi{x, £) is homogeneous of degree one as
a function of £,. Let />, be a pseudodifferential operator with /, as its leading symbol.
By averaging over G we can arrange that Pt is G-invariant. Then, with the
assumption above, P, maps each irreducible subspace of L2(X) into itself and is a
constant multiple of the identity on this subspace. In particular

[P,-,Py] = 0;
so

{/,,//} = 0
which implies that U is co-isotropic.

In the next section we shall prove that the Thimm conditions are satisfied for
the U(n) and O (n) chains. This then gives Thimm's proof of the complete integrabil-
ity of the geodesic flow for U(n) and O(n) symmetric spaces. As was mentioned
above, if the results of [1] on shifted invariants are correct (or if there is some
other way of constructing an appropriate family of Poisson commuting functions
on g*), then this would imply the complete integrability of the geodesic flow for
an arbitrary symmetric space. But, at present, this question requires some
clarification.

If a homogeneous space G/K has the property that the representation of G on
L2(G/K) is multiplicity free, then (G, K) is called a Gelfand pair. We shall prove
in a forthcoming paper that (G, K) is a Gelfand pair if and only if the Hamiltonian
action of G on T*(G/K) is multiplicity free. Thus (G, K) is a Gelfand pair if and
only if (3.1) is satisfied. If G/K is a symmetric space, then (G,K) is a Gelfand
pair, but there exist many interesting Gelfand pairs (for example (G2, SU(3))) which
are not symmetric spaces.

The set of all Gelfand pairs (G, K) (with G compact and simple) have been
classified by Kramer in [9]. One key step in Kramer's argument leading to his
classification is to show that

dim G < 2 dim K + rank G,

if (G,K) is a Gelfand pair with G compact and simple. Kramer's proof of this
inequality depends upon a heavy use of representation theory. However it can be
deduced rather easily from (3.1). We shall give the details in our forthcoming paper.

4. The Gelfand-Ceitlin construction
In this section we discuss briefly the case of the chain

Instead of using the Casimirs at each stage, we will find it more convenient to work
with the eigenvalues. In the language of slices and cross-sections, we will be looking
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at the intersections of our orbits with the positive Weyl chamber in a maximal
torus. Again it is enough to look at one step-the passage from u(n + 1)* to u(n)*.
We may (after dividing by /) identify these spaces with the spaces of (n +1) x (n +1)
and n x n hermitian matrices. The projection of

assigns to each (n +1) x (n + 1) matrix its n x n lower right corner.
An orbit 0± in u (n +1 )* is determined by the common eigenvalues of its elements,

A0<Ai< • • -<An.

The minimax principle says that the eigenvalues /x, of <£>(A) for Ae6± must
intertwine those of A:

(4.1) A0^Mi^Ai</Li2^A2<---</iB<An.

Conversely, every such A occurs in the image of ir{€K).
We may pick a cross-section to the u (n) orbits to consist of diagonal matrices with

We assume that (4.1) holds and let

denote the restriction of TT to CA- Then ^"'(diag/x) consists of all matrices of the
form

(4.2) A =

a0 ax • •• an

n 0 (,

with eigenvalues Aj,. . ., An. The characteristic polynomial of (4.2) is given by

(4.3) n (A -f*/)(Ao-ao)-I k f 11 (A -/*>)•

For any choice of A and for generic /A in the image of <&(<?A) the values of a0 and
/ = 1 , . . . , n, are determine
. For example, suppose that

|a,|2, / = 1 , . . . , n, are determined by ^ and the condition that A should lie in

(4.4) A0<A!<--

Then a generic y. will have

(4.5) A0</u.i<A2<- •

and in particular, no two of the n's equal. Then we can write (4.3) as

(4.6) n ( A _ M ) L 0 _ A _ I J£i lL
i L A-/U.-

(It is clear from (4.6) that if we start with (i and the fl.'s then (4.5) must hold
for all roots of the characteristic polynomial.) Since the product in front of (4.6)
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does not vanish the condition that we obtain on the a's is

(4.7) ao-A,= i -
A

(This is an equation of intersection of confocal ellipsoids. Notice the close connec-
tion with the original computations of Jacobi on geodesic flows on ellipsoids [7]
cf. also [14]. Thus the 'little integrable system' of (2.10) is, in this case, intimately
related to Jacobi's.)

Now G^ in this case is just the n -torus consisting of diagonal matrices and it
acts on the a,'s, i = 1 , . . . , n, by multiplying each a, by an independent phase factor.
In particular, it acts transitively on 3>~1(**) verifying (2.5).

In the case where some of the A's are equal then (2.5) still holds at generic ^
in <$>(6±). The group <3M is larger, but certain a* must vanish and the net effect is
as before. For example suppose n = 4 and

Then the t± which are generic in <t>(0A) will have

Differentiating (4.3) twice and setting A = A i (which is a triple root) gives

Although Gtt contains a U(2) factor, it acts trivially on ^>~1(fJ.) as expected from
§ 1. The remaining a's are determined by equation (4.7) in fewer variables and the
left over torus, GJU{2) acts transitively on ^1(fi).

Combining the results in this section with those of § 3 proves Thimm's theorem
that the geodesic flows on the complex Grassmannians are completely integrable.
A similar argument works for the O(n) chain.

We wish to thank the referee and Alan Weinstein for pointing out to us that some
of the results in this paper were obtained by Mishchenko [12] and Mikitiuk [11],
and calling our attention to related results of Planchart [15].
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