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Abstract

Finding the intersection of n-dimensional spheres in Rn is an interesting problem with
applications in trilateration, global positioning systems, multidimensional scaling and
distance geometry. In this paper, we generalize some known results on finding the
intersection of spheres, based on QR decomposition. Our main result describes the
intersection of any number of n-dimensional spheres without the assumption that the
centres of the spheres are affinely independent. A possible application in the interval
distance geometry problem is also briefly discussed.
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1. Introduction

We consider the intersection of m spheres in Rn, presenting a theorem that shows how
the points in the intersection are distributed in such a space. In general, we define this
problem as follows.

Let a1, . . . , am be the centres of m spheres in Rn, and d1, . . . , dm be their respective
radii. The points x at the intersection are given by the following equations:

‖x − ai‖
2
2 = d2

i , i = 1, . . . ,m. (1.1)

There are methods for solving particular cases of problem (1.1). For example, Wu
and Wu [22] show the intersection of four spheres in R3 when the centres of spheres
are not in the same plane, that is, the centres are affinely independent. Gonçalves and
Mucherino [11] presented a discussion on an intersection of three spheres in R3 by
using an orthonormal basis, while Alves and Lavor et al. [1, 13] used Clifford algebra
in calculating intersection of the spheres.
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Our study is based on the work of Coope [7], which considers n spheres in Rn

with affinely independent centres. In general, such intersection consists of at most two
points. We generalize Coope’s analysis by considering any number of spheres and
centres which are not necessarily affinely independent.

Sphere intersection appears as a subproblem of important problems such as the
distance geometry problem (DGP) [4, 8, 14, 15, 17, 19, 20]. The DGP has applications
in several areas, for example in biochemistry [6], nanotechnology [2], robotics [21],
sensor network localization [3], multidimensional scaling [5] and several others.

In Section 2, we present a theorem which states that the intersection of m spheres
in Rn, where the centres generate an affine space of dimension k, is an empty set, a
single point or an (n − k)-sphere. The proof is based on the QR decomposition [10]
and also leads to a method for computing the intersection of spheres in the general
case. Section 3 presents some computational experiments on random instances of
the problem in order to illustrate the numerical stability of the proposed method. In
Section 4, we present some conclusions and potential applications of the proposed
approach.

2. Intersection of n-dimensional spheres in Rn

An i-sphere is a generalization of the concept of a sphere. We say that an i-sphere in
Rn is the intersection of a sphere with an affine subspace of dimension i. The following
theorem describes the intersection of an arbitrary number of n-dimensional spheres
in Rn.

Theorem 2.1. Let a1, . . . , am be the centres of m spheres in Rn, and d1, . . . , dm ∈ R+ be
their respective radii. If the affine hull of these m centres has dimension k ∈ N, then
the possibilities for the sphere intersection are:

(1) the empty set;
(2) a single point;
(3) an (n − k)-sphere.

Proof. First, we translate the centres in such a way that one of them is translated to the
origin. For convenience, we choose the last vector am and subtract it from the other
centres.

Let Â denote the n × (m − 1) matrix of shifted centres, that is,

Â = [a1 − am, . . . , am−1 − am].

This matrix Â has rank k, because the affine hull of these m centres has dimension
k, and thus Â has k linearly independent columns, where k ≤ min{n,m − 1}.

If x is a point in the intersection, then x = x − am is also at the intersection of the
translated spheres. Then

‖x‖22 = d2
m (2.1)

and
‖x − (ai − am)‖22 = d2

i , i = 1, . . . ,m − 1,
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or equivalently,

‖x‖22 − 2x>(ai − am) + ‖ai − am‖
2
2 = d2

i , i = 1, . . . ,m − 1.

From equation (2.1),

d2
m − 2x>(ai − am) + ‖ai − am‖

2
2 = d2

i , i = 1, . . . ,m − 1

and
(ai − am)>x = − 1

2 (d2
i − d2

m − ‖ai − am‖
2
2), i = 1, . . . ,m − 1. (2.2)

Thus, in matrix form, equations (2.2) are given by Â>x = c, where

ci = − 1
2 (d2

i − d2
m − ‖ai − am‖

2
2), i = 1, . . . ,m − 1.

Now, consider the QR decomposition of Â:

Â = QR = Q
[
R̂
0

]
,

where Q is an n × n orthogonal matrix and R is an n × (m − 1) matrix, with the last
n − k rows null. Also, R has the same rank as Â. We obtain[

R̂> 0
]
Q>x = c, and write Q>x =

[y
z

]
,

where y ∈ Rk and z ∈ Rn−k, implying[
R̂> 0

][y
z

]
= c,

or equivalently,
R̂>y = c. (2.3)

On the other hand,

d2
m = ‖x‖22 =

∥∥∥∥∥Q
[y
z

]∥∥∥∥∥2

2
=

∥∥∥∥∥[yz]
∥∥∥∥∥2

2
= ‖y‖22 + ‖z‖22,

which implies that
‖z‖22 = d2

m − ‖y‖
2
2. (2.4)

The intersection of spheres will be nonempty if and only if both the linear system (2.3)
and equation (2.4) are consistent. Once the values of y and z are determined, the points
in the intersection are given by

x = Q
[y
z

]
+ am. (2.5)

Since the linear system (2.3) is over-determined (that is, more equations than
variables) and R̂> has full rank, either this system has none or a unique solution. If
the system (2.3) is inconsistent, then the intersection of m spheres is empty. Whenever
this linear system has a unique solution, equation (2.4) implies the following cases.
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(a) (b) (c)

Figure 1. Three spheres in R3 with affinely independent centres. The intersection may be (a) empty, (b) a
single point or (c) a 1-sphere.

(a) (b) (c)

Figure 2. Three spheres in R3 with affinely dependent centres. The intersection may be (a) empty, (b) a
single point, or (c) a 2-sphere.

• If d2
m < ‖y‖

2
2, then the intersection is empty.

• If d2
m = ‖y‖22, then there is a single point in the intersection.

• If d2
m > ‖y‖

2
2, then the intersection is a (n − k)-sphere.

In the last case, as z ∈ Rn−k if d2
m > ‖y‖

2
2, we have that all the points of an (n − k)-

sphere satisfy equation (2.4). So, when we apply the rotation and translation given by
equation (2.5), the solution set remains an (n − k)-sphere. �

We observe that when the number of spheres is the same as the dimension of the
space and the centres are affinely independent, the affine hull has dimension k = n − 1.
Thus, the intersection of the spheres will be empty, one point or an (n − (n − 1))-sphere,
that is, a 1-sphere, which is actually two points, as Coope has demonstrated [7].

To illustrate these results, we present figures for the particular case of three spheres
intersecting in R3. In Figure 1, we see the case where the centres of the spheres are
affinely independent, that is, the affine hull of the centres has dimension n − 1 = 2.
Theorem 2.1 shows that the intersection may be empty as in Figure 1(a), a single point
as in Figure 1(b), or a (2 − 1)-sphere (two points) as in Figure 1(c).

If the three centres in R3 are affinely dependent and different, then the affine hull of
these centres has dimension one. In this case, Theorem 2.1 implies that the intersection
may be empty as in Figure 2(a), a single point as in Figure 2(b), or a (3 − 1)-sphere
(2-sphere), that is, a circle, as in Figure 2(c).

The proof of Theorem 2.1 leads to a method for computing the intersection of m
spheres in Rn, which is summarized in Algorithm 1.
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Algorithm 1: Sphere intersection in the general case.
Input : The centres a1, . . . , am ∈ R

n and the radii d1, . . . , dm ∈ R+ of the m
spheres in Rn.

Output: If the intersection is empty, the algorithm informs that. Otherwise, we
have two cases:
(a) the intersection is a point: return the solution x;
(b) the intersection is an (n − k)-sphere: return y and Q.

Define the matrix Â = [a1 − am, . . . , am−1 − am];
Compute Â = QR and set k = rank(Â);
Compute the vector c ∈ Rm−1 defined by ci = − 1

2 (d2
i − d2

m − ‖ai − am‖
2
2);

Obtain the matrix R̂ by removing the n − k last rows of R;
if c < Range(R̂>) then

Stop, the intersection is empty;
end
Solve the system R̂>y = c;
if d2

m − ‖y‖
2
2 < 0 then

Stop, the intersection is empty;
end
if d2

m − ‖y‖
2
2 = 0 then

Set z = 0, and return x = Q
[y
z

]
+ am;

end
if d2

m − ‖y‖
2
2 > 0 then

Return Q and y. Any point x in the intersection can be obtained by

x = Q
[y
z

]
+ am, where z is any vector satisfying ‖z‖22 = d2

m − ‖y‖
2
2.

end

Thus, we have a method for computing the intersection of n-dimensional spheres
in the general case. In the next section, we present some numerical experiments with
Algorithm 1.

3. Numerical results

In this section, we present some computational experiments to illustrate the
reliability and numerical stability of Algorithm 1 for computing the intersection
of m spheres in Rn. We perform tests with dimension n ranging in the interval
2 ≤ n ≤ 500. As efficiency and stability measures, we considered: (a) the time spent
by the algorithm on computing the intersection and (b) the error calculated through the
mean distance error (MDE) [18], defined by

MDE(x) =
1
m

m∑
i=1

|‖x − ai‖2 − di|

di
,
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where x is the computed solution, ai is the ith column of the matrix A (the centre of
the ith sphere), di is the radius of sphere i and m is the number of spheres. Note that if
x is an exact solution, then MDE(x) = 0.

The instances are generated by the following steps.

(1) A random integer m is generated such that m ≥ 2 (number of spheres).
(2) A random integer k is generated such that 1 ≤ k ≤ m − 1 (dimension of the affine

hull of the m centres).
(3) A matrix A of dimension n × m and rank k is then created (its columns are the

centres of the spheres).
In order to create a matrix A with rank k, we randomly generate nonzero values
λi independently and uniformly distributed in the interval [0,10] and vectors
ui ∈ R

n, vi ∈ R
m with 1 ≤ i ≤ k, whose entries are sampled from a uniform

distribution on [0, 1]. Then we define

A =

k∑
i=1

λiuiv>i .

(4) Finally, we generate a random point x∗ ∈ Rn, and calculate the distances di =

‖x∗ − ai‖2 for 1 ≤ i ≤ m (the entries of vector d correspond to the sphere radii).

We observe that the instances are generated so that the intersection will always
be nonempty. If the intersection of the m spheres is just one point x, then the error
of the algorithm is calculated by MDE(x). However, we know by Theorem 2.1 that
the intersection can have infinitely many solutions, defining an (n − k)-sphere. To
calculate the error, we choose a random solution z of the equation (2.4) to obtain a
point x at the intersection of the m spheres, using equation (2.5), and calculate the value
of MDE(x).

Ten instances were generated for each dimension n. Table 1 shows the average of
the time (in seconds) and errors over ten instances, for every dimension, in addition
to the smallest and largest time and errors. The plots of Figures 3 and 4 are on a
logarithmic scale and respectively represent the average of the time and errors (MDE).

Algorithm 1 was implemented in matlab r2013a, and all the experiments were
carried out on an Intel Core i5-2410M CPU (2.3 GHz, 4 GB RAM, Windows 7,
64 bits).

Note that from Table 1 and Figure 4, Algorithm 1 was stable for this set of random
instances: for all considered problems, the average error was between the orders 10−16

and 10−15. Figure 3 shows that the average time has not exceeded 0.3 s.

4. Conclusions and potential applications

We presented a method for solving the general case of sphere intersections in Rn,
extending Coope’s method [7]. The algorithm was accurate and numerically stable
in all the cases we tested. In the literature, we found only methods for calculating
the intersection of spheres in Rn, when the number of spheres is equal to or greater
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Table 1. Numerical results of Algorithm 1 on randomly generated instances.

Smallest Largest Average Smallest Largest Average
Dimension error error error time time time

3 0.00E+00 7.23E-16 1.57E-16 7.63E-05 5.72E-03 1.05E-03
4 4.69E-17 2.58E-16 1.47E-16 5.09E-05 1.66E-04 8.33E-05
5 5.47E-17 5.76E-16 2.00E-16 6.56E-05 1.16E-04 9.22E-05

10 2.69E-17 4.05E-16 1.56E-16 7.23E-05 2.22E-04 1.06E-04
20 4.86E-17 7.59E-16 2.27E-16 1.44E-04 4.47E-04 2.67E-04
30 7.04E-17 2.82E-15 4.48E-16 2.55E-04 6.35E-04 3.60E-04
40 8.91E-17 2.65E-16 1.69E-16 4.23E-04 1.10E-03 5.94E-04
50 9.51E-17 3.12E-16 1.52E-16 9.87E-04 1.57E-03 1.14E-03

100 1.18E-16 2.77E-16 1.90E-16 2.33E-03 2.75E-03 2.55E-03
150 1.54E-16 5.59E-16 3.52E-16 5.15E-03 9.60E-03 6.31E-03
200 1.88E-16 1.10E-15 3.43E-16 1.66E-02 2.07E-02 1.84E-02
250 2.00E-16 5.81E-16 2.93E-16 1.76E-02 3.33E-02 2.34E-02
300 1.86E-16 6.62E-16 3.31E-16 2.51E-02 5.62E-02 3.54E-02
350 1.96E-16 6.33E-16 3.71E-16 3.88E-02 7.60E-02 6.24E-02
400 2.02E-16 1.06E-15 3.96E-16 6.82E-02 1.27E-01 1.00E-01
450 2.20E-16 1.17E-15 5.46E-16 8.49E-02 1.82E-01 1.49E-01
500 3.61E-16 8.76E-16 4.70E-16 9.43E-02 2.69E-01 2.11E-01

Figure 3. Average time (in seconds) of Algorithm 1.

than the dimension of the space, and when the centres are affinely independent. The
proposed method allows us to calculate the intersection of any number of spheres in
Rn without the affine independence assumption.

One of the possible applications of our results is on the generalization of methods
that were initially developed to solve the specific classes of the DGP as the algorithms
branch-and-prune [18] and geometric build-up [9].

For example, in the interval discretizable distance geometry problem (iDDGP)
[12, 16], some distances are allowed to be inexact, represented by an interval, let
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Figure 4. Average errors (MDE) of Algorithm 1.

us say d ∈ [d, d̄]. More specifically, in the application of iBP (interval branch-and-
prune) to an iDDGP instance, a common sub-problem to be solved is determining the
intersection of m − 1 spheres with one spherical shell (that is, dm ≤ dm ≤ d̄m) in Rn.
By using Algorithm 1, we may obtain the vector y and matrix Q that describe the
intersection of the m − 1 spheres as

x(z) = Q
[y
z

]
+ am−1, (4.1)

and perform its intersection with the spherical shell defined by

dm ≤ ‖x(z) − am‖2 ≤ d̄m.

Due to equation (4.1) and the discussion presented in Section 2, it follows that the
desired intersection may be obtained by finding a vector z such that

‖z‖22 = d2
m−1 − ‖y‖

2
2, and α ≤ wT

2 z ≤ β,

where

α = 1
2 (d2

m − γ), β = 1
2 (d̄2

m − γ) and γ = d2
m−1 + ‖am−1 − am‖

2
2 + 2wT

1 y

with [wT
1 wT

2 ] = (am−1 − am)T Q. Therefore, we can characterize the intersection
of m − 1 spheres with one spherical shell by a quadratic equation and two linear
inequalities. Application of this strategy in iBP implementations is a subject for future
research.
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[12] D. Gonçalves, A. Mucherino, C. Lavor and L. Liberti, “Recent advances on the interval distance
geometry problem”, J. Global Optim. (2017) 1–21; doi:10.1007/s10898-016-0493-6.

[13] C. Lavor, R. Alves, W. Figueiredo, A. Petraglia and N. Maculan, “Clifford algebra and the
discretizable molecular distance geometry problem”, Adv. Appl. Clifford Algebr. 25 (2015)
925–942; doi:10.1007/s00006-015-0532-2.

[14] C. Lavor, L. Liberti, N. Maculan and A. Mucherino, “Recent advances on the discretizable
molecular distance geometry problem”, Eur. J. Oper. Res. 219 (2012) 698–706;
doi:10.1016/j.ejor.2011.11.007.

[15] C. Lavor, L. Liberti, N. Maculan and A. Mucherino, “The discretizable molecular distance
geometry problem”, Comput. Optim. Appl. 52 (2012) 115–146; doi:10.1007/s10589-011-9402-6.

[16] C. Lavor, L. Liberti and A. Mucherino, “The interval branch-and-prune algorithm for the
discretizable molecular distance geometry problem with inexact distances”, J. Global Optim. 56
(2013) 855–871; doi:10.1007/s10898-011-9799-6.

[17] L. Liberti and C. Lavor, “Six mathematical gems from the history of distance geometry”, Int.
Trans. Oper. Res. 23 (2016) 897–920; doi:10.1111/itor.12170.

[18] L. Liberti, C. Lavor and N. Maculan, “A branch-and-prune algorithm for the molecular distance
geometry problem”, Int. Trans. Oper. Res. 15 (2008) 1–17;
doi:10.1111/j.1475-3995.2007.00622.x.

[19] L. Liberti, C. Lavor, N. Maculan and A. Mucherino, “Euclidean distance geometry and
applications”, SIAM Rev. 56 (2014) 3–69; doi:10.1137/120875909.

[20] A. Mucherino, C. Lavor, L. Liberti and N. Maculan, Distance geometry: theory, methods and
application (Springer, New York, NY, 2013); doi:10.1007/978-1-4614-5128-0.

[21] J. Nielsen and B. Roth, “On the kinematic analysis of robotic mechanisms”, Int. J. Robot. Res. 18
(1999) 1147–1160; doi:10.1177/02783649922067771.

[22] D. Wu and Z. Wu, “An updated geometric build-up algorithm for solving the molecular distance
geometry problem with sparse distance data”, J. Global Optim. 37 (2007) 661–673;
doi:10.1007/s10898-006-9080-6.

https://doi.org/10.1017/S1446181117000372 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s10288-016-0314-2
http://dx.doi.org/10.1145/1149283.1149286
http://dx.doi.org/10.1007/978-1-4757-2711-1
http://dx.doi.org/10.1186/s12859-015-0451-1
http://dx.doi.org/10.21914/anziamj.v42i0.608
http://dx.doi.org/10.1023/A:1023221624213
http://dx.doi.org/10.1007/s11590-014-0724-z
http://dx.doi.org/10.1007/s10898-016-0493-6
http://dx.doi.org/10.1007/s00006-015-0532-2
http://dx.doi.org/10.1016/j.ejor.2011.11.007
http://dx.doi.org/10.1007/s10589-011-9402-6
http://dx.doi.org/10.1007/s10898-011-9799-6
http://dx.doi.org/10.1111/itor.12170
http://dx.doi.org/10.1111/j.1475-3995.2007.00622.x
http://dx.doi.org/10.1137/120875909
http://dx.doi.org/10.1007/978-1-4614-5128-0
http://dx.doi.org/10.1177/02783649922067771
http://dx.doi.org/10.1007/s10898-006-9080-6
https://doi.org/10.1017/S1446181117000372

	Introduction
	Intersection of n-dimensional spheres in Rn
	Numerical results
	Conclusions and potential applications
	References

