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1. Introduction

For any point x, we use the symbol (x~) to denote {{x, x)}. By a triform,
we mean a triple (X, JFX, £P[X]) where X is a nonempty set, !FX is a
family of subsets of X, ^[X] is a family of subsets of X x X and the follow-
ing conditions are satisfied:

(1.1) (xy e 5r\X~\ for each xeX.
(1.2) H 6 &x if and only if if X [x] e Sf[X] for some xeX.
(1.3) Ao Be ST\X\ for each A, B G ̂ [X] where A o S is defined by

i o B = {(#, y) eXxX : (x, z) e B and (z, y) e A for some 2 e X}.

It follows immediately from conditions (1.1) and (1.2) that all singletons
belong to 3'x. Condition (1.3) guarantees that, under composition, £f[X]
is a semigroup of binary relations on the set X. We will refer to £?[X] as
the semigroup of the triform (X, &'x, y [X]) or, more often, simply as a
triform semigroup.

The main result of this paper is Theorem (2.2) of Section 2 which
describes all isomorphisms between triform semigroups. This result is
applied in Section 3 to semigroups of closed relations on certain topological
spaces. Among other things, it follows that two such semigroups are iso-
morphic if and only if the corresponding spaces are homeomorphic. Corol-
laries (3.4) and (3.5) generalize the two results in [4],

2. The isomorphism theorem

Before stating the isomorphism theorem, it will be convenient to have
the following

DEFINITION (2.1). Let {X,&x,Sr\X\) and (Y, 3FY, Sr\Y~\) be two
triforms. A bijection h from X onto Y is referred to as a trimorphism if
h[A] e &Y for each A e &x and h~l[A] e &'x for each A e &Y.

THEOREM (2.2). The following statements concerning a bijection q> from
a triform semigroup £f[X] onto a triform semigroup £P[Y] are equivalent:
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(2.2.1) q> is an isomorphism.
(2.2.2) There exists a trimorphism h from X onto Y such that

<p (A) = h o A o hrx

for each A e 9"\_X\
(2.2.3) There exists a trimorphism h from X onto Y such that

<p(A) = {(h(x),h(y)):(x,y)eA}
for each A e 5?{X].

It seems to be advantageous to prove a number of preliminary lemmas
about the triform (X, !FX, S?[X]) before proving the theorem. First of all,
let us observe that if X has two distinct points, x and y, then both <x> and
<2/> belong to SP\X\ Consequently, condition (1.3) implies <a;> o <y> = <f>
belongs to Sf\X~\. When the empty set is to be regarded as an element of
S?[X], it will be denoted by the letter E. One easily verifies that if E e ^[X],
then E is the zero of S?[X]. We state these observations formally as

LEMMA (2.3). If E e S?[X], then E is the zero of Sf\X\ Furthermore,
E belongs to S?[X] if X has more than one point.

If X consists of only one point p, &*[X] need not contain E, it might
possibly consist solely of the element <j>)>. For this particular case, it is a
straightforward matter to verify that the statement of Theorem (2.2) is
valid. It is therefore sufficient to verify the statement for the case when
both X and Y have more than one point and hence both SP\X~\ and £f[Y]
contain E. Consequently, we assume in the lemmas leading up to the proof
of Theorem (2.2) and in the proof itself that both X and Y have more than
one point.

DEFINITION (2.4). For any relation A e 6^[X], we let

3>{A) = \x e X : (x, y) e A for some y e X)
and

M{A) = {xeX : (y,x) eA for some y e X).

The next lemma is easily proved.

LEMMA (2.5). For A, B e S^[X], A o B = E if and only if

2>{A) c\9t(B) = f

LEMMA (2.6). Suppose A, Be £f{X]. Then 3){A) C2>{B) if and only
if for each C e S?[X], A o C =£ E implies B o C =fi E.

PROOF. Suppose 3){A) C 3(B) and A o C =£ E. Then there exist points
x,y,zeX such that (x,y)eC and (y,z)eA. Then ye@{A)C@{B)
which implied that (y, v) e B for some v e X. Consequently, (x, v) e B o C,
i.e., B o C =£ E.
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Now suppose 2{A) <fc 3>(B). Then there exists a pointy e3>{A) —3>(B).
Then <j>} e &[X] and the desired contradiction is obtained by noting that

while
= E.

In a similar manner, one verifies

LEMMA (2.7). 0t{A)C M{B) if and only if for every C e S^[X], Co A ^ E
implies C o B ̂  E.

LEMMA (2.8). @{A)C®{B) if and only if for each C e Sf{X~\ — {E},
3>{C) C 3>(A) implies CoBj^E.

PROOF. First suppose 3>(A) Cdt(B), C e £f [X] — {E}, and 3>{C) C 3){A).
Then there exists a point x e X such that x e @(C) C 2{A) C &(B). This
implies that (x, y) eC and (z, x) e B for some y, z e X. Consequently,
{z, y)eCoB, i.e., CoB^E.

On the other hand, suppose Si {A) <fc &(B). Then there exists a point
xeS>{A)-M{B). Since <x> e ̂ [X] — {E} and ^ « x » C ^ ( ^ ) but
<a;> o JB = E, we have reached a contradiction.

Similarly, one proves

LEMMA (2.9). 0t[A) C3>{B) if and only if for each C e ̂ [X] — {£},
gt{C)<Z9t(A) implies BoC^E.

LEMMA (2.10). £%{A) consists of one point if and only if there exists
precisely one B e £f[X] — {E} such that @(B)C@(A) and @(B)C&(A).

PROOF. Suppose &(A) consists of one point p. Then (p} e S?[X] — {£},
@«py)C@(A), 3t((py)C@(A) and <̂ >> is the only element in SP[X]
which satisfies these conditions.

Suppose, however, that M(A) does not consist of one point. If we
assume M(A) = <f>, we get a contradiction immediately. The remaining
case is where 01 (A) contains at least two distinct points p and q. Then
both </>> and <?> belong to Sr\X] — {E}. Furthermore, ®((p}) CM{A),
3>((q})Ci%{A), 0t((p»C0t(A) and 0t((tf» C9t(A). This, however, is a
contradiction since (j>y and <^) are distinct.

In much the same way, one proves:

LEMMA (2.11). 3>{A) consists of one point if and only if there exists
precisely one B e Sf{X\ — {E} such that 3>{B) C@(A) and 0t[B) C3){A).

One easily verifies the following two lemmas.

LEMMA (2.12). Let A be an element of Sf\X~\. Then A = <#> for some
x e X if and only if 3)(A) consists of one point, M{A) consists of one point
and A o A ^ E.
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LEMMA (2.13). (x, y) e A if and only if <j/> o A o <x> =£ E.
Now we are finally in a position to prove the theorem. First of all,

it is a routine matter to show that for any bijection h from X onto Y and
any A e Sf\X\

ho A oh-1 = {(h(x), h{y)) : (x, y) e A}.

From this it follows that (2.2.2) and (2.2.3) are equivalent. Furthermore,
it is easily seen that (2.2.2) implies (2.2.1). Consequently, our task is
complete when we show that (2.2.1) implies (2.2.2). We first define the
mapping h. Let any x e X be given. Now lemmas (2.3) to (2.12) together
characterize <x> algebraically and it follows that q>(x} = <2/> for some
unique y e Y. Define the function h by h(x) = y. The function h is a bijec-
tion since <p is an isomorphism. Furthermore, we note that

(2.13.1) <K*> = <*(*)>

for each x e X.

Now let any A e S?[X] be given. We will show that

(2.13.2) <p(A) = ho A oh-1.

Suppose (x, y) e <p(A). Then by Lemma (2.13),

But

o<p(A)o

which implies that

Using Lemma (2.13) again, we conclude that

This, together with the fact that (a;, h~1(x)) eh~x and [h^ty), y) eh implies
(x, y) e h o A o hr1.

Now suppose (x, y) e h o A o hr1. Then there exist points v and w
in X such that (#, v) e hr1, (v, w) e A and (w, y) e h. Since h(v) = x and
h(w) = y, it follows that

(p(vy = <z> and <p(w}

Furthermore, since (v, w) e A, it follows that

(w>y o A o <v) ^ £ .
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But then
> o A o <v»

= cp(wy o <p{A) o <p

= <2/> o <p(A) o <x>

which, by Lemma (2.13) implies (x, y) etp(A). This completes the verifica-
tion of (2.13.2).

Now let any He^x be given. According to (1.2), H x {x} e
for some a ; e l Thus, (2.13.2) implies that

ho ( f f xHJoA- '
But

ho{Hx M) o A-i = h[H] X {*(*)}

and it follows from (1.2) that h[H] e^y I n a similar manner, one shows
that h~x[H] e 3Fx f°r each ff 6 tFY- This implies that A is a trimorphism
and the proof is complete.

COROLLARY (2.14). The automorphism group of a triform semigroup
y[X] is isomorphic to a subgroup of the group, under composition, of all
trimorphisms mapping X onto X.

PROOF. Let J / denote the automorphism group of S?[X] and let 'S
denote the group of all trimorphisms mapping X onto X. We define a
mapping 0 from si into 'S. Let <p e =s/ be given. According to Theorem (2.2),
there exists a (necessarily unique) h e & such that

(p(A) = h o A o hrx

for each A e ^[X]. We define

0(<p) = h.

Let 0{f-i) = hx and <£(<p2) = K f°r two automorphisms (pt, <p2 of
Then for any A e 9"\X~\,

(<PlO(P2)(A) =

= <Pi{h2 o A o Aj1) = h± o h2 o A o

= (hx o h2) o A o (hx o Aj)"1.

It follows that

i.e., 0 is a homomorphism.
In order to see that 0 is injective, suppose &(q>) = i, the identity

map on X. Then
<p(A) = i o A o i-1 = A
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for each A e <S?[X], i.e., <p is the identity automorphism. Thus the kernel
of 0 is the identity and the proof is complete.

The following example shows that the automorphism group s# of
£P[X] need not actually be isomorphic to the group ^ of all trimorphisms
o n l .

EXAMPLE (2.15). Let X denote the unit interval, let !FX denote the
power set of X and let S^[X] denote the family of all continuous functions
whose domain is a subset of X and whose range is a subset of X. We assume
the empty function also belongs to SP\X\.

One easily verifies that (X, 2FX, £P[X]) is a triform. Moreover, it
follows immediately that, in this case, the group @ of all trimorphisms of
X is the symmetric group on X. However, the automorphism group s/ of
£?[X] is isomorphic to the group, under composition, of all homeomorphisms
on X. To see this, note that the group % of all units of Sf\X~\ is the group
of all homeomorphisms on X. Thus, any automorphism <p e s4 must map <2f
isomorphically onto itself. Therefore, according to Theorem 15 [2, p. 248],
there exists a homeomorphism h (which must necessarily be unique) of X
such that

y(k) = h o k o h"1

for each k e Ql. Just as in the proof of the previous corollary, one shows
that the mapping & from s/ into % which is defined by <&{<$) = h is a
monomorphism. Moreover, 0 is surjective since for any homeomorphism
t of X, the mapping q>t which is defined by

cpt{f) = * o / o r 1

belongs to stf and 0{cpt) = t. Thus s/ is isomorphic to °ll. However, <% and
'S are not isomorphic since the former contains c elements and the latter
contains 2° elements.

3. Semigroups of closed relations on topological spaces

Now we apply the results of the previous section to semigroups of
closed relations on topological spaces. By a closed relation, we simply
mean any binary relation on X which is a closed subset of X x X. It will be
convenient to assume throughout the remainder of the paper that all
topological spaces discussed are Tx spaces.

It so happens that, in general, the composition of two closed relations
on a space X need not be a closed relation. This leads us to make the
following

DEFINITION (3.1). A space X is a ©-space if for each pair A, B of closed
relations on X, A o B is also a closed relation on X.
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The following result characterizes ©-spaces within the class of all
first-countable spaces.

THEOREM (3.2). A first countable space is a Qi-space if and only if it is
sequentially compact or discrete.

PROOF. (Sufficiency). It is evident that a discrete space is a ©-space
so suppose X is sequentially compact. Let A and B be two closed relations
on X and let (p, q) be a limit point of A o B. Then since X is first countable,
there exists a sequence {(xn,yn)}™=1C A o B which converges to (p, q).
For each (xn, yn), there exists a.zne X such that (xn, zn) e B and (zn, yn) e A.
Since X is sequentially compact, there exists a subsequence {zn J j ^ of
{zn}™=1 which converges to some point ( e l . Then {{xnt, «Bt)}£,1 converges
to (p, t) and {(znt, yni)}ZLi converges to (t, q). Since A and B are closed
subsets of XxX, we have (p,t)eB and (t, q)eA. Consequently,
(p,q)eAoB.

(Necessity). Suppose X is neither sequentially compact nor discrete.
We need only produce two closed relations A and B on X such that A o B
is not closed. Since X is not sequentially compact, there exists a sequence
{xn}%Li °f distinct points with no convergent subsequence. Since X is first
countable and not discrete, there exists a sequence {^J^ of distinct points
converging to a point q e X such that xn ^ ym for all m, n and xn ^ q ^ yn

for all n. Let
A = {(xn,yn)}Zi and B = {(yn, zn)}~=1.

Then

Neither A nor B have any limit points and are therefore closed. However,
A o B is not closed since it does not contain the limit point (q, q).

Now let I b e a ©-space, let &x denote the family of all closed subsets
of X and let ©[X] denote the family of all closed subsets of XxX. Keeping
in mind the blanket assumption that all spaces discussed here are Tx spaces,
one notes that the triple (X, &'x, &[X]) is a triform and, in particular,
that ©[X] is a semigroup under composition. If (Y, J^y, ©[Y]) is another
such triple, the trimorphisms from X onto Y are simply the homeomorphisms
from X onto Y. Theorem (2.2) now applies and we immediately get

THEOREM (3.3). Let X and Y be fe-spaces and let ©[X] and ©[Y] denote
the semigroups of all closed relations on X and Y respectively. Then the following
statements concerning a bijection tp from ©[X] onto ©[Y] are equivalent:

(3.3.1) <p is an isomorphism.

(3.3.2) There exists a homeomorphism h from X onto Y such that
<p(A) = ho A oh"1 for each A e f""
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(3.3.3) There exists a homeomorphism h from X onto Y such that
<p{A) = {{h{x), h{y)) : (*, y) e A} for each A e ©[X].

We define an endomorphism <p of an arbitrary semigroup Sf to be inner
if there exist elements a, b e £f such that f(x) = axb for each x e SP.
M. L. Vitanza, has shown in [5, p. 1079], Theorem 1 that if the inner endo-
morphism cp is, in fact, an inner automorphism, then the semigroup S?
contains an identity and the elements a and b are inverses of each other
relative to that identity.

Now suppose we take the spaces X and Y to be identical in Theorem
(3.3). If, in addition, X is Hausdorff, then the homeomorphisms h and hrx

of (3.3.2) are both elements of ©[X] and we have the following

COROLLARY (3.4). Let X be a Hausdorff Q-space. Then every automor-
phism of the semigroup ©[X] is inner.

Since every discrete space is a ©-space, the latter corollary generalizes
the theorem in [4] which states that every automorphism of the semigroup
of all binary relations on a nonempty set is inner. Actually, composition is
defined in [4] in such a manner that the semigroup discussed there is anti-
isomorphic to the corresponding one discussed here. Of course, if any semi-
group has the property that all automorphisms are inner, the same is true
for any anti-isomorphic copy.

We have the following result on the automorphism group of ©[X].

COROLLARY (3.5). Let X be a Qi,-space. Then the automorphism group of
the semigroup ©[X] is isomorphic to the group, under composition, of all
homeomorphisms mapping X onto X.

PROOF. According to Theorem (3.3), for each automorphism <p of ©[X]
there exists a (necessarily unique) homeomorphism h of X such that
<p{A) = h o A o h~x for each A e ©[X]. We define a mapping 0 from the
automorphism group s/ of 6[X] into the group ^ of all homeomorphisms
on X by <P((p) = h. One shows just as in the proof of Corollary (2.14)
that 0 is a monomorphism. To see that q> is surjective in this case, note
that for any homeomorphism h, the mapping f defined by y(A) = ho A oh'1

for each A e ©[X] is an automorphism of ©[X] and @(y) = h.
Just as Corollary (3.4) generalizes the theorem in [4], this latter result

generalizes the corollary in [4] which states that the automorphism group
of the semigroup of all binary relations on a set is isomorphic to the sym-
metric group on X.

We remark in closing that in a later paper, we intend to investigate
topological properties which are such that if A, B C X x X have the given
property, then A o B also has the property. This will allow us to apply
Theorem (2.2) and related results to semigroups of binary relations on a
topological space, all of which have a given topological property.
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