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STOCHASTIC STABILITY OF
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GROWTH-COLLAPSE PROCESSES
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Abstract

In this paper we consider a discrete-time process which grows according to a random
walk with nonnegative increments between crash times at which it collapses to 0. We
assume that the probability of crashing depends on the level of the process. We study
the stochastic stability of this growth-collapse process. Special emphasis is given to the
case in which the probability of crashing tends to 0 as the level of the process increases.
In particular, we show that the process may exhibit long-range dependence and that the
crash sizes may have a power law distribution.
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1. Introduction

The dynamics of a growth-collapse (GC) process is governed by cycles describing periods
of growth followed by abrupt crash events at which the process jumps down to a random level.
A large variety of systems exhibit such a pattern. Examples include the transmission control
protocol of the Internet and biological and physical systems in self-organized criticality.

The transmission control protocol is the main data transmission protocol in the Internet. It
controls the transmission rates of packets sent by a source and verifies the correct delivery of
data to the destination. It can be described roughly as follows. Files are broken into packets.
The first packet is sent by the source, which waits to receive an acknowledgement from the
destination within a specified time window. Then the congestion window increases by one and
two more packets are sent. No other packet is sent until an acknowledgement is received for one
of these packets. This reception marks the end of the current round and the beginning of the next
round. As long as acknowledgements are received from the destination machine, the congestion
window size increases by one every round-trip time. Two packet-loss detection mechanisms are
used to control the reception of packets by the destination. The first mechanism is able to detect
the loss of a single packet from time to time through ‘triple-duplicated’acknowledgements. The
second mechanism detects heavy losses, in case of severe congestion in the network, through a
timeout mechanism. The congestion window size is halved when a loss of packets is detected
(congestion-avoidance algorithm), goes to 1 when a timeout occurs (slow-start algorithm), and
exponentially increases after a timeout until it reaches half the value it was before the timeout.
Hence, the process of the congestion window sizes is a GC process.
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The term ‘self-organized critical’ is used to describe a system in which a mechanism of slow
energy accumulation and fast energy redistribution drives the system toward a critical state [2].
Such systems are generally characterized by the existence of a power law that governs their
dynamics. The archetype of a self-organized critical system is a sand pile. Imagine that sand
is slowly dropped onto a surface, forming a pile. As more grains are added, the slope of the
pile increases until it reaches a critical value such that the addition of one more grain results
in an ‘avalanche’ which carries sand from the top to the bottom of the pile. With the addition
of still more grains the surface will ‘overflow’. Sand is thus added to and eventually lost from
the system: the sand pile has self-organized into a critical state. It has been observed that the
distribution of the avalanche sizes follows a power law.

It is not possible to derive a general rule for determining whether or not an arbitrary system
displays self-organized criticality. It has nevertheless become established as a strong candidate
for explaining a number of natural phenomena, including earthquakes (which were known as
a source of power law behavior such as the Gutenberg–Richter law describing the statistical
distribution of earthquake sizes and Omori’s law describing the frequency of aftershocks [13],
[3], [8]), solar flares [6], epidemics, and biological evolution (it has been suggested that
evolution in complex communities leads to a self-organized critical state where a small event,
like the random extinction of a single species, can generate an extinction set propagating through
the network structure [17]).

Purely stochastic approaches to the modeling of continuous-time GC processes have been
proposed in [10], [11], and [7]. In [10], Eliazar and Klafter considered GC processes where the
inflow to the system is assumed to be a one-sided Lévy process, and where the timing of crashes
and the crash magnitude are independent of the state of the system. More precisely, the crash
epochs form a renewal process and the crash proportions are independent, identically distributed
random variables. On the other hand, in [11] they studied the case in which the crashes occur
at a Markovian rate (which is linear in the level of the system) and let the system be in its
ground level. In [7], Boxma et al. considered GC processes where the inflow to the system is
constant and the timing of crashes and the crash magnitude depend on the state of the system. In
the three papers mentioned, several characteristics of stationary systems are computed (means,
variances, stationary distributions, etc.). The particular case of the transmission control protocol
congestion window size process has been investigated in [9] (see also the references therein),
where some of the stationary characteristics of the protocol are presented.

In the spirit of [11], in this paper we consider a class of state-dependent GC processes
which go back to their initial states after the crashes. They grow according to a discrete-time
random walk with nonnegative increments between crash times at which they collapse to 0. It
is assumed that the probability of crashing depends on the level of the process. Unlike in [11],
we put special emphasis on systems whose probability of crashing is a decreasing function of
the level of the system. Our main goal is to study the stochastic stability of these GC processes.
For some important cases, we show that these systems can exhibit power law distributions and
long-range dependence. Processes with such a probability pattern are widespread in the natural
world. An example is given by the evolution of the number of single species over geological
time scales, for which it seems reasonable to assume that large extinctions are unlikely since
the number of species is large [18]. One may also consider colonial organisms. Groups of such
organisms are made up of individuals that are, to varying degrees, coordinated. Many of the
Earth’s largest and most important organisms, from coral reefs to social insect colonies, are
colonial. The extinction of such a ‘superorganism’ is unlikely since the number of individuals
is large.
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The paper is organized as follows. In Section 2 we present the class of GC processes and give
sufficient conditions for the existence of a stationary distribution by using the Markov chain
theory developed in [14]. Since GC processes are regenerative processes, these conditions are
strongly linked with the distribution of cycle lengths. In Section 3 we present some properties
of the processes. First we study the tail behavior of the stationary distribution and establish
connections with the tail behavior of the crash size distribution. Then we turn to the persistence
properties of the process. In particular, we give a condition sufficient to observe long-range
dependence and power law distributions. Proofs are gathered in Section 4.

2. Stationarity

2.1. Definition of the processes

The class of GC processes (Xt )t≥0 is characterized by the following features.

• The growth process. The inflow to the system is assumed to be a random walk with pos-
itive, independent, identically distributed increments εt . We denote by F the cumulative
probability function of ε1. We assume that ε1 has a density f positive on (0,∞) and
admits a Laplace transform �ε1(u) = E[e−uε1 ] in a neighborhood of 0. The condition
on the Laplace transform implies that the distribution of ε1 has a light tail, at most
exponential. The mean of ε1 is denoted by µ.

• The crash epochs. There exists a function ϕ such that, at each date t , the process can
collapse to 0 with probability 1 − ϕ(Xt−1). Of course, ϕ(0) = 1. For the purposes of
exposition, we assume that ϕ is a monotone, continuous function from (0,∞) to (0, 1)
such that infx>0 ϕ(x) =: ϕ > 0. We denote by ϕ̄ the supremum of ϕ on (0,∞).

Thus, the dynamics of (Xt )t≥0 is governed by the stochastic recurrence rule

Xt =
{
Xt−1 + εt with probability ϕ(Xt−1),

0 with probability 1 − ϕ(Xt−1).
(1)

As an illustration, Figure 1 shows a path of the GC process. The selected probability of crashing
is given by 1 − ϕ(x) = 1 − exp(−(1 + x)−1) for x > 0, whereas the increment has a standard
exponential distribution and the initial value is X0 = 0.

The GC process (Xt )t≥0 is a homogeneous Markov chain with a transition rule corresponding
to a mixture of discrete and continuous distributions:

P(Xt = 0 | Xt−1 = xt−1) = 1 − ϕ(xt−1), xt−1 ≥ 0,

P(Xt ∈ (xt , xt + dxt ) | Xt−1 = xt−1) = ϕ(xt−1)f (xt − xt−1) dxt , xt ≥ xt−1.

Therefore, the stationary distribution, if it exists and is unique, has a point mass κ at {0} and a
probability density function l on (0,∞). They satisfy the conditions

κ =
∫ ∞

0
(1 − ϕ(x))l(x) dx, l(x) = κf (x)+

∫ x

0
ϕ(y)f (x − y)l(y) dy. (2)

The atom {0} is regenerative and can be used to define the following regeneration times: T0 = 0
and Tn = inf{t > Tn−1 : Xt = 0}, n ≥ 1. In this way the GC Markov chain is split up into
independent, identically distributed cycles (Xt )Tn≤t<Tn+1 , n ≥ 1. We denote the independent,
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Figure 1: Path of a growth-collapse process.

identically distributed cycle lengths by Dn = Tn+1 − Tn, n ≥ 1. Finally, we define the
monotonically decreasing sequence (pn)n≥0 by p0 = 1 and

pn = E

[ n∏
k=1

ϕ(Sk)

]
, n ≥ 1,

where Sk = ε1 + · · · + εk . Note that for d ≥ 1 we have

P(D1 ≥ d + 1) = E[ϕ(εT1+1) · · ·ϕ(εT1+1 + · · · + εT1+d−1)] = E

[d−1∏
k=1

ϕ(Sk)

]
= pd−1.

2.2. Stochastic stability of the growth-collapse processes

We first assume that ε1 has an exponential distribution with parameter α, because analytical
computations can be performed in this case. We will see that the stationarity condition which
is obtained is also suited to the general case.

Proposition 1. Assume that f (x) = α exp(−αx). The stationary distribution exists and is
unique if and only if

χ =
∫ ∞

0
exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
dx < ∞. (3)

If (3) is satisfied then

l(x) = Ce exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
, κ = 1 − χCe,

where

Ce =
(∫ ∞

0
(2 − ϕ(x)) exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
dx

)−1

.

Recall that the proof is supplied in Section 4. A stationary distribution exists if ϕ converges
to a constant strictly smaller than 1 or converges to 1 but not too quickly. The idea behind this
condition is that the probability of crashing must not be so small that the process cannot come
back to 0 sufficiently often.
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Remark 1. Let c := limx→∞(1 −ϕ(x))x. There exists a stationary distribution if c > α−1 =
µ, and there exists no stationary distribition if c < µ.

Remark 2. Note that N(·) = ∑∞
k=1 1{Sk∈(·)} is an homogeneous Poisson point process with

intensity α. By Campbell’s theorem,

E

[
exp

(∫
[0,x]

ln ϕ dN

)]
= E

[N([0,x])∏
k=1

ϕ(Sk)

]
= exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
.

Let us consider the first cycle, (Xt )T1≤t<T2 . It is easily seen that the survival distribution
function of the crash size of this cycle, XT2−1, is given by

P(XT2−1 > x) = E

[N([0,x])∏
k=1

ϕ(Sk+T1 − ST1)

]
= E

[N([0,x])∏
k=1

ϕ(Sk)

]
.

It follows that (3) is equivalent to the condition χ = E[XT2−1] < ∞.
Now let us introduce independent, identically distributed variables (Zt )t≥1 independent of

the sequence (εt )t≥1. If ϕ is nondecreasing, assume that the cumulative distribution function
of Zt is given by ϕr with ϕr(x) = ϕ(x) if x > 0, ϕr(x) = 0 if x < 0, and ϕr(0) = ϕ. If
ϕ is nonincreasing, assume that the survival distribution function of Zt is given by ϕr with
ϕr(x) = ϕ(x) if x > 0, ϕr(x) = 1 if x < 0, and ϕr(0) = ϕ.

The stochastic recurrence (1) is equivalent to

Xt = Bt(Xt−1 + εt )+ Ct(1 − Bt)εt ,

where Bt = 1 when Zt ≤ Xt−1 and Bt = 0 otherwise if ϕ is nondecreasing, Bt = 0 when
Zt ≤ Xt−1 andBt = 1 otherwise if ϕ is nonincreasing, andCt = 1 whenXt−1 = 0 andCt = 0
otherwise. Let us define the σ -algebra Ft = σ(εn, Zn : n ≤ t) and assume, for the purposes
of exposition, that X0 = 0. It is easily shown that {T1 = t + 1} ∈ Ft . Therefore, T1 − 1 is a
stopping time with respect to {Ft , t ≥ 1}. By Wald’s identity, we deduce that

E[XT1−1] = E

[T1−1∑
t=1

εt

]
= E[ε1](E[T1] − 1)

(see, e.g. Proposition A10.2 of [1]). Since E[XT1−1] = E[XT2−1] and E[T1] = E[D1] when
X0 = 0, it follows that (3) is also equivalent to the condition that the cycle length distribution
have a finite mean, i.e. E[D1] < ∞.

We now study the stochastic stability of the Markov chain in the general case. We first
introduce some notation and definitions (see, e.g. [14]). Let us denote by ν the Lebesgue
measure and by B the Borel σ -algebra on R+. For any measurable set A ∈ B, we define
the time of entry to A by τA = inf{t ≥ 1 : Xt ∈ A} and the number of visits to A by
ηA = ∑∞

t=1 1{Xt∈A}.

Definition 1. (i) A Markov chain (Xt )t≥0 is said to be ν-irreducible if any set of positive
Lebesgue measure can be reached in finite time starting from any initial value. This condition
can be written as

ν(A) > 0, A ∈ B �⇒ L(x,A) := P(τA < ∞ | X0 = x) > 0 for all x ≥ 0.
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(ii) A Markov chain (Xt )t≥0 is said to be Harris recurrent if it is ν-irreducible and if, for any set
of positive Lebesgue measure, it returns to this set infinitely often starting from any element in
the set. This condition can be written as

ν(A) > 0, A ∈ B �⇒ P(ηA = ∞ | X0 = x) = 1 for all x ∈ A.

(iii)A Harris recurrent Markov chain admits a unique invariant measure. If the invariant measure
is finite then the Markov chain is positive Harris recurrent, and is null recurrent otherwise.

We now characterize the stability properties of the GC Markov chain.

Proposition 2. (i) The GC Markov chain is ν-irreducible.

(ii) The GC Markov chain is positive Harris recurrent if c := limx→∞(1 − ϕ(x))x ∈ (µ,∞].
(iii) The GC Markov chain is null recurrent if c := limx→∞(1 − ϕ(x))x ∈ (0, µ).

We see that the condition in part (ii) of Proposition 2 is quite close to the condition derived
from the model with exponential increments (see Remark 1).

A Markov chain is highly unstable or transient when it returns only a finite number of
times to a given set of ‘reasonable size’ (see [14] for a mathematical definition). Note that if
limx→∞(1 − ϕ(x))x = 0, then the GC Markov chain may be either null recurrent or transient.

2.3. The cycle length distribution

A necessary condition to have a GC process which does not diverge to ∞ and may return to
any set is that the cycle lengths are almost surely (a.s.) finite.

Proposition 3. The cycle length D1 is a.s. finite if 1 − ϕ is not integrable at ∞.

It is well known that this last condition is not sufficient for the process to be ‘stable’, and
one often assumes that the cycle length distribution has a finite mean (see Remark 2). Under
this condition, (Xt )t≥0 admits a limiting probability distribution (see, e.g. Theorem 1.2 of [1]).

Therefore, sufficient conditions for the existence of a stationary distribution can also be
deduced from the limiting behavior of the probabilities pn. For ϕ̄ < 1, we can see that pn ≤ ϕ̄n

and that D1 has moments of all orders. Let us instead focus on the case ϕ̄ = 1. We would like
to compare conditions on the rate of convergence of ϕ to 1 with the conditions on the existence
of E[D1] = 1 + ∑∞

n=0 pn. For this reason, we only consider functions ϕ which tend to 1 at a
hyperbolic rate. Let us first recall the definition of regular variation (see, e.g. [5]).

Definition 2. A positive function h on (0,∞) is regularly varying with index τ if

lim
t→∞

h(tx)

h(t)
= xτ , x > 0.

The proposition below derives asymptotic equivalents for the probabilities pn when 1−ϕ(x)
is regularly varying.

Proposition 4. Assume that 1 − ϕ(x) is regularly varying with index τ > 2
3 . Then there exists

a constant C such that

pn = C exp

( n∑
k=1

logϕ(kµ)

)
(1 + o(1)) (4)

for large n.
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We deduce from this proposition that there exists a stationary distribution if

∞∑
n=0

exp

( n∑
k=1

logϕ(kµ)

)
< ∞,

which is equivalent to the condition, (3), derived from the model with exponential increments.
The choice of τ > 2

3 is purely technical. When comparing (4) to the definition of pn, we
see that, for large n, Sn is approximated by its mean, nµ. For τ > 2

3 , the rate of convergence
of ϕ to 1 is sufficiently fast for the fluctuations of Sn around nµ to be neglected. This is not the
case when τ ≤ 2

3 .

Example 1. Let us assume that

ϕ(x) = exp

(
− c

(d + x)τ

)
or, equivalently, − logϕ(x) = c(d + x)−τ ,

where c and d are positive constants. Thus, 1 − ϕ(x) = cx−τ (1 +O(x−(τ∧1))) and ϕ > 0.

(i) If τ > 1 then there exists a positive constant a such that pn = a(1 + o(1)) for large n, and
D1 is not a.s. finite. The GC process is unstable and diverges a.s. to infinity.

(ii) If τ = 1 then there exists a positive constant a such that pn = an−c/µ(1+o(1)) for large n.
The series (pn)n≥0 has a hyperbolic rate of decay andD1 has a power law distribution. Ifµ < c

then E[D1] < ∞ and there exists a stationary distribution.

(iii) If 2
3 < τ < 1 then there exists a positive constant a such that

pn = a exp

(
− c

µτ

(n1−τ − 1)

1 − τ

)
(1 + o(1))

for large n. The distribution of D1 has a Weibull tail and E[D1] < ∞.

It has been observed that for many complex physical systems the distribution of the waiting
times between events larger than a certain size follows a power law distribution. In [13] the
authors found that the distribution of the time interval, τe, between a large earthquake (the main
shock of a given seismic sequence) and the next one is a power law distribution: P(τe > t) =
Aet

−de with exponent de = 1.06. In [6] the statistics of the times, τs, between successive bursts
of solar flare activity also displays a power law distribution: P(τs > t) = Ast

−ds with exponent
ds = 2.04.

Note that these observed scaling behaviors are theoretically in contradiction with models of
self-organized criticality which predict exponential waiting time distributions [6]. However,
as explained in [15], waiting time statistics cannot be used to discard self-organized critical
behavior in real physical systems when all other signatures suggest its existence because the
definition of waiting time may be ‘contaminated’ by there being other, differently distributed
time scales in the problem (see [22] and [12]). Finally, let us underline that the power law
behavior of waiting times could also be explained in terms of a Poisson process with a time-
varying rate (see [21] and [20] for a discussion of this in the context of solar flares).
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3. Properties of the growth-collapse processes

In this section we assume that c = limx→∞(1 − ϕ(x))x ∈ (µ,∞], and we denote by X
a random variable with the unique stationary distribution. Moreover, we assume that the
distribution of X0 is the stationary distribution. Let us first give a moment characterization of
this distribution.

Proposition 5. Let g be a measurable function. Then

E[g(X)] = κ

(
g(0)+

∞∑
n=1

E

[
g(Sn)

n−1∏
k=0

ϕ(Sk)

])
,

where S0 = 0 and κ = P(X = 0).

When it exists, any moment of the stationary distribution can be written as an infinite sum
of specific moments of the trajectories of the random walk (Sn)n≥0.

Example 2. (i) If g = 1 − ϕ then

E[g(X)] = κ

∞∑
n=1

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk)

]
= κ

( ∞∑
n=1

(pn−1 − pn)

)
= κ,

which is equivalent to the left-hand condition in (2).

(ii) If g = 1 then

E[g(X)] = 1 = κ

(
1 +

∞∑
n=1

E

[n−1∏
k=0

ϕ(Sk)

])
= κ

(
1 +

∞∑
n=1

pn−1

)
= κ E[D1].

We deduce from Example 2(ii) that

E[g(X)] = 1

E[D1]
(
g(0)+

∞∑
n=1

E

[
g(Sn)

n−1∏
k=0

ϕ(Sk)

])
= 1

E[D1] E

[T2−1∑
t=T1

g(Xt )

]
.

This is the well-known stationary equation of a regenerative process (see, e.g. Theorem 1.2
of [1]).

Let us now focus on the tails of some particular distributions.

3.1. Tail analysis

We begin with the tail behavior of the stationary distribution. Let us recall some definitions
(see, e.g. [5]).

Definition 3. (i) A positive function h on (0,∞) is rapidly varying with index −∞ if

lim
t→∞

h(tx)

h(t)
=

{
0 for x > 1,

∞ for 0 < x < 1.

(ii) A positive function h on (0,∞) is slowly varying if it is regularly varying with index 0.
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Proposition 6. (i) Assume that ϕl := limx→∞ ϕ(x) < 1. Let (a,∞) be the maximal open
interval (where a < 0) such that

�ε1(u) < ∞ for u ∈ (a,∞).

If a is infinite then assume that f ◦ log is rapidly varying. If a is finite then assume that f ◦ log is
regularly varying with index a and that limδ↘0�ε1(a + δ) = ∞. Let γ be the unique positive
scalar such that �ε1(−γ ) = ϕ−1

l . Then

P(X > x) = ψ(x) exp(−γ x),
where ψ ◦ log is slowly varying.

(ii) Assume that 1 −ϕ(x) = x−τL(x), where L is a slowly varying function for 2
3 < τ < 1 and

L(x) = c(1 + o(1)) for τ = 1. Then

P(X > x) = (1 + o(1))κ
∞∑

n=�x/µ

pn

for large x, where �x
 denotes the integer part of x.

Example 3. (Example 1(ii) continued.) If

ϕ(x) = exp

(
− c

d + x

)
or, equivalently, − logϕ(x) = c(d + x)−1,

where c > µ and d > 0, then we deduce from Proposition 6(ii) that the survival distribution
function of X has a hyperbolic rate of decay:

P(X > x) = (1 + o(1))
aκµc/µ

c − µ
x1−c/µ.

First, note that if ϕ(x) = ϕc < 1 is constant, then l satisfies the integral equation

l(x) = κf (x)+ ϕc

∫ x

0
f (y)l(x − y) dy.

Let γc be the positive constant such that �ε(−γc) = ϕ−1
c , and define the probability measure

G(dx) = ϕc exp(γcx)f (x) dx. We have

h(x) = κ exp(γcx)f (x)+
∫ x

0
h(x − y)G(dy), (5)

where h(x) = exp(γcx)l(x). Equation (5) defines a renewal equation. From the renewal
theorem (see, e.g. [1, p. 155]), we deduce that there exists a positive constant Dc such that
limx→∞ h(x) = Dc. Then we have

P(X > x) = (1 + o(1))γ−1
c Dc exp(−γcx)

for large x. Therefore, when ϕ is constant, the tail of the stationary distribution decreases at an
exponential rate and ψ(x) converges to a positive constant as x tends to ∞. However, this is
not always the case. Consider the function

ϕ(x) = ϕb

(
1 − δ

1 + x

)
,
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where 0 < ϕb < 1 and 0 < δ < 1, and assume that ε1 has an exponential distribution with
parameter α. We have

l(x) = Ce exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
= Ce

(1 + x)αδϕb
exp(−α(1 − ϕb)x),

and ψ(x) converges to 0 as x tends to ∞.
Second, note that, in the case of Proposition 6(ii),X is a.s. finite if E[D1] < ∞, which again

demonstrates the strong link between the existence of a stationary distribution and the existence
of the first moment of D1. Moreover, we have

P(X > µk) = (1 + o(1))
E[(D1 − k)+]

E[D1]
for large integer values k, where (D1 − k)+ denotes the positive part of D1 − k. This is the
result that we would have obtained if we had assumed that ε1 = µ a.s., which also means that,
in this case, the rate of convergence of ϕ to 1 is sufficiently fast for the fluctuations of Sn around
nµ to be neglected.

The following proposition characterizes the correlation structure of the stationary process
(ϕ(Xt ))t≥0.

Proposition 7. The autocovariance function of the process (ϕ(Xt ))t≥0 is given by

cov(ϕ(Xt ), ϕ(Xt+k)) = κ2
∞∑
n=k

pn.

It follows that, in the case of Proposition 6(ii), the autocovariance function of (ϕ(Xt ))t≥0
and the tail of the stationary distribution of (Xt )t≥0 admit the same asymptotical decay rate,

lim
k→∞

P(X > µk)

cov(ϕ(Xt ), ϕ(Xt+k))
= 1

κ
.

We explore the persistence properties of the GC process more deeply in the next subsection.
Let us now denote by An = XTn+1−1 the crash size of the nth cycle and turn to studying the

tail behavior of its distribution. Of course, An, n ≥ 1, are independent, identically distributed
random variables.

Proposition 8. (i) Assume that ϕl = limx→∞ ϕ(x) < 1 and that ϕ is a nondecreasing function.
Then

P(A1 > x) = (1 + o(1))(1 − ϕl)κ
−1 P(X > x)

for large x.

(ii) Assume that 1 −ϕ(x) = x−τL(x), where L is a slowly varying function for 2
3 < τ < 1 and

L(x) = c(1 + o(1)) for τ = 1. Then

P(A1 > x) = (1 + o(1))p�x/µ


for large x.
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Note that in Proposition 8(ii) we have

P(A1 > µx) = (1 + o(1))P(D1 > x)

for large x. This means that the crash size distribution and the cycle length distribution have
the same hyperbolic tail behavior (see Example 1(ii)). This relation has been observed in the
study of, e.g. earthquakes. Despite the apparent complexity of the dynamics of earthquakes,
the probability distribution of the energy, Ee, of an earthquake follows a simple power law
distribution known as the Gutenberg–Richter law: P(Ee > v) = Bev

−ce , whereBe is a positive
constant and the exponent ce is a universal exponent (in the sense that it does not depend on a
particular geographic area) close to 1. Also, as mentioned in Section 2, the distribution of the
time interval, τe, between two large earthquakes is also a power law distribution: P(τe > t) =
Aet

−de with exponent de = 1.06 [13]. Of course, a GC process is too simple to model such a
complex phenomenon fully, but its study may provide some intuition about the mechanism of
energy accumulation.

3.2. Persistence analysis

Let us now assume that c = limx→∞(1 − ϕ(x))x ∈ (3µ,∞], such that the second moment
and the autocorrelations of the stationary process exist.

The GC structure can lead to a sustained correlation phenomenon which is called long-range
dependence. Physicists also denote this phenomenon by the term ‘1/f noise’ because such a
process has a spectral density fs satisfying fs(ω) ∝ ω−d with 0 < d < 1. Intuitively, if the
spectral density diverges to ∞ at a certain rate, then the covariance function converges to 0
at an appropriate slow rate (and vice versa). More specifically, the definition of long-range
dependence that we use is the following.

Definition 4. A stationary process (Xt )t≥0 is said to be long-range dependent if the absolute
values of its autocorrelations,

ρ(k) = E[XtXt+k] − E[Xt ] E[Xt+k]√
var(Xt )

√
var(Xt+k)

,

sum to infinity, i.e. if
∑∞
k=0 |ρ(k)| = ∞.

Another common definition is to have autocorrelations that are regularly varying at ∞ with
exponent less than 1 (see, e.g. Section 4 of [19]). In the following proposition we give a lower
bound on the sum of the autocorrelations.

Proposition 9. Assume that 1 −ϕ(x) = x−τL(x), where L(x) is a slowly varying function for
2
3 < τ < 1 and L(x) = c(1 + o(1)) for τ = 1. Then there exists a constant B such that

lim
n→∞

n∑
k=0

|ρ(k)| ≥ B E[D4
1].

We now derive a condition sufficient to observe long-range dependence.

Corollary 1. Let us assume that c = limx→∞(1 − ϕ(x))x ∈ (3µ, 4µ). Then, for each k,
|ρ(k)| < ∞ and

∑∞
k=0 |ρ(k)| = ∞.
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Remark 3. The dynamical processes underlying evolution over geological time scales have
highlighted a possible signature of long-range dependence [17], [18]. The fluctuations in
the evolutionary record have been proposed to result from intrinsic nonlinear dynamics for
which self-organized criticality provides an appropriate theoretical framework [16]. Our model
suggests that the decreasing probability of having large extinctions may also be a relevant
ingredient.

4. Proofs

4.1. Proofs of results in Section 2

Proof of Proposition 1. If it exists, the probability density function of the stationary distri-
bution satisfies the integral equation

l(x) = κα exp(−αx)+ α

∫ x

0
ϕ(y) exp(−α(x − y))l(y) dy.

Let h(x) = exp(αx)l(x). The equation then becomes

h(x) = κα + α

∫ x

0
ϕ(y)h(y) dy.

By differentiating both sides of the equation, we obtain h′(x) = αϕ(x)h(x), and we deduce
that

h(x) = Ce exp

(
α

∫ x

0
ϕ(y) dy

)

for some positive constant Ce. Therefore,

l(x) = Ce exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)

and the stationary distribution exists if and only if

∫ ∞

0
exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
dx < ∞.

Since

κ +
∫ ∞

0
l(x) dx = 1 =

∫ ∞

0
(2 − ϕ(x))l(x) dx,

we deduce that

Ce =
(∫ ∞

0
(2 − ϕ(x)) exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
dx

)−1

,

κ = 1 − Ce

∫ ∞

0
exp

(
−α

∫ x

0
(1 − ϕ(y)) dy

)
dx,

which completes the proof.
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Proof of Proposition 2. (i) Since the density of ε1 is positive and 0 < ϕ(x) < 1 for all
x > 0, for any A ∈ B such that ν(A) > 0 we have

L(x,A) ≥ P(τA = 1 | X0 = x)+ P(τA = 2 | X0 = x)

≥ ϕ(x)P(ε1 + x ∈ A)+ (1 − ϕ(x))P(ε2 ∈ A) > 0.

(ii) From Theorem 11.0.1 of [14], the Markov chain is positive Harris recurrent if there exist
a petite set C, a constant b < ∞, and a Lyapunov function V ≥ 0, finite at some x ≥ 0, such
that

�V (x) := E[V (X1) | X0 = x] − V (x) ≤ −1 + b 1C(x).

Recall that a set C is petite if the chain satisfies

P(X1 ∈ A | X0 = x) ≥ ν̃(A)

for any x ∈ C and any A ∈ B, where ν̃ is a nontrivial measure on B.
Let M > 0. Note that, for any A ∈ B,

P(X1 ∈ A | X0 = x) ≥ ϕ P(ε1 + x ∈ A) ≥ ϕ P(ε1 + x ∈ A ∩ (M,∞)).

Since f is positive and the Laplace transform is well defined in a neighborhood of 0,

η(M) := inf
A∈B, ν(A∩(M,∞))>0

0≤x≤M

P(ε1 + x ∈ A ∩ (M,∞))

P(ε1 ∈ A ∩ (M,∞))
> 0.

Then, for any x, 0 ≤ x ≤ M , and any A ∈ B, we have

P(X1 ∈ A | X0 = x) ≥ ϕη(M)P(ε1 ∈ A ∩ (M,∞)) =: ν̃(A).

This means that every set of the form [0,M] is petite.
Let us consider the function V (x) = ax, x ≥ 0, a > 0. We have

a−1�V (x) = ϕ(x)E[x + ε1] − x = (ϕ(x)− 1)x + ϕ(x)µ.

If c is finite, let us consider a δ > 0 such that c − µ − δ > 0 and define a−1 = c − µ − δ.
If c is not finite, let us choose a = 1. Then there exists an M > 0 such that, for x > M ,
�V (x) ≤ −1. Finally, we have

�V (x) ≤ −1 + b 1C(x),

where C = {x : 0 ≤ x ≤ M} and b = sup{�V (x)+ 1 : 0 ≤ x ≤ M}.
(iii) From Theorem 11.5.1 of [14], the Markov chain is null recurrent if there exist a petite set
C and a Lyapunov function V ≥ 0 such that

�V (x) ≥ 0 for all x ∈ R+ \ C
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and

sup
x≥0

E[|V (X1)− V (X0)| | X0 = x] < ∞.

Let us again consider the function V (x) = ax. From (ii) we have

lim
x→∞ a

−1�V (x) = µ− c > 0,

and we can use the same arguments as in (ii) to obtain the first condition. Let us now focus on
the second condition. We have

a−1 E[|V (X1)− V (X0)| | X0 = x] = ϕ(x)µ+ (1 − ϕ(x))x.

Since c = limx→∞(1 − ϕ(x))x < µ, we deduce that

sup
x≥0

E[|V (X1)− V (X0)| | X0 = x] < ∞,

and the result follows.

Proof of Proposition 3. Since Ak := ∏k
i=1 ϕ(Si) is a nonincreasing sequence of nonnega-

tive random variables, the a.s. convergence ofAk to 0 implies that the condition limk→∞ pk = 0
holds, by Beppo Levi’s theorem (see [4, p. 209]).

Let us now check the convergence of Ak to 0. From the law of the iterated logarithm, it is
known that, for any λ > 1 (see [4, p. 155]), Sn > nµ+ λ(2σ 2n log log n)1/2 a finite number of
times a.s., where σ 2 = var(ε1). We deduce that a sufficient condition for the a.s. convergence
of Ak to 0 is ∑

n≥3

logϕ(nµ+ λ(2σ 2n log log n)1/2) = −∞

or, equivalently,
∑
n≥0(1 − ϕ(n)) = ∞.

Proof of Proposition 4. Let us first consider the case in which 2
3 < τ ≤ 1, and write qn =

pn/
∏n
i=1 ϕ(iµ) = E[∏n

i=1 ϕ(Si)/ϕ(iµ)]. We will prove the convergence of the sequence
(
∑n
k=1 |qn − qn−1|)n≥1 to deduce the convergence of the sequence (qn)n≥1. Let us now recall

a large deviation principle which will be used intensively in the proof (see Theorem 9.4 of [4]).

Proposition 10. If ε1 admits a Laplace transform in a neighborhood of 0 then, for any sequence
(an)n≥1 satisfying an → ∞ and an/

√
n → 0,

P(Sn ≥ nµ+ an
√
n) = exp

(
−a

2
n(1 + ζ1,n)

2σ 2

)
,

P(Sn ≤ nµ− an
√
n) = exp

(
−a

2
n(1 + ζ2,n)

2σ 2

)

for two sequences (ζ1,n)n≥1 and (ζ2,n)n≥1 going to 0.
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Let 0 < 2ν < min(−2 + 3τ, 2
3 ). Proposition 10 will be used further with the sequence

an = nτ−1/2−ν . Let us note that

qn − qn−1 = 1 − ϕ(nµ)

ϕ(nµ)
E

[(n−1∏
i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)]
,

and introduce the following notation:

Hu,n = {i ≤ n : Si ≥ iµ+ ai
√
i}, Cu,n = card(Hu,n), Cu = Cu,∞,

Hd,n = {i ≤ n : 0 < Si ≤ iµ− ai
√
i}, Cd,n = card(Hd,n), Cd = Cd,∞.

Note that Cu is a.s. finite because

E[Cu] = E

[ ∞∑
i=1

1{Si≥iµ+ai
√
i}
]

=
∞∑
i=1

P(Si ≥ iµ+ ai
√
i) ≤

∞∑
i=1

exp

(
−a

2
i (1 + ζ1,i )

2σ 2

)
< ∞,

and that Cd is a.s. finite because E[Cd] < ∞.
To derive the asymptotic equivalents, we will determine upper and lower bounds for the

sequence qn − qn−1, and compare the asymptotic behaviors of both bounds.
Step 1: Upper bound for the integrand. Let [[1; n− 1]] = {1, 2, . . . , n− 1}. We have

(n−1∏
i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)

= exp

(n−1∑
i=1

logϕ(Si)−
n−1∑
i=1

logϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)

≤ exp

( ∑
i∈[[1;n−1]]\Hu,n

logϕ(iµ+ ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)

×
(

1 − 1 − ϕ(nµ+ an
√
n)

1 − ϕ(nµ)

)
1{n/∈Hu,n}

+ exp

( ∑
i∈[[1;n−1]]\Hu,n

logϕ(iµ+ ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)
1{n∈Hu,n}

≤ exp

( n−1∑
i=Cu,n+1

logϕ(iµ+ ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)(
1 − 1 − ϕ(nµ+ an

√
n)

1 − ϕ(nµ)

)

+ exp

(
−
n−1∑
i=1

logϕ(iµ)

)
1{n∈Hu,n}

≤ exp

(
−

Cu∑
i=1

logϕ(iµ+ ai
√
i)

)
exp

(n−1∑
i=1

logϕ(iµ+ ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)

×
(

1 − 1 − ϕ(nµ+ an
√
n)

1 − ϕ(nµ)

)
+ exp

(
−
n−1∑
i=1

logϕ(iµ)

)
1{n∈Hu,n},
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which provides an upper bound for the integrand. Note that this upper bound is stochastic
because of Cu and the indicator function 1{n∈Hu,n}.

Step 2: Lower bound for the integrand. Similarly, we have

(n−1∏
i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)

= exp

(n−1∑
i=1

logϕ(Si)−
n−1∑
i=1

logϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)

≥ ϕCd,n exp

( ∑
i∈[[1;n−1]]\Hd,n

logϕ(iµ− ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)

×
(

1 − 1 − ϕ(nµ− an
√
n)

1 − ϕ(nµ)

)
1{n/∈Hd,n}

− ϕCd,n exp

( ∑
i∈[[1;n−1]]\Hd,n

logϕ(iµ− ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)

× (1 − ϕ)(1 − ϕ(nµ))−1 1{n∈Hd,n}

≥ exp(Cd logϕ) exp

(n−1∑
i=1

logϕ(iµ− ai
√
i)−

n−1∑
i=1

logϕ(iµ)

)

×
(

1 − 1 − ϕ(nµ− an
√
n)

1 − ϕ(nµ)

)
1{n/∈Hd,n}

− exp

(
−
n−1∑
i=1

logϕ(iµ)

)
(1 − ϕ)(1 − ϕ(nµ))−1 1{n∈Hd,n},

which provides a lower bound for the integrand. Note that this lower bound is stochastic because
of Cd and the indicator function 1{n∈Hd,n}.

Step 3: Analysis of the deterministic components of the bound. Let us consider the sequences
(m1,n) and (m2,n) defined by

m1,n = exp

( n∑
i=1

logϕ(iµ+ ai
√
i)−

n∑
i=1

logϕ(iµ)

)(
1 − 1 − ϕ(nµ+ an

√
n)

1 − ϕ(nµ)

)
,

m2,n = exp

( n∑
i=1

logϕ(iµ− ai
√
i)−

n∑
i=1

logϕ(iµ)

)(
1 − 1 − ϕ(nµ− an

√
n)

1 − ϕ(nµ)

)
.

Let η > 0. For large n, we have

0 ≤ 1 − 1 − ϕ(nµ+ an
√
n)

1 − ϕ(nµ)
≤ τ + η

µ

an√
n
,

0 ≥ 1 − 1 − ϕ(nµ− an
√
n)

1 − ϕ(nµ)
≥ −τ + η

µ

an√
n
.
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Moreover, for large n we have

| logϕ(iµ+ ai
√
i)− logϕ(iµ)| = (1 − ϕ(iµ))

∣∣∣∣1 − 1 − ϕ(iµ+ ai
√
i)

1 − ϕ(iµ)

∣∣∣∣(1 + o(1))

≤ (τ + η)ai

µ1+τ i1/2+τ L(iµ)(1 + o(1))

= τ + η

µ1+τ i1+ν L(iµ)(1 + o(1))

and

| logϕ(iµ− ai
√
i)− logϕ(iµ)| = (1 − ϕ(iµ))

∣∣∣∣1 − 1 − ϕ(iµ− ai
√
i)

1 − ϕ(iµ)

∣∣∣∣(1 + o(1))

≤ (τ + η)ai

µ1+τ i1/2+τ L(iµ)(1 + o(1))

= τ + η

µ1+τ i1+ν L(iµ)(1 + o(1)).

We deduce that m1,n ≤ O(an/
√
n) = O(nτ−1−ν) and that m2,n ≥ O(an/

√
n) = O(nτ−1−ν).

Step 4: Analysis of the stochastic components of the upper bound. (i) Let us first prove that
E[exp(− ∑Cu

i=1 logϕ(iµ+ ai
√
i))] < ∞. We have

E

[
exp

(
−

Cu∑
i=1

logϕ(iµ+ ai
√
i)

)]
=

∞∑
n=1

P(Cu = n) exp

(
−

n∑
i=1

logϕ(iµ+ ai
√
i)

)
.

On the one hand, there exists a constant B1 such that if 2
3 < τ < 1 then

exp

(
−

n∑
i=1

logϕ(iµ+ ai
√
i)

)
≤ exp

(
−

∫ n−1

0
logϕ(xµ+ xτ−ν) dx

)

≤ exp(B1L(n)n
1−τ ),

by using Karamata’s theorem (see, e.g. [5]), and that if τ = 1 then

exp

(
−

n∑
i=1

logϕ(iµ+ ai
√
i)

)
≤ exp

(
−

∫ n−1

0
logϕ(xµ+ xτ−ν) dx

)
≤ exp(B1n

ν).

On the other hand, from Proposition 10, we have

P(Cu = n) ≤ P(Cu ≥ n) ≤ P

( ∞⋃
i=n

{Si ≥ iµ+ ai
√
i}

)
≤

∞∑
i=n

exp

(
−a

2
i (1 + ζ1,i )

2σ 2

)
.

Since a2
i = i2τ−1−2ν , there exists another constant, B2, such that

P(Cu = n) ≤ exp(−B2n
2τ−1−2ν).

Then E[exp(− ∑Cu
i=1 logϕ(iµ+ ai

√
i))] < ∞ if 2τ − 1 − 2ν > 1 − τ ⇔ 2ν < −2 + 3τ for

2
3 < τ < 1 and if 1 − 2ν > ν ⇔ 2ν < 2

3 for τ = 1.
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(ii) Let us now consider the second stochastic component of the upper bound. By the same
arguments as previously, for 2

3 < τ < 1 we have

√
n

an
exp

(
−
n−1∑
i=1

logϕ(iµ)

)
E[1{n∈Hu,n}] ≤

√
n

an
exp(D1L(n)n

1−τ )P(Sn ≥ nµ+ an
√
n)

= o(1),

since
√
n/an = n−(τ−1−ν). The arguments for τ = 1 run similarly. Then we deduce that, for

large n,

E

[(n−1∏
i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)]
≤ const.× an√

n
.

Step 5: Analysis of the stochastic components of the lower bound. (i) Let us first note that,
for large n,

E[exp(Cd logϕ) 1{n/∈Hd,n}] ≥ E[exp(Cd logϕ) 1{1/∈Hd,1}]
= E[exp(Cd logϕ); ε1 ≤ µ+ 1].

We have {ε1 ≤ µ+ 1} �= ∅ and P(ε1 ≤ µ+ 1) > 0. Moreover, Cd is a.s. finite and, thus,

E[exp(Cd logϕ); ε1 ≤ µ+ 1] > 0.

(ii) The arguments for the second stochastic component of the lower bound are similar to the
analogous arguments for the upper bound, and we deduce that

√
n

an(1 − ϕ(nµ))
exp

(
−
n−1∑
i=1

logϕ(iµ)

)
E[1{n∈Hd,n}] = o(1),

since (1 − ϕ(nµ))−1 = (nµ)τL(nµ). Then we deduce that

E

[(n−1∏
i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)]
≥ −const.× an√

n
.

Step 6. By gathering the lower and upper bounds we obtain

∣∣∣∣E
[(n−1∏

i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)]∣∣∣∣ ≤ O

(
an√
n

)
,

where an/
√
n = nτ−1−ν , and, thus,

|qn − qn−1| = 1 − ϕ(nµ)

ϕ(nµ)

∣∣∣∣E
[(n−1∏

i=1

ϕ(Si)

ϕ(iµ)

)(
1 − 1 − ϕ(Sn)

1 − ϕ(nµ)

)]∣∣∣∣
≤ O(L(nµ)n−(1+ν))
≤ O(n−(1+ν/2)).
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Therefore, the sequence qn = E[∏n
i=1 ϕ(Si)/ϕ(iµ)] converges. Moreover,

lim inf
n→∞ qn ≥ lim inf

n→∞ exp

( n∑
i=1

logϕ(iµ− ai
√
i)−

n∑
i=1

logϕ(iµ)

)
E[exp(Cd logϕ)] > 0

(see steps 2–4), and the limit is not equal to 0, which provides the first equivalent to Proposition 4.
Let us now consider the case τ > 1. Note that limn→∞

∑n
i=1 logϕ(iµ) < ∞. Let (an)n≥1

be such that an → ∞ and an/
√
n → 0. Then

1 ≥ pn = E

[ n∏
i=1

ϕ(Si)

]

≥ E[ϕCd,n ] exp

(n−1∑
i=1

logϕ(iµ− ai
√
i)

)

≥ E[exp(Cd logϕ)] exp

(n−1∑
i=1

logϕ(iµ− ai
√
i)

)
.

By using the same arguments as previously (see step 5), it is easily seen that limn→∞ pn > 0
and, therefore, that the sequence (pn)n≥1 converges to a constant.

4.2. Proofs of results in Section 3

Proof of Proposition 5. Since the distribution of X0 is the stationary distribution, we can
equivalently assume that the GC Markov chain is defined for any t ∈ Z. We have

E[g(X)] =
∞∑
n=0

E[g(Xt ) 1{Xt>0, ..., Xt−n+1>0, Xt−n=0}]

=
∞∑
n=0

E[g(Xt ); Xt > 0, . . . , Xt−n+1 > 0, Xt−n = 0]

= P(X = 0)

(
g(0)+

∞∑
n=1

E[g(Xt ); Xt > 0, . . . , Xt−n+1 > 0 | Xt−n = 0]
)

= κ

(
g(0)+

∞∑
n=1

E

[
g(Sn)

n−1∏
k=0

ϕ(Sk)

])
,

where S0 = 0.

Before giving the proof of Proposition 6, we first recall the definition of a function with
bounded increase and a version of the Drasin–Shea theorem (see Theorem 5.2.3 of [5]).

Definition 5. Consider a function h : (0,∞) → [0,∞). The upper Matuszewska index α(h)
is the infimum of those α ∈ R for which there exists a constant C(α) such that, for each� > 1,

h(λx)

h(x)
≤ C(α)(1 + o(1))λα (x → ∞) uniformly on [1,�].

The function h is said to have bounded increase if α(h) < ∞.

Note that nonnegative, ultimately decreasing functions have bounded increase.
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Theorem 1. (The Drasin–Shea theorem.) Consider a function k : (0,∞) → R. Let (a, b) be
the maximal open interval (where a < 0) such that

ǩ(z) :=
∫ ∞

0
t−z k(t)

t
dt < ∞ for a < Re z < b.

If a is finite then assume that limδ→0+ ǩ(a + δ) = ∞. If b is finite then assume that
limδ→0+ ǩ(b − δ) = ∞. Let h : [0,∞) → [0,∞) be a continuous function with bounded
increase. If

lim
x→∞

∫ ∞
0 k(x/t)h(t) dt/t

h(x)
= c > 0,

then there exists a scalar ρ ∈ (a, b) such that

c = ǩ(ρ), h(x) = xρL(x),

where L is a slowly varying function.

Proof of Proposition 6. We first prove part (i). Let us define the functions ϕ̃, f̃ , and l̃ from
R to [0,∞) by

ϕ̃(x) = 1{x≥0} ϕ(x), f̃ (x) = 1{x≥0} f (x), l̃(x) = 1{x≥0} l(x),

and the functions ϕ̂, f̂ , and l̂ from (0,∞) to [0,∞) by

ϕ̂(u) = ϕ̃(log u), f̂ (u) = f̃ (log u), l̂(u) = l̃(log u).

From (2) we can see that

l̂(v) = κf̂ (v)+
∫ ∞

0
f̂ (v/u)ϕ̂(u)l̂(u)

du

u
. (6)

Step 1: Limit of f (x)/ l(x) as x tends to ∞. Let M > 0. First note that, for x > M ,

l(x) ≥ f (x)

∫ M

0
ϕ(y)

f (x − y)

f (x)
l(y) dy. (7)

For a = −∞, f ◦ log is a rapidly varying function and, for all y ∈ [0,M], f (x − y)/f (x)

diverges as x goes to ∞. We deduce from (7) that

lim
x→∞

f (x)

l(x)
= 0.

For a < ∞, f ◦ log is a regularly varying function with index −a. It follows that

lim
x→∞

f (x − y)

f (x)
= eay.

We now establish that the Laplace transform of the stationary distribution, E[e−uXt ], diverges
when u = −a. Indeed, for u < 0 we have

E[e−uXt ] = E[E[e−uXt | Xt−1]
= E[1 − ϕ(Xt−1)] + E[ϕ(Xt−1)e

−uXt−1 e−uεt ]
≥ E[ϕ(Xt−1)e

−uXt−1 e−uεt ]
≥ ϕ E[e−uεt ].
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Since E[eaεt ] = ∞, we deduce that E[eaXt ] = ∞. It follows that

lim sup
x→∞

f (x)

l(x)
≤ 1∫M

0 ϕ(y)eayl(y) dy
for any M .

As M tends to ∞, we obtain

lim
x→∞

f (x)

l(x)
= 0.

Step 2: Drasin–Shea theorem. Let h(u) = ϕ̂(u)l̂(u). It follows from step 1 and (6) that

lim
v→∞

∫ ∞
0 f̂ (v/u)h(u) du/u

h(v)
= 1

ϕl
.

Let us define k(t) = f̂ (t). We have ǩ(u) = �ε1(u). Since the density of ε1 is strictly
positive, b = ∞ and limu→∞ ǩ(u) = 0. Moreover, �ε1 is convex and continuous on (a,∞).
From the Drasin–Shea theorem, there exist a unique scalar γ such that �ε(−γ ) = ϕ−1

l and a
slowly varying function L such that

h(u) = u−γ L(u).

Note that γ is necessarily positive. Therefore, for u > 1 we have

l(log u) = l̂(u) = (1 + o(1))ϕ−1
l u−γ L(u).

Thus,

P(X > log u) =
∫ ∞

log u
l(v) dv =

∫ ∞

u

l(log s)
ds

s
=

∫ ∞

u

l̂(s)
ds

s

and by Karamata’s theorem (see, e.g. [5]) we deduce that

P(X > log u) = (1 + o(1))
ϕ−1

l

γ
u−γ L(u).

Finally, we have

P(X > x) = (1 + o(1))(ϕlγ )
−1L(ex)e−γ x,

where

lim
x→∞

L(ex+a)
L(ex)

= 1 for all a ∈ R

since L is a slowly varying function.
We now prove part (ii) of the proposition. Let v(x) = xα with 1

2 < α < 1, and define
N(x) := �(x − v(x))/µ
 and N(x) := �(x + v(x))/µ
. Let w(N(x)) := x − µN(x) and
w(N(x)) := µN(x)− x. It is easily seen that

w(N(x)) = µαN(x)α(1 + o(1)), w(N(x)) = µαN(x)α(1 + o(1)).
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Recall that S0 = 0 and ϕ(0) = 1. By using Proposition 5 with g(s) = 1{s>x}, the stationary
survival distribution function can be decomposed as

P(X > x) = P(X = 0)
∞∑
n=1

E

[n−1∏
k=0

ϕ(Sk); Sn > x

]

= P(X = 0)
N(x)∑
n=1

E

[n−1∏
k=0

ϕ(Sk); Sn > x

]

+ P(X = 0)
�x/µ
∑

n=N(x)+1

E

[n−1∏
k=0

ϕ(Sk); Sn > x

]

− P(X = 0)
N(x)−1∑

n=�x/µ
+1

E

[n−1∏
k=0

ϕ(Sk); Sn ≤ x

]

− P(X = 0)
∞∑

n=N(x)
E

[n−1∏
k=0

ϕ(Sk); Sn ≤ x

]

+ P(X = 0)
∞∑

n=�x/µ

pn

=: T1(x)+ T2(x)− T3(x)− T4(x)+ P(X = 0)
∞∑

n=�x/µ

pn.

In a first step we give a lower bound for
∑∞
n=�x/µ
 pn. Then we explain how each term

Ti(x), i = 1, . . . , 4, can be neglected with respect to
∑∞
n=�x/µ
 pn. Let 0 < η < 3τ − 2.

Step 1: Lower bound for
∑∞
n=�x/µ
 pn. By Proposition 4,

pn = C exp

( n∑
i=1

logϕ(iµ))(1 + o(1)

)
.

Thus, for large n,

pn >

{
exp(−n1−τ+η), 2

3 < τ < 1,

n−2c/µ, τ = 1.

For 2
3 < τ < 1, we obtain a lower bound as follows:

∞∑
n=�x/µ


pn >

∫ ∞

�x/µ

exp(−u1−τ+η) du

=
∫ ∞

�x/µ

1

(1 − τ + η)u−τ+η (1 − τ + η)u−τ+η exp(−u1−τ+η) du

= 1

1 − τ + η

xτ−η

µτ−η
exp

(
− x

1−τ+η

µ1−τ+η

)
− τ − η

1 − τ + η

∫ ∞

�x/µ

uτ−η−1 exp(−u1−τ+η) du

>
1

2(1 − τ + η)

xτ−η

µτ−η
exp

(
− x

1−τ+η

µ1−τ+η

)
.
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For τ = 1, we obtain a lower bound from

∞∑
n=�x/µ


pn >
µ2c/µ−1

(2c/µ− 1)x2c/µ−1 .

Step 2: Analysis of T1(x). For n ≤ N(x), we have

E

[n−1∏
k=0

ϕ(Sk); Sn > x

]
≤ P(Sn > x) = P(Sn > µN(x)+ w(N(x))).

Let us define K = inf{P(Sn > nµ) : n ≥ 1}. We have P(S1 > µ) > 0 and, by recursion,
P(Sn > nµ) > 0. From the central limit theorem, we deduce that limn→∞ P(Sn > nµ) = 1

2
and, hence, that K is positive. We have

P(Sn+p − µ(n+ p) > x) ≥ P(Sp > pµ, Sn+p − Sp > x + nµ)

= P(Sp > pµ)P(Sn > x + nµ)

≥ K P(Sn − nµ > x)

for any n ≥ 1, p ≥ 1, and x > 0. Then it follows that, for n ≤ N(x),

P(Sn > x) = P(Sn − µn > µ(N(x)− n)+ w(N(x)))

≤ K−1 P(SN(x) − µN(x) > µ(N(x)− n)+ w(N(x)))

≤ K−1 P(SN(x) > µN(x)+ w(N(x))).

Let us define an = w(n)/
√
n. Since 1

2 < α < 1, we have an → ∞ and an/
√
n → 0 and can

use Proposition 10. For any n ≤ N(x), we have

P(Sn > x) ≤ K−1 exp

(
−w

2(N(x))(1 + ζ1,N(x))

2σ 2N(x)

)
,

where ζ1,n tends to 0 as n tends to ∞. Thus,

T1(x) ≤ P(X = 0)K−1N(x) exp

(
−w

2(N(x))(1 + ζ1,N(x))

2σ 2N(x)

)

≤ 2 P(X = 0)(µK)−1x exp

(
− x2α−1

(2µ)2α−222σ 2

)
,

since x/2µ < N(x) < 2x/µ for large x.
For 2

3 < τ < 1, let us choose α such that 2α − 1 > 1 − τ + η, that is, 1 − τ/2 + η/2 < α.
For τ = 1, let us choose α such that 2α − 1 > 0. We then obtain

T1(x) = o

( ∞∑
n=�x/µ


pn

)
.
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Step 3: Analysis of T4(x). For any n ≥ N(x) and sufficiently large x, we have

E

[n−1∏
k=0

ϕ(Sk); Sn ≤ x

]
≤ P(Sn ≤ x)

= P(Sn − µn ≤ µ(N(x)− n)− (w(N(x))− w(n))− w(n))

≤ P(Sn − µn ≤ −w(n)).

Let an = w(n)/
√
n. Since 1

2 < α < 1, we again have an → ∞ and an/
√
n → 0 and can use

Proposition 10. For any n ≥ N(x), we have

P(Sn ≤ x) ≤ exp

(
−w

2(n)(1 + ζ2,n)

2σ 2n

)
,

where ζ2,n tends to 0 as n tends to ∞. Thus, by integrating we obtain

∞∑
n=N(x)

P(Sn ≤ x) ≤ const.×N(x)2(1−α) exp

(
−w

2(N(x))

2σ 2N(x)

)
.

For 2
3 < τ < 1, let us choose α such that 2α− 1 > 1 − τ + η, that is, 1 − τ/2 + η/2 < α. For

τ = 1, let us choose α such that 2α − 1 > 0. Then, as in step 2, we conclude that

T4(x) = o

( ∞∑
n=�x/µ


pn

)
.

Step 4: Analysis of T2(x) and T3(x). We have

T2(x)+ T3(x) ≤ P(X = 0)
N(x)−1∑
n=N(x)

pn

≤ 2 P(X = 0)v(x)µ−1pN(x)

= 2 P(X = 0)µ−1xαpN(x).

From Proposition 4,

1 ≤ pN(x)

p�x/µ


= (1 + o(1)) exp

(
−

�x/µ
∑
i=N(x)

logϕ(iµ)

)

≤ (1 + o(1)) exp(µτ−1v(x)N(x)−τL(N(x)µ)).

For α < τ , we have pN(x) = (1 + o(1))p�x/µ
.
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By using Karamata’s theorem, it can be shown that, for 2
3 < τ < 1,

p�x/µ
 = (1 + o(1))x−τL(x)
∞∑

n=�x/µ

pn.

For τ = 1,

p�x/µ
 = (1 + o(1))(c − µ)x−1
∞∑

n=�x/µ

pn.

We deduce that

v(x)pN(x) ≤ const.× xα−τL(x)
∞∑

n=�x/µ

pn.

Let us choose α such that α < τ ; then we obtain

|T2(x)− T3(x)| ≤ T2(x)+ T3(x) = o

( ∞∑
n=�x/µ


pn

)
.

Step 5. Finally, for 2
3 < τ < 1 let us choose α such that 1 − τ/2 + η/2 < α < τ , which is

possible since 0 < η < 3τ − 2, and for τ = 1 let us choose α such that 1
2 < α < 1. The result

then follows.

Proof of Proposition 7. Let us first recall that

cov(ϕ(Xt ), ϕ(Xt+k)) = E[ϕ(Xt )ϕ(Xt+k)] − E[ϕ(Xt )] E[ϕ(Xt+k)].
By using Proposition 5 with g = ϕ, we have

E[ϕ(Xt )] = E[ϕ(Xt+k)] = κ

(
1 +

∞∑
n=1

pn

)
= κ

∞∑
n=0

pn = κ(E[D1] − 1) = 1 − κ.

Now note that
E[ϕ(Xt )ϕ(Xt+k)] = E[ϕ(Xt )E[ϕ(Xt+k) | Xt ]]

and

E[ϕ(Xt+k) | Xt = xt ]

= κ

k−1∑
n=0

pn + E[ϕ(Xt + S1) · · ·ϕ(Xt + Sk); S1 +Xt > 0, . . . , Sk +Xt > 0 | Xt = xt ].

It follows that

E[ϕ(Xt )ϕ(Xt+k)]

= κ

k−1∑
n=0

pn E[ϕ(Xt )]

+ E[ϕ(Xt )ϕ(Xt + S1) · · ·ϕ(Xt + Sk); S1 +Xt > 0, . . . , Sk +Xt > 0]

= κ

k−1∑
n=0

pn E[ϕ(Xt )] + κ

∞∑
n=k

pn.
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We deduce that

cov(ϕ(Xt ), ϕ(Xt+k)) = κ2
∞∑
n=k

pn,

which completes the proof.

Proof of Proposition 8. First note that

P(A1 > x) =
∞∑
n=0

E[1{Xt>x}; Xt > 0, . . . , Xt−n+1 > 0, Xt−n = 0 | Xt+1 = 0]

= 1

P(X = 0)

∞∑
n=0

E[1{Xt>x}; Xt+1 = 0, Xt > 0, . . . , Xt−n+1 > 0, Xt−n = 0]

=
∞∑
n=0

E[1{Xt>x}; Xt+1 = 0, Xt > 0, . . . , Xt−n+1 > 0 | Xt−n = 0]

=
∞∑
n=1

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn > x

]
.

We now prove part (i). Since ϕ is a nondecreasing function,

(1 − ϕl)κ
−1 P(X > x) ≤ P(A1 > x) ≤ (1 − ϕ(x))κ−1 P(X > x)

and the result follows.
To prove part (ii), as in the proof of Proposition 6(ii) let us define v(x) = xα with 1

2 <

α < 1, N(x) := �(x − v(x))/µ
, N(x) := �(x + v(x))/µ
, w(N(x)) := x − µN(x), and
w(N(x)) := µN(x)− x. We have

P(A1 > x) =
∞∑
n=1

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn > x

]

=
N(x)∑
n=1

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn > x

]

+
�x/µ
∑

n=N(x)+1

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn > x

]

−
N(x)−1∑

n=�x/µ
+1

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn ≤ x

]

−
∞∑

n=N(x)
E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn ≤ x

]
+ p�x/µ


=: T1(x)+ T2(x)− T3(x)− T4(x)+ p�x/µ
.

In a first step we give a lower bound for p�x/µ
. Then we explain how each term Ti(x),
i = 1, . . . , 4, can be neglected with respect to p�x/µ
. Let 0 < η < 3τ − 2.
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Step 1: Lower bound for p�x/µ
. From Proposition 4,

pn = C exp

( n∑
i=1

logϕ(iµ)

)
(1 + o(1)).

Thus, for large n,

pn >

{
exp(−n1−τ+η), 2

3 < τ < 1,

n−2c/µ, τ = 1.

Step 2: Analysis of T1(x). For n ≤ N(x), we have

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn > x

]
≤ E

[n−1∏
k=0

ϕ(Sk); Sn > x

]

≤ P(Sn > x)

= P(Sn > µN(x)+ w(N(x)))

≤ 2(µK)−1x exp

(
− x2α−1

(2µ)2α−222σ 2

)
.

As in the proof of Proposition 6(ii), we can show that

T1(x) ≤ 2(µK)−1x exp

(
− x2α−1

(2µ)2α−222σ 2

)
,

since x/2µ < N(x) < 2x/µ for large x.
For 2

3 < τ < 1, let us choose α such that 2α − 1 > 1 − τ + η, that is, 1 − τ/2 + η/2 < α.
For τ = 1, let us choose α such that 2α − 1 > 0. We then obtain

T1(x) = o(p�x/µ
).

Step 3: Analysis of T4(x). For any n ≥ N(x) and sufficiently large x, we have

E

[
(1 − ϕ(Sn))

n−1∏
k=0

ϕ(Sk); Sn ≤ x

]
≤ E

[n−1∏
k=0

ϕ(Sk); Sn ≤ x

]

≤ P(Sn ≤ x)

= P(Sn − µn ≤ µ(N(x)− n)

− (w(N(x))− w(n))− w(n))

≤ P(Sn − µn ≤ −w(n)).
As in the proof of Proposition 6(ii), we can show that

T4(x) ≤ const.×N(x)2(1−α) exp

(
−w

2(N(x))

2σ 2N(x)

)
.

For 2
3 < τ < 1, let us choose α such that 2α− 1 > 1 − τ + η, that is, 1 − τ/2 + η/2 < α. For

τ = 1, let us choose α such that 2α − 1 > 0. Then, as in step 2, we conclude that

T4(x) = o(p�x/µ
).
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Step 4: Analysis of T2(x) and T3(x). We have

|T2(x)− T3(x)| ≤ T2(x)+ T3(x)

≤
N(x)−1∑
n=N(x)

(pn − pn+1)

≤ pN(x) − pN(x).

For α < τ ,

pN(x) = (1 + o(1))p�x/µ
,

pN(x) = (1 + o(1))p�x/µ
,

and we obtain

|T2(x)− T3(x)| = o(p�x/µ
).

Step 5. Finally, for 2
3 < τ < 1 let us choose α such that 1 − τ/2 + η/2 < α < τ , which is

possible since 0 < η < 3τ − 2, and for τ = 1 let us choose α such that 1
2 < α < 1. The result

then follows.

Proof of Proposition 9. Recall that the distribution ofX0 is the stationary distribution. Since
var(Xt ) = σ 2

X is finite, we can discuss the asymptotic behavior of

n−1∑
k=0

|ρ(k)|.

We have
n−1∑
k=0

|ρ(k)| >
n−1∑
k=0

n− k

n
|ρ(k)| > 1

2σ 2
Xn

var

(n−1∑
t=0

Xt

)
.

Let Nn = sup{j : Tj ≤ n− 1}; then

1

n
var

(n−1∑
t=0

Xt

)
= 1

n
var

(T1−1∑
t=0

Xt +
Nn−1∑
j=1

Tj+1−1∑
t=Tj

Xt +
n−1∑
t=TNn

Xt

)

≥ 1

n
var

(Nn−1∑
j=1

Tj+1−1∑
t=Tj

Xt

)
,

where the inequality has been deduced from the independence of the cycles (Xt )Tj≤t≤Tj+1−1,
j ≥ 0. If

σ 2
C = var

(T2−1∑
t=T1

Xt − E[∑T2−1
t=T1

Xt ]
E[T2 − T1] (T2 − T1)

)
< ∞,

https://doi.org/10.1239/aap/1175266475 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266475


Stochastic stability of some growth-collapse processes 217

then

lim
n→∞

1

n
var

(Nn−1∑
j=1

Tj+1−1∑
t=Tj

Xt

)
= 1

E[T2 − T1]σ
2
C

(see Theorem 3.2 of [1]). If σ 2
C = ∞ then it follows easily by monotonicity that

lim
n→∞

1

n
var

(Nn−1∑
j=1

Tj+1−1∑
t=Tj

Xt

)
= ∞.

Therefore, we obtain

lim
n→∞

n−1∑
k=0

|ρ(k)| ≥ 1

2σ 2
X E[T2 − T1]

var

(T2−1∑
t=T1

Xt − E[∑T2−1
t=T1

Xt ]
E[T2 − T1] (T2 − T1)

)
.

Since

E

[T2−1∑
t=T1

Xt

]
= E[X] E[T2 − T1],

we have

var

(T2−1∑
t=T1

Xt − E[∑T2−1
t=T1

Xt ]
E[T2 − T1] (T2 − T1)

)
= var

(D1−1∑
t=0

Xt+T1 − E[X]D1

)

≥ var

(
E

[D1−1∑
t=0

Xt+T1 − E[X]D1

∣∣∣∣ D1

])

= E

[
E

[D1−1∑
t=0

Xt+T1 − E[X]D1

∣∣∣∣ D1

]]2

=: E[g(D1)
2],

where

g(n) = E

[n−1∑
t=0

(St+T1 − ST1−1)− E[X]n
∣∣∣∣ D1 = n

]

= E[∑n
i=1 Si 1{D1=n}]

P(D1 = n)
− E[X]n

= E[(∑n
i=1 Si)(1 − ϕ(Sn))

∏n−1
i=0 ϕ(Si)]

E[(1 − ϕ(Sn))
∏n−1
i=0 ϕ(Si)]

− E[X]n

=: h(n)− E[X]n.
We now look for an asymptotic lower bound for g. Let

an = nτ−1/2−ν with 0 < 2ν < min
(−2 + 3τ, 2

3

)
.
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We use the same notation as in the proof of Proposition 4:

Hu,n = {i ≤ n : Si ≥ iµ+ ai
√
i}, Cu,n = card(Hu,n), Cu = Cu,∞,

Hd,n = {i ≤ n : 0 < Si ≤ iµ− ai
√
i}, Cd,n = card(Hd,n), Cd = Cd,∞.

Step 1: Lower bound for the numerator of h. We have

( n∑
i=1

Si

)
(1 − ϕ(Sn))

n−1∏
i=0

ϕ(Si)

≥
[n−Cd,n∑

i=1

(iµ− ai
√
i)

]
ϕCd,n

n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n) 1{Sn<nµ+an√n})

−
[n−Cd,n∑

i=1

(iµ− ai
√
i)

]
ϕCd,n

n−1∏
i=0

ϕ(iµ− ai
√
i) 1{Sn≥nµ+an√n}

≥
[n−Cd,n∑

i=1

(iµ− ai
√
i)

]
ϕCd,n

n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n))

− 2

[ n∑
i=1

(iµ− ai
√
i)

] n−1∏
i=0

ϕ(iµ− ai
√
i) 1{Sn≥nµ+an√n}

≥
[ n∑
i=1

(iµ− ai
√
i)

]
ϕCd

n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n))

− Cd(nµ− an
√
n)

n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n))

− 2

[ n∑
i=1

(iµ− ai
√
i)

] n−1∏
i=0

ϕ(iµ− ai
√
i) 1{Sn≥nµ+an√n} .

Thus, by using the same arguments as for Proposition 4,

E

[( n∑
i=1

Si

)
(1 − ϕ(Sn))

n−1∏
i=0

ϕ(Si)

]

≥ E[ϕCd ]
[ n∑
i=1

(iµ− ai
√
i)

] n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n))

− E[Cd]nµ
n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n))

− 2

[ n∑
i=1

(iµ− ai
√
i)

] n−1∏
i=0

ϕ(iµ− ai
√
i)P(Sn ≥ nµ+ an

√
n)

= E[ϕCd ]
[ n∑
i=1

(iµ− ai
√
i)

] n−1∏
i=0

ϕ(iµ− ai
√
i)(1 − ϕ(nµ+ an

√
n))(1 + o(1)).
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Step 2: Upper bound for the denominator of h. We have

(1 − ϕ(Sn))

n−1∏
i=0

ϕ(Si) ≤ (1 − ϕ(nµ− an
√
n) 1{Sn≥nµ−an√n})

n−1∏
i=Cu,n

ϕ(iµ+ ai
√
i)

+
n−1∏
i=Cu,n

ϕ(iµ+ ai
√
i) 1{Sn<nµ−an√n}

≤
( Cu∏
i=1

ϕ(iµ+ ai
√
i)

)−1 n−1∏
i=1

ϕ(iµ+ ai
√
i)(1 − ϕ(nµ− an

√
n))

+
( Cu∏
i=1

ϕ(iµ+ ai
√
i)

)−1 n−1∏
i=1

ϕ(iµ+ ai
√
i)× 2 1{Sn<nµ−an√n} .

Thus, by using the same arguments as for Proposition 4,

E

[
(1 − ϕ(Sn))

n−1∏
i=0

ϕ(Si)

]

≤ E

[( Cu∏
i=1

ϕ(iµ+ ai
√
i)

)−1] n−1∏
i=1

ϕ(iµ+ ai
√
i)(1 − ϕ(nµ− an

√
n))(1 + o(1)).

Step 3: Asymptotic lower bound for g. We deduce from step 1 and step 2 that

h(n) ≥
( n∑
i=1

(iµ− ai
√
i)

)
(1 + o(1))E[ϕCd ]

E[(∏Cu
i=1 ϕ(iµ− ai

√
i))−1]

×
∏n−1
i=0 ϕ(iµ− ai

√
i)(1 − ϕ(nµ+ an

√
n))∏n−1

i=1 ϕ(iµ+ ai
√
i)(1 − ϕ(nµ− an

√
n))

.

By using the same arguments as in step 3 of the proof of Proposition 4, we deduce that h(n) ≥
O(n2) and that there exists a constant Bg such that

g(n) ≥ Bgn
2, n ≥ 1.

The result then follows.

Proof of Corollary 1. Since c > 3µ, |ρ(k)| < ∞ for each k. Moreover, if c < 4µ then, by
Propositions 4 and 6 and Example 1(ii), E[D4

1] = ∞, and, by Proposition 9,
∑∞
k=0 |ρ(k)| = ∞.
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